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Multiphoton calcium imaging is one of the most powerful tools in modern

neuroscience. However, multiphoton data require significant pre-processing of

images and post-processing of extracted signals. As a result, many algorithms and

pipelines have been developed for the analysis of multiphoton data, particularly

two-photon imaging data. Most current studies use one of several algorithms and

pipelines that are published and publicly available, and add customized upstream

and downstream analysis elements to fit the needs of individual researchers. The

vast differences in algorithm choices, parameter settings, pipeline composition,

and data sources combine to make collaboration difficult, and raise questions

about the reproducibility and robustness of experimental results. We present

our solution, called NeuroWRAP (www.neurowrap.org), which is a tool that

wraps multiple published algorithms together, and enables integration of custom

algorithms. It enables development of collaborative, shareable custom workflows

and reproducible data analysis for multiphoton calcium imaging data enabling

easy collaboration between researchers. NeuroWRAP implements an approach

to evaluate the sensitivity and robustness of the configured pipelines. When this

sensitivity analysis is applied to a crucial step of image analysis, cell segmentation,

we find a substantial difference between two popular workflows, CaImAn

and Suite2p. NeuroWRAP harnesses this difference by introducing consensus

analysis, utilizing two workflows in conjunction to significantly increase the

trustworthiness and robustness of cell segmentation results.

KEYWORDS

two-photon calcium imaging, image analysis, consensus, workflow management,
reproducibility

Introduction

Two-photon calcium imaging is a common brain imaging technique that allows for
recording the activity of hundreds or thousands of neurons at single-cell resolution.
However, two-photon calcium imaging data requires significant pre-processing of acquired
images (motion correction, cell segmentation, and signal extraction) and post-processing

Frontiers in Neuroinformatics 01 frontiersin.org

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2023.1082111
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2023.1082111&domain=pdf&date_stamp=2023-04-25
https://doi.org/10.3389/fninf.2023.1082111
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fninf.2023.1082111/full
http://www.neurowrap.org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-17-1082111 April 19, 2023 Time: 14:8 # 2

Bowen et al. 10.3389/fninf.2023.1082111

of extracted signals to produce interpretable readout from each
neuron. As a result, many algorithms and pipelines have been
developed for the analysis of two-photon imaging data. While
several algorithms and pipelines are published and available as
open-source packages (Giovannucci et al., 2017, 2019; Pachitariu
et al., 2017; Zhou et al., 2018; Cantu et al., 2020), countless
others are customized in individual research groups. These different
analysis methods could be different ways to approach a task such
as automatic cell segmentation, or algorithms may be tailored to
specific use cases such as rigid versus non-rigid jitter correction.
Beyond different use cases, each method or pipeline typically has a
variety of input parameters such as thresholds, temporal window
sizes, sampling rates, and other experimental metadata that may
need to be tuned to each different dataset. The vast potential
differences in algorithm choices, pipeline parameter settings, and
data sources combine to create an immense challenge of analysis
reproducibility and collaboration.

Reproducibility, the ability to produce the same results as
previous work, is a large problem in science with neuroscience
being no exception (Miłkowski et al., 2018). For the purposes
of this work, we are using the word reproducibility to describe
repeatability, replicability, and reproducibility. Repeatability
is the ability for the same researchers to produce the same
results using the same experimental setup (or software
configuration) over multiple trials, which is the easiest to
achieve. Replicability is the ability for different researchers to
produce the same results as other researchers using the same
experiment setup (or software configuration) across multiple
trials. Reproducibility is the ability for different researchers
to produce the same results as other researchers using a
different experimental setup (or software configuration) across
multiple trials (Plesser, 2018). All three are important, with
replicability and reproducibility being the typical challenge point
in analysis workflows causing results to differ between different
researchers.

A recent study gave the same FMRI dataset to 70 different
research labs with the same analysis goal and no restrictions
on what analyses could be used (Botvinik-Nezer et al., 2020).
All groups used different analysis pipelines and found vastly
different results. The authors highlighted several solutions to
this problem: (1) share less-processed data, (2) publicly share
data and code (3) public pre-registration of hypothesis and
analysis to be used, and (4) using consensus results from multiple
pipelines. There exists the need for a robust neuroimaging
data analysis platform that enforces record keeping in a way
that facilitates easily reproducing past results. Efforts have been
made to standardize data format in neuroscience (Teeters et al.,
2015; Gorgolewski et al., 2016) as well as data storage and
sharing in neuroscience (Rübel et al., 2021), but standardization
of analysis techniques remains an ongoing challenge. Scientific
results that can be reproduced reliably will elevate the quality of
further produced work but also save trainees and early career
researchers immense amounts of time when establishing data
analysis workflows.

Neuroscience researchers would greatly benefit from a way to
explore different options in their analysis pipelines in a controlled
and reproducible manner. While analyzing neuroimaging data,
it is rarely the case that the first algorithm or the first set of
parameters used produce the final publishable results. It requires a

significant amount of time and effort from researchers to optimize
an analysis pipeline for their specific datasets because of the vast
amount of parameter choices and lack of interoperability between
different analysis packages due to differences in programming
languages or input and output structure. Furthermore, there
is not always a definitive method to know which algorithms,
methods, or parameter choices are best; requiring running analyses
many times and manually gathering results to determine the
best configuration.

Here we present NeuroWRAP (see text footnote 1), an analysis
platform and workflow integrator for reproducible analysis
of two-photon calcium imaging data. NeuroWRAP enables
researchers, even with no programming experience, to analyze
their data and keep an extensive record of all algorithms and
parameters that were used. It facilitates reproducible analysis
achieved by the ability to track, organize, and compare
analysis executions, as well as allowing sharing of data and
analysis workflows. Furthermore, it allows for pipelines to
be easily built using algorithms from different sources and
in different programming languages, such as MATLAB and
Python working together seamlessly. We demonstrate how
NeuroWRAP’s features can aid in parameter selection in
conjunction with a consensus analysis module which combines
outputs of multiple algorithms to produce consistent and
reliable results.

Results

NeuroWRAP is a neurodata processing platform that contains
a suite of pre-processing and analysis algorithms for two-photon
calcium imaging data. It enables researchers to easily process
and analyze imaging data in a reproducible and collaborative
manner. NeuroWRAP focuses on analyses required to get from
raw data to interpretable neuronal readout but additionally
contains some downstream analysis modules. Furthermore, it
is free and requires no programming experience making it
accessible for all neuroscientists looking to analyze two-photon
calcium imaging data. NeuroWRAP is currently available for
Windows and Mac.

Modular design

NeuroWRAP operates by executing workflows which consist of
modules. Modules are the basic building blocks of workflows and
consist of individual processing steps or algorithms within a typical
two-photon calcium imaging analysis pipeline.

Modules are typically categorized by their processing step
where the categories are as follows: (1) File acquisition, where
raw image data and metadata is loaded with options for several
acquisition systems such as ThorLabs,1 Bruker/Prairie,2 and simple
TIF stacks or multipage TIFs, (2) Motion correction, which
corrects motion artifacts or jitter in imaging movies, (3) Cell

1 www.thorlabs.com

2 www.bruker.com

Frontiers in Neuroinformatics 02 frontiersin.org

https://doi.org/10.3389/fninf.2023.1082111
www.thorlabs.com
http://www.bruker.com
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-17-1082111 April 19, 2023 Time: 14:8 # 3

Bowen et al. 10.3389/fninf.2023.1082111

segmentation, where cells within the field of view are identified
either automatically or manually, (4) Signal extraction, where
fluorescence over time is extracted from the image stack for
identified cells and baseline-corrected signals can be calculated,
and finally (5) Analysis, where downstream analysis can be
performed on the extracted signals. NeuroWRAP includes a
library of validated modules for each of these five processing
steps that can be downloaded and used (Table 1). Users of
NeuroWRAP are presented with all available modules which can
be individually downloaded and assigned to runtime environments
as desired. The modules listed in Table 1 have been validated
to work with one another following the typical dataflow from
less processed (raw) data to more processed data. NeuroWRAP
users can modify existing modules or write new modules
from scratch. Users can then share any custom modules to
other users, allowing them to see and optionally download
them.

Using modules within NeuroWRAP is significantly simpler
than using packages or algorithms outside of the platform. We
achieve this by requiring minimal input parameters, with default
values available and visible where appropriate, and allowing outputs
of modules to be piped into downstream modules as inputs. We
have shared “validated” modules under the “Fraunhofer” username
in NeuroWRAP (Table 1), which ensures module inputs and
outputs are compatible with other modules in our library. As a
result, any validated modules within NeuroWRAP can be used
together so long as it follows the typical data flow logic of processing
pipelines (i.e., from raw, less-processed data to more-processed
data).

When configuring a module within a workflow, there are four
different input types that can be used for input parameters:

• Manual (default): Manual inputs let you manually enter a
value into a field when creating or editing a workflow. Manual
inputs support all data types except matrices.
• Runtime: Runtime inputs are just like manual inputs, but

instead of entering a value while creating or editing a
workflow, the value is entered prior to executing the workflow.
Runtime inputs allow you to choose different input values
every time you run a workflow, without editing the workflow.
Runtime inputs are useful for quickly running the same
analysis on many different datasets, such as when batch
processing data.
• Pipe: The pipe input type enables passing data between

modules by allowing you to choose an output of a prior
module in the workflow as the input value. The available
and compatible (i.e., matches the input’s variable type) inputs
are listed in a drop-down menu. Pipe inputs allow custom
workflows to be set up quickly and efficiently while also acting
as a guide for data flow between modules.
• HDF5: HDF5 inputs let you choose an HDF5 file (hierarchical

data format version 5)3 and then choose a variable from that
file as the input value. This input type is useful if loading
pre-processed data to perform downstream analysis, or for
iterating different analysis techniques on a previously executed
workflow since NeuroWRAP’s output files are stored in HDF5.

3 www.hdfgroup.org

When creating a workflow, all input types are viable, it is a
matter of choosing which suit the user’s situation best. In most
cases, early modules in a workflow will utilize mostly manual or
runtime inputs, while later modules in a workflow will utilize many
pipe inputs that use outputs from previous modules.

Fully customizable workflows

With the library of available modules, workflows can be
constructed to create data analysis pipelines. Workflows can be
as long or short as needed, whether it is a single module or
several modules. NeuroWRAP also comes with pre-built workflows
which can be used as-is or easily modified to fit individual
needs. All configured workflows, whether downloaded or created
from scratch, will appear in the “Run Workflows” section of
NeuroWRAP where they can be repeatedly executed as needed.
Figure 1 show three example workflows, where the boxes between
arrows represent individual modules and modules are colored
according to their processing step categorization. Here we illustrate
the ability to easily string together diverse algorithms, including
different interpreter languages, on various types of acquired data.
Additionally, one can load pre-processed data directly from an
HDF5 file (utilizing the HDF5 input type) or MATLAB.mat file
(using the Load from.mat module) and jump right to the relevant
processing step (Figure 1, bottom). Figure 1 represents just a small
fraction of the possible workflow configurations with the available
module library.

Multiple workflows can be queued up to be automatically run
and each workflow will be executed in the order they are added
to the queue. This workflow queue is useful if batch processing
data by running the same pipeline on several different datasets
or iteratively running a pipeline with altered parameters on the
same dataset to explore algorithm performance. Additionally,
workflows can include multiple modules from the same processing
step if a comparison of results from different algorithms is
desired. For example, one could place three different automatic
cell segmentation modules in a workflow, which will be executed
serially and then have all results available within and at the end of
the workflow execution.

Integration of algorithms and
programming languages

Most existing neuroscience analysis pipelines are self-contained
in that their individual algorithms are not easily mixed with
algorithms from other existing analysis pipelines due to differences
in programming languages, data structure, and data flow.
Furthermore, most existing packages are written in either
MATLAB or Python, potentially excluding users who lack the
sufficient proficiency in one of these languages to be able to
setup and utilize algorithms. NeuroWRAP bridges these gaps
by supporting modules in both MATLAB and Python and
integrating algorithms from various sources to function within
a single workflow. The diversity of the module library is
evident from Table 1, but it is important to note that these
modules can all work together. Furthermore, modules from
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TABLE 1 Highlighted modules included in NeuroWRAP.

Module name Type Language Description

Read Bruker/Prairie File acquisition MATLAB Reads raw files from Bruker/Prairie system

Read TIFs File acquisition MATLAB Reads TIF files from a directory

Read multipage TIF File acquisition MATLAB Reads images from a multipage TIF file

Read ThorImage
(Single-channel)

File acquisition MATLAB Reads raw files from a ThorImage system

Read ThorImage
(Multi-channel)

File acquisition MATLAB Reads raw files from a ThorImage system with multichannel acquisition

Load example raw data File acquisition MATLAB or Python Loads an example image matrix to test workflows

DFT image registration Motion correction MATLAB Motion correction via discrete fourier transform (DFT) registration (Guizar-Sicairos et al., 2008)

Suite2p Cell segmentation Cell segmentation Python Automatic cell segmentation/detection from Suite2p (Pachitariu et al., 2017)

CaImAn cell segmentation Cell segmentation Python Automatic cell segmentation/detection from CaImAn (Giovannucci et al., 2019)

CITE-On Cell segmentation Python Automatic cell segmentation/detection from Fellin lab (Sitá et al., 2022)

Manual cell selection Cell segmentation MATLAB Manual cell selection via clicking GUI

Bandpass detection Cell segmentation MATLAB Automatically detects ROIs from a mean image using band pass filtering

Extract fluorescence Signal extraction MATLAB Extracts fluorescence over time from detected ROIs

Calculate dF/F
(sliding-window)

Signal extraction MATLAB Calculates dF/F using a sliding window to estimate baseline

Granger causality analysis Analysis MATLAB Detects granger causal relationships between neurons based on activity (Francis et al., 2018, 2022)

Cell finder consensus Analysis Python Finds matching cells from two cell segmentation algorithms

This list is not exhaustive and the module library will continue to expand as we incorporate more algorithms and users share modules.

FIGURE 1

Example workflows within NeuroWRAP. These three example workflows contain modules available within NeuroWRAP. Color denotes type of
processing step categorized by the column headers. Workflow 3 uses results from a previous execution to calculate dF/F using an alternative
method followed by downstream analysis.

different interpreter languages can be used seamlessly within
a workflow. NeuroWRAP also includes the ability to view the
module code, edit module code as needed, and write a custom
module from scratch. When creating a custom module, one can
specify the inputs and outputs which then generates a code
template where custom procedures in python or MATLAB can be
written.

NeuroWRAP features automatic handling of runtime
environments to aid users that may have limited experience
in setting up and managing virtual environments. When opening
NeuroWRAP for the first time, a user will indicate where runtime
interpreter paths are located on their computer, depending on

what type of modules they wish to run. The three options for
runtime environments are MATLAB, Python, and Conda. Python
and Conda environments can both be used for modules written
in Python, but Python runtime environments set up module
requirements within a virtual environment (venv) while Conda
runtime environments set up module requirements within a conda
environment, a common framework for software packages in the
life sciences domain. For any modules that require a Python virtual
environment, the module installer automatically downloads and
installs necessary dependencies based on the requirements file
included with the module. MATLAB runtime environments simply
point to the local path for the desired MATLAB version.
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Reproducible, recorded, and
collaborative data analysis

NeuroWRAP automatically records every relevant piece of
information from an analysis pipeline each time it is executed
(Figure 2; left). When a workflow is run, an execution record is
created which stores all module configurations, input parameter
settings, data that was parsed during execution, as well as
any figures produced and resulting data. Execution records are
managed within NeuroWRAP but also reside in a local directory
which stores all data in an HDF5 file as well as images of any
produced figures. A screenshot of the NeuroWRAP GUI illustrates
the workflow setup page for this specified workflow (Figure 2;
right).

Configured workflows can be shared and downloaded via
NeuroWRAP enabling collaboration between users. These shared
workflows can serve different purposes depending on how they
are configured when shared. A shared workflow could be fully
configured with all parameters preset to serve as an instructive
example, or it could utilize runtime inputs so that certain key
parameters can be left open for any future user. The built-in record
keeping of executions facilitates reproducibility and simplifies the
process of reporting analysis configuration to colleagues or in
publication submissions.

Consensus analysis of cell segmentation
algorithms

Choosing an openly available algorithm to include in an
analysis workflow can be difficult because even a well-configured
algorithm can produce differing results from other openly available
algorithms that aim to accomplish the same task. However, these
differences in output of multiple algorithms can be leveraged to
find which results are the most consistent and robust. To aid
researchers with this challenge, we have introduced a module in
NeuroWRAP that compares and combines the output of different
cell segmentation algorithms, a necessary step in any calcium
imaging analysis workflow. A common issue with cell segmentation
algorithms that automatically detect regions of interest (ROIs) is
the occurrence of false positives (non-cellular ROIs mislabeled
as active neurons) and false negatives (active neurons that were
not assigned ROIs). Both erroneously included ROIs or missed
ROIs can negatively affect the population statistics and downstream
analysis performed on the dataset. Furthermore, the occurrence
of false positives and false negatives can differ between cell
segmentation algorithms. An approach to solve this problem is
to use the consensus of cell segmentation algorithms by utilizing
detected cells that appear as accepted ROIs in both algorithms.
Assuming these two unique algorithms have different types of
error, consensus analysis will reveal which detected cells are the
most consistent and robust because false positives are less likely to
appear as a result in both algorithms. NeuroWRAP includes a cell
detection consensus module which takes the output coordinates
from two cell detection algorithms and returns the cells that
are location-matched within a user-defined distance threshold.
The distance threshold determines the maximum acceptable pixel
separation of two cell locations for them to be resolved as one

cell. Cells that meet the consensus criteria can then be passed
to downstream modules for further processing. A NeuroWRAP
workflow can be created that utilizes two separate cell detection
algorithms, runs them serially, and then feeds their output to the
cell detection consensus module (Figure 3A; top). This module
will also produce a visual output that shows the output of each
individual cell detection module and which cells spatially matched
(Figure 3A; bottom). This example consensus analysis workflow of
Suite2p and CaImAn has been shared within NeuroWRAP with the
name “Suite2P + CaImAn cell detection consensus,” which can be
downloaded and used by NeuroWRAP users.

NeuroWRAP enables crucial parameter
exploration

An overarching concern when considering results from
neuroscience data analysis is that due to various reasons,
researchers may not explore many different analysis procedures
and settings on all of their data. This may be due to difficulty in
tracking results across many different configurations, lacking of
understanding of how sensitive parameters may be, or simply a lack
of time. As a result, researchers may use parameter settings based
on what was historically used in their lab or parameter settings
used in well-cited literature, regardless of whether these settings
are appropriate for their newly acquired data. Furthermore, slight
differences in parameter choices can produce drastically different
results, leading to a propagation of variability with downstream
analyses and ultimately different answers to the scientific question
being tested. Effort spent exploring and recording results from
different algorithms and parameter settings could lead to more
robust and reproducible science.

The flexibility of modular workflows in NeuroWRAP is
designed to enable users to easily compare different algorithms
and parameter choices when constructing an analysis pipeline.
To demonstrate this and further motivate the value of exploring
different modules and different parameter settings within analysis
pipelines, we constructed example workflows that are identical
up to the point of cell segmentation, where they differ. We
use automatic cell segmentation algorithms from two popular
imaging analysis packages, Suite2p (Pachitariu et al., 2017) and
CaImAn (Giovannucci et al., 2019). These workflows were run
on the same publicly available dataset which has a ground truth
of 330 cells determined from anatomical labeling (see section
“Materials and methods”). To start, we view how the results from
these modules change when sensitive parameters are adjusted. For
Suite2p, we tested the number of cells detected as we altered two
parameters: the threshold_scaling parameter which controls the
threshold requirement for the signal-to-noise ratio on each ROI,
and the max_overlap parameter which determines the amount
of overlap two ROIs can have to be deemed unique. We found
that the threshold_scaling parameter drastically affects the number
of cells detected (Figure 3B; top left) in an expected trend with
lower values significantly overestimating the cell count and higher
values underestimating the cell count. The max_overlap parameter
followed an expected trend as well, yet with changes that were less
drastic in magnitude (Figure 3B; top right). For CaImAn, we again
tested the number of cells detected as we altered two parameters:
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FIGURE 2

Example workflow execution. An analysis workflow featuring 4 modules. Below each module are its input and output variables, where required
inputs are bolded and optional inputs are italicized. Dashed arrows represent output variables that have been piped as inputs to downstream
modules. All pictured information is stored in the output file upon execution of this workflow. On the right, a screenshot of the NeuroWRAP GUI is
shown illustrating the setup page for this specific workflow.

FIGURE 3

Results are sensitive to algorithm choice and parameter configuration. (A) Example of the cell detection consensus module in NeuroWRAP. The top
schematic illustrates an example usage of the cell segmentation consensus module. The lower image is example output of the consensus module
using Suite2p and CaIman on publicly available Neurofinder data. (B) Number of cells detected by Suite2p and CaImAn while altering certain input
parameters. Top left: “threshold_scaling,” top right: “max_overlap” (Suite2p), bottom left: “gSig” (CaImAn), bottom right: number of expected cells in
field of view extrapolated from “K” (CaImAn). (C) Left: Number of cells detected by CaImAn across a selected parameter space. Middle: Ratio of
detected cells in CaImAn to Suite2p across a selected parameter space. White pixels indicate parameter configurations where roughly the same
number of neurons were detected. Right: Percentage of cells that were spatially matched between Suite2p and CaImAn at various parameter
configurations. (D) Cell-location consensus between ground truth data and CaImAn’s detected cells across a selected parameter space.
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the gSig parameter which is the expected half-size of cells and K
which is the number of expected cells per patch (approximated
from total estimate in the entire field of view). We found that the
gSig parameter has a large effect on the number of cells detected,
with lower, unrealistic values drastically overestimating the number
of cells, with mid-range values producing values closer to ground
truth, though still with variation (Figure 3B; bottom left). The K
parameter had more surprising results, with certain values causing
CaImAn to find more cells than estimated, while other values lead
CaImAn to find fewer cells than estimated (Figure 3B; bottom
right).

These examples of parameter exploration highlight the
sensitivity of workflow configuration when it comes to producing
consistent results. A simple exploration of a reduced range of these
values could help users make informed decisions on parameter
selections. For example, if a researcher knows the size of the
field of view and the average cell size, an approximation can be
made about how many cells are expected in the field of view.
Utilizing NeuroWRAP to iteratively analyze data at a range of
parameter values to explore how many cells are found in a recorded
and reproducible manner can aid researchers in choosing an
appropriate parameter setting.

Consensus analysis can aid in parameter
configuration of modules

We have shown an example of how individual parameters can
drastically alter results and need to be carefully considered when
setting up analysis pipelines. We next explore how this information
can be further utilized by comparing and combining the outputs
of both modules and using the consensus analysis of detected
cells, utilizing the unique advantages and features of NeuroWRAP.
We test how these two example cell detection algorithms, Suite2p
and CaImAn, agree or deviate from one another under various
parameter configurations. To make the results comparison as
close as possible, we use the number of cells found by Suite2p
to seed CaImAn’s expected number of cells detected (parameter
K from the previous section). We choose to alter the two most
sensitive parameters from the previous section: threshold_scaling
within Suite2p and gSig within CaImAn. We find that the number
of cells detected by CaImAn expectedly decrease with higher
threshold_scaling and gSig values, following the trend found in
each individual algorithm (Figure 3C; left). However, with the
ratio of number of cells detected by CaImAn to number of cells
detected by Suite2p (Figure 3C; middle), we find that there is a
narrow region of the parameter space (diagonally from top left to
bottom right) where the two algorithms are finding roughly the
same number of cells. This narrow region of the parameter space
where two different algorithms agree gives more confidence in how
parameters should be configured for robust results. However, the
number of cells on its own may not be fully informative since
the cell locations may differ. Therefore, we utilize the consensus
module and determine which neurons are spatially matched at each
joint parameter configuration (Figure 3C; right). We find a similar
region of high consensus between the two algorithms indicating
how parameters in these two algorithms can be tuned to produce
consistent output.

Together these results point toward favorable regions within
the parameter space (rather than precise single values) where
different algorithms reach high consensus. Parameter selection can
then be made according to regions of high consensus (Figure 3C;
middle, right) and whether the researcher wants more or fewer cells
detected (Figure 3C; left) depending on their research context. For
example, if studying which cells are highly responsive across many
trials in a stimulus-based experimental paradigm, one may wish
to pick a portion of this favorable region where fewer cells are
being detected (toward the bottom right), assuming highly active
cells take precedent in these particular cell detection algorithms.
Conversely, if studying population dynamics at a fine temporal
scale, one may utilize a portion of this region to capture the activity
of as many cells as possible (toward the top left) to capture the joint
activity of all possible neurons. In either case, using a reduced and
more coarsely sampled range of parameters in conjunction with
consensus analysis could serve as a useful tool when determining
how best to configure analysis on one’s data. This process is made
significantly easier within the context of NeuroWRAP where all
configurations are recorded with each workflow execution.

Utilizing the ground truth data from anatomical labeling, we
next compare the cell locations found by CaImAn across the
parameter space to assess their spatial accuracy (Figure 3D) by
computing the true positive rate (TPR) as follows:

TPR CaImAn =
# of CaImAn cells matching ground truth

total # of ground truth cells (330)
∗ 100

We find a bias such that the more cells that are detected by
CaImAn, the more likely there are to be matches with the ground
truth data. Given that there is finite space within the field of
view and a restriction on overlap of cells, the regions of high
percentage matched with the ground truth data should still be taken
as favorable to those regions with a low percentage. However, in
the pursuit of proper parameter selection for cell detection, ground
truth labeling is typically absent and thus consensus analysis may
hold more merit.

Lastly, we utilize the ground truth data in this example dataset
to determine whether consensus cells are more likely to be real and
therefore more robust. We first look at how many of CaImAn’s
detected cells are spatially matched with ground truth at each
parameter value (Figure 4A) as follows:

CaImAn overlap with ground truth =

# of CaImAn cells matching ground truth
total # of detected CaImAn cells

∗ 100

We find that for most of the parameter space, only 75% or
less of CaImAn’s cells are spatially matched with ground truth. It’s
important to note that CaImAn is tailored toward detecting active
cells, and some of the ground truth data may contain inactive cells,
which may account for some of the discrepancy. Additionally, the
extremes of this parameter space may be drastically overestimating
or underestimating the number of cells, accounting for further
deviations from ground truth. We next look at what proportion
of the consensus cells, meaning the spatially matched cells that
CaImAn and Suite2p both found, also overlap with ground truth
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FIGURE 4

Cell detection comparisons to ground truth data. (A) Proportion of CaImAn’s detected cells that overlap with ground truth cell locations at a range
of parameter configurations. (B) Proportion of consensus analysis (Suite2p and CaImAn) cell locations that overlap with ground truth cell locations
at a range of parameter configurations. (C) Scatter plot of each pixel value in panels plots (A,B), comparing the percentage overlap with ground truth
from CaImAn alone to that of CaImAn’s consensus with Suite2p.

cell locations (Figure 4B) as follows:

Consensus overlap with ground truth =

# of Consensus cells matching ground truth
total # of Consensus cells

∗ 100

We see that consensus cell locations have a high overlap with
ground truth (greater than 75%) at a wide range of the parameter
space. We next compare the ground truth overlap of CaImAn
and consensus cell locations by plotting the percent overlap with
ground truth of each against one another at each parameter
configuration (Figure 4C). We see that most points lie above the
diagonal, indicating that consensus has a higher proportion of its
cells spatially matched with ground truth, regardless of parameter
configuration.

Consensus analysis allows researchers to be more lenient with
parameter selection since the agreement cells are more likely
to real and robust, while outliers or false positives would have
to be produced by both individual algorithms to exist in the
consensus results. When comparing to ground truth, we find
that there is no single optimal parameter value, but rather a
range of reasonable parameters that produce results consistent
with ground truth. In a real analysis scenario, ground truth data
will likely be unavailable, but the results in our example use case
indicate that using the consensus cell locations rather than one cell
detection algorithm in isolation award greater confidence in the
detected cell locations, especially when exploring several different
parameter configurations.

Discussion

Here we have presented NeuroWRAP, a workflow integrator
for reproducible analysis of two-photon data. NeuroWRAP
allows researchers to process and analyze multiphoton calcium
imaging data while allowing them to explore, record, and share
every aspect of their analysis pipeline. NeuroWRAP provides an
analysis environment that contains a suite of options for each

processing step in a calcium imaging data analysis pipeline while
promoting reproducibility and collaboration between researchers.
Furthermore, NeuroWRAP encourages researchers to explore
ways to test their data analysis workflows and make them more
robust. We have motivated this point with consensus analysis and
parameter selection (Figure 3).

Many options exist for analysis of calcium imaging data, both
in the form of individual algorithms that handle a single processing
step, to suites that handle the full analysis pipeline. NeuroWRAP
does not aim to replace existing algorithms, but rather aggregate
and wrap existing tools in single environment where they can work
together. For example, Suite2p (Pachitariu et al., 2017) and CaImAn
(Giovannucci et al., 2019) are two popular options that each
contain all of the analysis needed to process calcium imaging data.
However, these tools are not intended to be modularized and used
interchangeably with other algorithms. NeuroWRAP accomplishes
interoperability between these algorithms as well as many more (see
Table 1). A very similar workflow tool worth mentioning is Nipype
(Gorgolewski et al., 2011) which is a Python package that allows
constructing analysis pipelines using MATLAB and Python tools
together, similar to NeuroWRAP. While the mission statement
is similar, the major difference is that the available packages in
Nipype are tailored toward magnetic resonance imaging data, in
contrast to NeuroWRAP’s focus on multiphoton imaging data.
Furthermore, NeuroWRAP focuses on workflow construction with
an easy-to-use GUI, while Nipype requires some technical expertise
in programming. Porcupine (van Mourik et al., 2018) is a visual
pipeline tool that facilitates the creation of Nipype pipelines using
a GUI, though again the focus is currently on magnetic resonance
imaging data.

As the tools available for processing multiphoton imaging data
continue to develop and be extended, NeuroWRAP is designed
to enable future extension seamlessly. Users of NeuroWRAP can
extend its library and capabilities simply by sharing modules
that they create within NeuroWRAP or sharing workflows that
they construct using existing modules. Our team will continue to
incorporate new algorithms and pipelines into NeuroWRAP as
they are popularized or requested.
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Comparative and consensus analysis aim to address the
challenge of variabilities in the analysis pipelines and results.
Comparative and consensus analysis (i) investigates how
comparable analysis should be compared with one another, (ii)
generates insights to how one result differs or is similar to another,
and (iii) offers mechanisms to consolidate the results and generate
a consensus in order to produce a more reliable/trustworthy result.
For one example use case, we have demonstrated that simple
consensus based on agreement of two algorithms is sufficient
to significantly enhance the robustness of the cell segmentation
pipeline to parameter choice, and to enhance the trustworthiness of
the selected cells using ground truth experimental data. Ultimately,
the consensus analysis leads us to recommend choosing cell
segmentation parameters that slightly overestimated the number of
cells and pruning based on consensus for the example data analyzed
here. The cell finder consensus analysis module in NeuroWRAP
allows for users to easily perform the same analysis on their data.

Note that the application of comparative and consensus
analysis can occur in any stage in the experimental pipeline;
for example, performing such analysis on the pre-processing
pipeline can result in a more robust downstream analysis. The
concept of consensus analysis has been proposed in software
engineering domain, including in machine learning. The N-version
programming technique (i.e., multiple versions of functionally
equivalent programs are independently developed from the same
software specification) along with majority voting algorithm has
been used in safety-critical software systems to make decisions. In
machine learning, multiple predictors can be used to produce the
final estimate or predictor–these are often referred to “agreement of
experts” or “ensemble learning,” and various consensus rules exist.

Future work on NeuroWRAP will focus on further integrating
consensus analysis across the workflow and making the platform
applicable for a broader range of research data, in particular
incorporating more experimental metadata such as behavioral
readout and trial classification which will provide the necessary
experimental information to incorporate more downstream
analysis modules as well.

Materials and methods

NeuroWRAP requirements and
implementation

NeuroWRAP runs on Windows and Mac. It does not have
strict minimum hardware requirements, but individual modules
may require more resources (i.e., RAM on modules that do not
make use of memory mapping). NeuroWRAP manages workflows
and keeps track of execution metadata, but all data analysis is
done by modules. Modules can be implemented in Python or
MATLAB, requiring a Python or MATLAB interpreter to run
each, respectively.

NeuroWRAP is implemented in Python. It runs a local
web server using the Tornado library.4 The user interface is
implemented as a single page web application and users can access it

4 https://www.tornadoweb.org

in their browser when NeuroWRAP is running. We use PyInstaller5

to bundle the application as an executable.
When a Python module is installed, NeuroWRAP creates

a virtual environment to install dependencies and execute the
Python code. Each module is executed in a separate process and
NeuroWRAP communicates with the modules over a ZeroMQ
socket.6 This allows modules to run with different Python versions
and isolated dependencies.

Consensus analysis test data

Data used for figure production (Figure 3) was downloaded
from the publicly available datasets as part of the Neurofinder
challenge.7 Figures 3, 4 utilize dataset N00.00 from the Svoboda
lab and was acquired from an awake head-fixed mouse expressing
genetically encoded calcium indicator GCaMP6s. Ground truth
labeled ROIs were used for comparison to detected cell locations,
where the precise x- and y-coordinate of each ground truth ROI
was calculated as the average of the ROI pixel locations.

Cell-finder consensus analysis

The cell-finder consensus module uses two sets of input cell
coordinates and finds which points are within the user-defined
pixel distance threshold. When two cell coordinates are within this
distance threshold, the average of the two cell locations is taken
as the consensus coordinate location. For the figures in this work,
a pixel distance of 15 was used, meaning cell centers within 15
pixels (roughly one cell diameter) are merged into one. An example
consensus workflow has been shared within NeuroWRAP called
“Suite2P + CaImAn cell detection consensus.”

Parameter exploration analysis

For Suite2p analysis, parameters were kept close to default
values except when altered for parameter exploration or to fit
the characteristics of the data (such as image sampling rate).
Parameter “threshold_scaling” was altered between 0.7 and 3.4 in
0.1 increments while max_overlap was held at the default value of
0.75. During alterations of the max_overlap value between 0 and 1
in 0.1 increments, the threshold_scaling parameter was held at 1.5.

For CaImAn analysis, parameters K, rf, and stride were set
according to the CaImAn documentation to appropriately estimate
the cell density. gSig is the expected half-size of neurons in pixels
(approximate neuronal radius). Parameter rf is the half-size of
patches and was set to gSig∗4, while parameter stride is the overlap
between patches in pixels and was set to gSig∗2. Parameter K is the
expected number of components per patch which we computed as
K = K_total/npatches where npatches was determined by patch size
and K_total was set according to estimate number of components

5 https://pyinstaller.org

6 https://zeromq.org

7 http://neurofinder.codeneuro.org/
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in the entire field of view. For gSig analysis in Figure 3B, we set
K_total = 330 neurons as it was the number of cells labeled in
the ground truth dataset. For all other analysis, K_total was varied
across a pre-defined range (Figure 3B; bottom right) or according
to the number of cells detected by Suite2p (Figures 3C, D).
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