
fninf-17-1081160 March 20, 2023 Time: 16:58 # 1

TYPE Original Research
PUBLISHED 24 March 2023
DOI 10.3389/fninf.2023.1081160

OPEN ACCESS

EDITED BY

Jeny Rajan,
National Institute of Technology, India

REVIEWED BY

Rashid Mehmood,
King Abdulaziz University, Saudi Arabia
Latha S,
SRM Institute of Science and Technology, India
Seyed Mohammad Sadegh Movahed,
Shahid Beheshti University, Iran

*CORRESPONDENCE

Sahaj Anilbhai Patel
sahaj432@uab.edu

RECEIVED 26 October 2022
ACCEPTED 08 March 2023
PUBLISHED 24 March 2023

CITATION

Patel SA and Yildirim A (2023) Non-stationary
neural signal to image conversion framework
for image-based deep learning algorithms.
Front. Neuroinform. 17:1081160.
doi: 10.3389/fninf.2023.1081160

COPYRIGHT

© 2023 Patel and Yildirim. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted which
does not comply with these terms.

Non-stationary neural signal to
image conversion framework for
image-based deep learning
algorithms
Sahaj Anilbhai Patel* and Abidin Yildirim

Department of Electrical and Computer Engineering, The University of Alabama at Birmingham,
Birmingham, AL, United States

This paper presents a time-efficient preprocessing framework that converts

any given 1D physiological signal recordings into a 2D image representation

for training image-based deep learning models. The non-stationary signal is

rasterized into the 2D image using Bresenham’s line algorithm with time

complexity O(n). The robustness of the proposed approach is evaluated based on

two publicly available datasets. This study classified three different neural spikes

(multi-class) and EEG epileptic seizure and non-seizure (binary class) based on

shapes using a modified 2D Convolution Neural Network (2D CNN). The multi-

class dataset consists of artificially simulated neural recordings with different

Signal-to-Noise Ratios (SNR). The 2D CNN architecture showed significant

performance for all individual SNRs scores with (SNR/ACC): 0.5/99.69, 0.75/99.69,

1.0/99.49, 1.25/98.85, 1.5/97.43, 1.75/95.20 and 2.0/91.98. Additionally, the binary

class dataset also achieved 97.52% accuracy by outperforming several others

proposed algorithms. Likewise, this approach could be employed on other

biomedical signals such as Electrocardiograph (EKG) and Electromyography

(EMG).

KEYWORDS

biomedical signals, non-stationary signal to 2D image representation, 2D convolution
neural network (2D CNN), Bresenham’s line algorithm, electroencephalogram (EEG)

1. Introduction

The Brian-Machine Interface (BMI) domain is a rapidly evolving multidisciplinary
field that aims to bridge the neuron’s electrical response from extracellular or intracellular
electrode arrays to man-made devices, commonly referred to as prosthetic devices (Carmena
et al., 2003). The neural activities in different brain regions correlate to their conclusive
motor control functions. For BMI, it is essential to decode neural signals accurately and
classify them based on specific features. This would help to localize a specific type of neuron
population in the brain, which is critical for implantable devices (Lebedev et al., 2011).

Since recording in the 1929s (Adrian and Bronk, 1929), many different methods have
been developed to classify neural signals. Simple threshold methods have been used to
detect the action potentials (Gerstein and Clark, 1964). Despite the simplicity, this method
is efficient only with a high SNR. With advanced computerization and programming

Frontiers in Neuroinformatics 01 frontiersin.org

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2023.1081160
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2023.1081160&domain=pdf&date_stamp=2023-03-24
https://doi.org/10.3389/fninf.2023.1081160
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fninf.2023.1081160/full
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-17-1081160 March 20, 2023 Time: 16:58 # 2

Patel and Yildirim 10.3389/fninf.2023.1081160

tools, various computational algorithms have been developed to
classify efficiently and accurately the different types of neural
activities (Lewicki, 1998). The primary two criteria for spike sorting
or "clustering" consists of three basic steps: Filtering the signal,
Feature representation or extraction, and Classification. Selecting
an optimum preprocessing method with less computation time
would inevitably help to perform the signal classification in real-
time, which is one of BMI’s fundamental requirements.

In the preprocessing feature extraction or representation
step, most researchers employed different Frequency and Time-
Frequency (TF) domain methods that convert 1D non-stationary
signals into a 2D image representation. These 2D images represent
the different properties of a given neural recording signal.
The Fast Fourier Transform (FFT) and Short-Time Fourier
Transform (STFT) algorithms are commonly used frequency-
based approaches for feature representation from neural recording
(Boashash and Sucic, 2003). However, the FFT can only represent
spectral resolution, and it is highly computationally intense
compared to other TF methods with a time complexity of O(N
log N) (Peng, 2020). The Short-Time Fourier Transform (STFT)
overcomes the problem of the FFT method by adding temporal
and spectral resolution (Mandhouj et al., 2021). Chaudhary et al.
(2019) presented the Continues-Wavelet method that outperforms
the STFT for classifying different Electroencephalogram (EEG)
signal classes. However, selecting the mother wavelet according to
the classification application is crucial while applying the wavelet
method. In addition, the scale parameter of the mother wavelet set
by the user determines the signal’s low or high temporal resolution.

Besides various TF representation methods (Brynolfsson and
Sandsten, 2017; Khan et al., 2022), Anwar et al. proposed a new
approach by placing multiple 2D EEG topographic maps of skulls
into a single image from a given 1D segmented EEG signal (Anwar
and Eldeib, 2020). Bizopoulos et al. (2019) proposed a "Signal-
to-Image Module" that converts raw 1D signal samples into 2D
Spectrogram images following up with one layer Convolution
Neural Network (CNN) (Bizopoulos et al., 2019). However, the
"Signal-to-Image Module" performance was inefficient without
the CNN layer. Furthermore, adding one CNN layer increases
computational time to O((M∗N)∗k2), where "M" and "N" represents
image size while "k" represents kernel size. Zhao et al. (2021)
proposed a Signal-To-Image Mapping (STIM) technique where
the 2D image is formed by calculating the correlation between
each sample point in the time series. The correlated sample points
represent the grayscale by normalizing the data between 0 –
255. However, the converted 2D image does not preserve the
signal space characteristics. Kavasidis et al. (2017) proposed the
“Brain2Image” methodology using a deep learning model. The
Brain2Images uses Long Short Term Memory (LSTM) autoencoder
for converting multi-channel EEG signals into an image for 2D
CNN model classification.

For systems with dynamic behaviors, many different
methodologies are also proposed to analyze the behaviors of
non-stationary signals in multi-dimensional space, such as
Lyapunov exponents and fractal dimensions (Donner and Barbosa,
2008). Generally, such dynamical systems are utilized for analyzing
the chaotic systems in low dimensions by reconstructing the phase–
space (Packard et al., 1980). Such phase spaces are mapped into
one dimension by extracting the positive characteristic exponent
of the attractor. Over time, many scholars have developed different

approaches to integrating the time series of dynamic systems with
field graph theory (Takens, 1981; Yang and Yang, 2008). In graph
theory, various methods have been developed to convert time series
into graph networks, such as visibility graphs (represents condition
on the time series amplitudes) (Lacasa et al., 2008). Later, the
graph network is converted into a 2D image (such as Adjacency,
Degree, and Laplacian matrix) representing the whole graph’s
features and the time series non-linear properties (Donner et al.,
2010). For example, Marwan et al. (2009) represented a complex
network into a 2D recurrence matrix with its logistic map, where
the recurrence matrix represents the neighbors in phase space.
These 2D log-mapped recurrence matrices measured significant
sensitivity to change in the dynamics. Shimada et al. (Myers et al.,
2019) proposed a k-nearest neighbors approach in their 2D phase
space matrix that represents fixed k numbers of single observations
in given environments. The single observation can be fixed-phase
space distance (constant volume, density). However, such a matrix
does not preserve temporal information of given time series.

The conversion of 1D vector signals to 2D images is performed
by implementing various "Signal Processing" methodologies such as
FFT, Spectrogram, Empirical Mode Decomposition, and Wavelet.
These methodologies and some others are time intensive and
require high computational power. However, in computer graphics
applications, many algorithms for image formation do not require
high computing power. The computer graphics domain comprises
four significant areas: Image Rendering, Modeling, Animation, and
Postprocessing (Wolfe et al., 2000). For instance, in computer
graphics, to render a line in 1D or 2D space (bitmap), two
distinct pixel locations are selected, and the pixel locations between
them are approximated. The Digital Differential Analyzer (DDA),
a digital integrating computer (Bartee et al., 1962), is a line
drawing algorithm. The DDA draws the lines that utilize the
slope equation and approximates the next pixel value based on
previous results. However, DDA only works in the first cartesian
quadrant, and operating with floating-point numbers will increase
the computational time. To overcome DDA, Bresenham (1965)
proposed a method that approximates n-points in any given
quadrant by calculating simple arithmetic integer operations
such as addition, subtraction, and bit-shifting, that decreases
computational time by O(n) where n represents the number
of samples.

Generally, after converting the non-stationary signal into 2D
image representation in BMI applications, the images or extracted
features are directly fed into the classifying model to identify
the different classes. In feature extraction, the most dominant
features are extracted from multi-dimensional 2D images, which
leads to reducing the input image size for classifying. For
instance, the machine learning domain’s most common feature
extraction technique is Principal Component Analysis (PCA)
(Jolliffe, 2002). In PCA, the user selects the first few dominant
features (known as Principal Components) for classification.
After the state-of-the-art algorithm by Hilton. et.al (Krizhevsky
et al., 2017), the CNN Deep Learning techniques are more
commonly used for image classification tasks. They have been
implemented in various applications such as Speech recognition,
Self-Driving car, and classifying biomedical signals. Additionally,
in recent years, CNN architecture has been improved by methods
such as GoogleNet (Szegedy et al., 2015), Highway Network

Frontiers in Neuroinformatics 02 frontiersin.org

https://doi.org/10.3389/fninf.2023.1081160
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-17-1081160 March 20, 2023 Time: 16:58 # 3

Patel and Yildirim 10.3389/fninf.2023.1081160

(Srivastava et al., 2015), VGG (Simonyan and Zisserman, 2014),
and Xception (Chollet, 2017).

This paper presents a robust preprocessing approach to classify
neural spikes in 2D CNN by converting 1D non-stationary
neural recording into a 2D image representation. Figure 1
demonstrates the complete process of the proposed method. First,
the simulated neural recordings are normalized between 0 and
1. Next, the entire recording is divided into smaller segments
the size of 1 × 56. Then, the 1D segmented windows are
converted into a 2D image by assigning each sample amplitude
and interconnecting the sample points using Bresenham’s line
algorithm (Bresenham, 1965). Finally, the 2D images are fed into
the 2D CNN model for classification. The following sections of
the paper are as follows: Section 2 presents the dataset. Section 3
explains the overall methodology, followed by three subsections –
Signal Pre-processing, Rasterization, and Feature Extraction and
Classification. The experimental result and discussion are described
in section 4. Finally, section 5 concludes this paper.

2. Dataset

2.1. Dataset – 1

The dataset-1 consists of simulated action potentials with added
noise (Bernert and Yvert, 2019). The timing information of the
action potentials was also given. The data was generated by using
equation (Eq.) 1 (Adamos et al., 2008).

V (t) = Acos
(

2π
t − τph

τ1

)
exp

(
−

(
2.3548t

τ2

)2
)

(1)

The dataset contains three types of action potentials with
seven different SNRs ranging from 0.5 to 2. The parameters
(A, τ1, τ2, τph) for generating three action potentials (spikes) are
presented in Bernert and Yvert (2019). Each SNR trial contains
ten recordings with three types of spikes, which are randomly
distributed over a period of 200 s. The signal is stimulated at a
sampling frequency (fs) of 20 kHz with a mean firing rate of 3.3 Hz.
Table 1 illustrates the number of segmented windows for each class
with different SNR levels. Note that each window is made of 56
samples. The number of windows (Table 1) for each spike type was
configured to be nearly the same to prevent the deep learning model
(2D CNN) from being biased toward classes with more segmented
windows while training and testing the model.

2.2. Dataset – 2

Dataset-2 was collected from the University of California at
Irvine (UCI) - Machine Learning Repository, which is utilized for
Epileptic Seizure Recognition. The original dataset consists of brain
activity from five subjects with five sets (100 channels/set) and
23.6 seconds per recording (Andrzejak et al., 2001). The dataset
on UCI was already pre-processed with 178 samples per window
and five classes to classify. In this paper, the dataset was converted
from a multiclass category to binary classification (Seizure, Non-
Seizure activity). The total number of windows and the number of
classifying categories is presented in Table 2.

FIGURE 1

Overall block diagram of the proposed framework for neural spikes
classification.

TABLE 1 Number of windows for each class per SNRs in dataset 1.

SNR Spike-1 Spike-2 Spike-3 Noise

0.5 6,423 6,595 6,597 7,759

0.75 6,444 6,591 6,597 7,759

1.0 6,419 6,591 6,597 7,761

1.25 6,394 6,587 6,597 7,758

1.5 6,279 6,585 6,596 6,500

1.75 5,987 6,574 6,597 7,756

2.0 5,553 6,633 6,597 7,750

TABLE 2 Number of windows for each class in dataset 2.

Non-seizure activity Seizure activity

9,200 2,300

FIGURE 2

Bresenham’s line algorithm for first octant.

3. Proposed methodology

3.1. Signal normalization and
segmentation

Initially, each sample value of the raw signal is scaled by the
unit L2 norm (ranging between 0 and 1) (Bhatia, 2013). The vector

Frontiers in Neuroinformatics 03 frontiersin.org

https://doi.org/10.3389/fninf.2023.1081160
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-17-1081160 March 20, 2023 Time: 16:58 # 4

Patel and Yildirim 10.3389/fninf.2023.1081160

FIGURE 3

Rasterization approach - converting 1D vector of non-stationary signal to 2D pixel image. (A) 1D window frame – 1 × 56 size. (B) 2D window frame
after rasterization - 2001 × 1155 size.

FIGURE 4

Modified 2D CNN architecture for feature extraction and classification of four classes.

normalization of the raw signal was performed by using,

y =
x√∑d
i=1 x

2
i

(2)

where x is 1-D input samples values in a vector, y is 1-D

normalized output in vector, and its L2 norm is

√
d∑

i=1
x2

i . Later, the

normalized input vector is segmented into fixed 1 X n window
sizes. Each window carries 56 sample values which are equal to
2.8 milliseconds.

3.2. Rasterization

Rasterization is a process of converting any vector graphic
shape into a pixel image (Worboys and Duckham, 2004).

For instance, Bresenham’s line algorithm approximates n-points
between given two points of interest or locations of interest in any
coordinates of Euclidean space.

TABLE 3 Number of training and testing dataset per SNRs in dataset 1.

SNR Train Test Total

0.5 8,211 19,160 27,371

0.75 8,217 19,174 27,391

1.0 8,210 19,158 27,368

1.25 8,200 19,136 27,336

1.5 7,788 18,172 25,960

1.75 8,074 18,840 26,914

2.0 7,959 18,574 26,533

Frontiers in Neuroinformatics 04 frontiersin.org

https://doi.org/10.3389/fninf.2023.1081160
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-17-1081160 March 20, 2023 Time: 16:58 # 5

Patel and Yildirim 10.3389/fninf.2023.1081160

TABLE 4 Number of training and testing dataset for dataset 2.

Train Test

Normal Activity 2,744 6,456

Seizure Activity 706 1,594

The prediction for the next nth point is determined by
calculating the least distances, i.e., q and t, which are perpendicular
to the slope line - m of given two-pixel positions.

For instance, in Figure 2, points S1 and S2 are placed adjutant to
each other in the first octant. Therefore, to predict the next decision
parameter for the point, the movement can be either L1 (to point Q)
if q < t or L2 (to the point T) if t ≥ q respectively. Therefore, the
difference between q and t is calculated to compute the next move.
If we define the difference as: ∇i = q− t, then;

if

{
∇i < 0, execute L1
∇i ≥ 0, execute L2

The initial point S1 where a = 0 and b = 0 the ∇i will as
expressed in equation 3, and the points pi+1 which is progressing
toward S2 after the initial stage is calculated based on ∇i+1 which is
Eq. 4 and Eq. 5.

∇i = 21b−1a (3)

If ∇i ≥ 0,
∇i+1 = ∇i + 21b− 21a (4)

If ∇i < 0,
∇i+1 = ∇i + 21b (5)

where,
1a = x2 − x1

1b = y2 − y1

Figure 3A illustrates the normalized window with a total of
56 sample points (i.e., y-axis) over time (i.e., x-axis). Figure 3B
shows the conversion of (1 × 56) window size to an image (2,001
pixel × 1,155 pixel) format applying Bresenham’s line algorithm.
Each pixel in the direction of the y-axis of the image represents
the amplitude value of the action potential with a resolution
of 0.0005. Likewise, the column pixels in the x-axis direction
represent the sample locations. Initially, all samples of 1D window
representation are placed in their appropriate locations in 2D
images as a pixel value of 1 or 0 accordingly. As shown in Figure 3B,
to reconstruct a continuous uniformity pattern for the signal,
two consequent real sample locations are filled with the dummy
pixels. For instance, it is assumed that each window includes 20
empty dummy samples over an interval between each two real
sample locations. The assumption of dummy samples resulting a
satisfactory representation of the signal curve by connecting the
points with line segments. However, the length of intermediates
samples can be varied to reduce the overall size of the image.
Later, using Bresenham’s line algorithm, all true sample values are
interconnected, and it represents a complete shape or pattern of the
signal in a 2D image.

3.3. Feature extraction and classification

The 2D CNN architecture is used to extract the features
(in the spatial domain) of the signals and then classify them
according to different signal types and different SNRs. The
proposed approach was performed on custom-built 2D CNN
architecture [extended LeNet-5 architecture (LeCun et al., 1998)],
as shown in Figure 4. The 2D CNN model consists of five
different sizes of convolution layers and five max-pooling layers.
Each convolution layer extracts/preserves different spatial features,
which are also called feature maps. These feature maps are obtained
by convoluting the input (output of the previous layer) with a

FIGURE 5

Loss vs. no. of epochs per SNR’s and accuracy vs. epochs.

Frontiers in Neuroinformatics 05 frontiersin.org

https://doi.org/10.3389/fninf.2023.1081160
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-17-1081160 March 20, 2023 Time: 16:58 # 6

Patel and Yildirim 10.3389/fninf.2023.1081160

TABLE 5 Performance of proposed approach with 2D CNN for different
SNR signals – Precision ratio, recall ratio, F1-score and accuracy rate.

SNR Class Precision
ratio (%)

Recall
ratio (%)

F1-score
(%)

Accuracy
rate (%)

0.5

Noise 99.81 99.63 99.72

99.77
Spike-1 99.73 99.80 99.76

Spike-2 99.69 99.89 99.79

Spike-3 99.84 99.80 99.82

0.75

Noise 99.68 99.63 99.66

99.69
Spike-1 99.75 99.84 99.80

Spike-2 99.52 99.67 99.59

Spike-3 99.80 99.63 99.71

1.0

Noise 99.74 99.57 99.65

99.49
Spike-1 99.79 99.84 99.82

Spike-2 99.60 98.79 99.19

Spike-3 98.83 99.76 99.29

1.25

Noise 99.79 98.64 99.21

98.85
Spike-1 98.94 99.88 99.41

Spike-2 98.20 98.20 98.20

Spike-3 98.31 98.77 98.54

1.5

Noise 98.83 97.90 98.36

97.43
Spike-1 99.06 99.61 99.21

Spike-2 96.55 94.71 95.63

Spike-3 95.38 97.84 96.59

1.75

Noise 95.11 98.15 96.61

95.20
Spike-1 98.89 96.63 97.75

Spike-2 92.35 92.07 92.21

Spike-3 94.90 93.53 94.53

2.0

Noise 94.61 94.03 94.32

91.98
Spike-1 95.78 96.36 96.07

Spike-2 90.21 83.73 86.85

Spike-3 87.64 94.12 90.76

TABLE 6 Performance of proposed approach with 2D CNN for dataset
2 – Precision ratio, recall ratio, F1-score and accuracy rate.

Class Precision
ratio (%)

Recall
ratio (%)

F1-score
(%)

Accuracy
rate (%)

Seizure activity 98.33 98.59 98.46 97.52

Normal activity 94.22 93.22 93.73

3× 3 kernel size (Eq. 6) followed by a non-linear Rectified Linear
Activation Unit (ReLU) activation function (Eq. 7). The non-linear
activation function extracts more complex features. The output
of each convolution layer is connected to the max-pooling layer.
The purpose of the max-pooling layers is to extract maximum
spatial values from each feature map. In addition, these reduce the
convolution layer size by half, which leads to a decrease in the
number of training weights parameters for the 2D CNN model. The

output size of each feature map and pooling layer can be calculated
by Eq. 8 and Eq. 9 accordingly.

COVL
ij =

k−1∑
a=0

k−1∑
b=0

ωabCOVL−1
(i+a)(j+b) (6)

where,
COVL

ij = Output per pixel in convolution layer, ωab = weights
per pixel in convolution layer, k = Kernel size, L = Convolution
layer.

YL
ij = f (COVL

ij) (7)

where,
f = ReLU or SoftMax activation function,

COVout =

[
Nc + 2Pc + Kc

Sc

]
+ 1 (8)

where,
COVout = Feature map output size, Nc = Input size

(Width/Height), Pc = Convolution Padding size, Kc = Convolution
Kernel size and Sc = Convolution Stride size.

Pout =
[
Np − Kp

Sp

]
+ 1 (9)

where,
Pout = Pooling layer output size, Np = Input size

(Width/Height), Kp = Pooling Kernel size, Sc = Pooling Stride size.
In the initial stage of convolution layers, the number of feature

maps is higher than in the end convolution layers. For instance,
Convolution 1 has 128 feature maps, while Convolution 5 has
only 16 feature maps. Therefore, the arrangement of such layer
size was used to extract larger patterns compared to finer patterns.
The batch normalization is placed between the fourth convolution
layer and the fourth max-pooling layer. It potentially helps to
converge loss values of the deep learning model much faster in
mini-batches, which contain small bundles of data. This leads to
a reduction in time consumption during the training phase of the
deep learning model.

After the fifth max-pooling layer, the 3D tensor feature maps
are converted to 1× 1600 1D vector space, called a flattened layer.
The next layer with the size of 1× 512 is called the Fully Connected
Layer (FCL), where each artificial neuron in the FCL layer is
interconnected with the artificial neurons of the previous or next
layer. The following layer is called the Dropout Layer (DL), which
is connected to the FCL and has the same vector size as FCL. The
DL functions as regularization, which prevents the 2D CNN model
from over-fitting the training dataset while training the weight
parameters. In DL, the random neurons in the layer and their
supportive links are eliminated.

Finally, the DL is connected with the Output Layer with the size
of 1× 4 for Dataset-1 and 1× 2 for Dataset – 2. The vector size of
the output layer represents the number of classes to be identified
by the 2D CNN model. For the output layer, the SoftMax activation
function is deployed. The SoftMax activation function determines
the outcome probabilities of each class.

The RMSprop optimizer (Tieleman and Hinton, 2012) is used
while training the 2D CNN model to reduce classification loss
error (E). This error rate can be reduced by backpropagation.
In backpropagation, the weight parameters for each layer are

Frontiers in Neuroinformatics 06 frontiersin.org

https://doi.org/10.3389/fninf.2023.1081160
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-17-1081160 March 20, 2023 Time: 16:58 # 7

Patel and Yildirim 10.3389/fninf.2023.1081160

FIGURE 6

2D CNN model predicted output on test dataset for various images with SNR signals.

updated by finding the partial derivative of E w.r.t individual weight

parameter per layer that is
(

∂E
∂COVL

ij

)
.

4. Results and discussion

The proposed framework was executed on the University of
Alabama at Birmingham supercomputer. The supercomputer is
configured with 24 Cores and 23 GB of memory per Core. The
method was trained and evaluated using a 2D CNN model with
various SNRs. Additionally, to demonstrate the robust performance
of the proposed approach for other applications, the 2D CNN
model was also trained and evaluated on the EEG dataset (Dataset-
2). During each trial, the parameters for 2D CNN architecture are
kept the same, such as the number of epochs, batch size, optimizer,
input image size, and split ratio for training and testing datasets

except output classes. The total number of windows for Dataset-
1 and Dataset-2 is split into 30% training and 70% test dataset,
respectively. Table 3 and Table 4 illustrate the total number of
training and test sample windows for each SNR and dataset-2
accordingly.

Figure 5 demonstrates the accuracy (ACC) and loss of the 2D-
CNN model for each SNR according to the number of epochs while
training the training dataset. The optimizer was set with a 0.001
learning rate and 20 epochs. Figure 5 also shows that in images with
higher SNR, the loss converges faster to a minimum in a few epochs,
in contrast to images with low SNR. In this study, to verify the
overall performance of the proposed approach on different images
with different SNRs, the number of epochs is kept similar for all
trials while training the 2D CNN model.

The data splitting approach was implemented for cross-
validating the 2D CNN model. To prevent the 2D CNN model

Frontiers in Neuroinformatics 07 frontiersin.org

https://doi.org/10.3389/fninf.2023.1081160
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-17-1081160 March 20, 2023 Time: 16:58 # 8

Patel and Yildirim 10.3389/fninf.2023.1081160

TABLE 7 Comparison of proposed approach with other studies.

Studies ACC

K-nearest neighbor (Resque et al., 2019) 90.01

Multi-layer perceptron (Resque et al., 2019) 93.53

Naive-Bayes (Resque et al., 2019) 95.98

Random forest (Resque et al., 2019) 97.08

1D CNN (Xu et al., 2020) 97.13

Support vector machine (Resque et al., 2019) 97.31

Our method 97.52

CNN-LSTM (Xu et al., 2020) 99.39

from being biased toward any of the classes, the input data
was shuffled and divided almost equally for each class except
for Dataset 2. The performance of the approach was calculated
based on results predicted by a trained 2D CNN model on
70% of the test data by comparing its ground truth results.
Tables 5, 6 represent the precision ratio, recall ratio, F1-score for
each class, and overall ACC for each SNR (Dataset-1) and Dataset-
2, respectively. The precision ratio, recall ratio, F1- score, and ACC
are calculated using Eq. 10, Eq. 11, Eq. 12, and Eq. 13, respectively.

Precision =
TP

TP + FP
∗100 (10)

Recall =
TP

TP + FN
∗100 (11)

F1− Score =
2∗
(
Precision ∗ Recall

)(
Precisioin+ Recall

) ∗100 (12)

Accurary =
TP + TN

TP + FP + TN + FN
∗100 (13)

where,
TP = True Positive, FP = False Positive, TN = True Negative,

FN = False Negative.
The overall ACC for images with signals 0.5, 0.75, 1.0, 1.25,

1.5, 1.75, and 2.0 SNR was above 90%. Despite this, the average
ACC for 2.0 SNR was lower than other SNRs because of the higher
number of False Positive detection for class “Spike-2”. Figure 6
illustrates a few classified results of the testing dataset with images
having different SNRs. It also demonstrates a few misclassified
outputs in the “Noise” class at “SNR 0.75.” The overall ACC for
images in Dataset-2 was 97.52%. The performance of this study was
compared with other studies in related fields based on Dataset-2, as
shown in Table 7.

5. Conclusion

This work demonstrated an efficient preprocessing framework
to convert any non-stationary signal into a 2D image using
Bresenham’s line algorithm. The 2D images can utilize any
image classifying algorithm or image-based deep learning
models. The experiment was conducted on neural data with

various SNR and EEG recordings. The proposed approach
showed empirical evidence of performance accuracy with
various SNRs and fewer data samples for training. The overall
classification accuracy for each SNR outcome (SNR/ACC)
as: 0.5/99.69, 0.75/99.69, 1.0/99.49, 1.25/98.85, 1.5/97.43,
1.75/95.20 and 2.0/91.98. In addition, the 2D CNN also
performed significantly well on the EEG dataset compared
to other methods, with 97.52% ACC. The proposed pre-
processing framework could be used in real-time because of
the advantage of the low computation time of Bresenham’s
line algorithm.

Data availability statement

The original contributions presented in this study are included
in the article/Supplementary material, further inquiries can be
directed to the corresponding author.

Author contributions

SP developed the framework for this research and drafted
the manuscript. AY helped to revise the drafted manuscript and
provided valuable advice for this research. Both authors read and
approved the final manuscript.

Acknowledgments

The author thank Dr. Frank Amthor for providing valuable
insights and his expertise.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.2023.
1081160/full#supplementary-material

Frontiers in Neuroinformatics 08 frontiersin.org

https://doi.org/10.3389/fninf.2023.1081160
https://www.frontiersin.org/articles/10.3389/fninf.2023.1081160/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fninf.2023.1081160/full#supplementary-material
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-17-1081160 March 20, 2023 Time: 16:58 # 9

Patel and Yildirim 10.3389/fninf.2023.1081160

References

Adamos, D. A., Kosmidis, E. K., and Theophilidis, G. (2008). Performance
evaluation of PCA-based spike sorting algorithms. Comput. Methods Programs
Biomed. 91, 232–244. doi: 10.1016/j.cmpb.2008.04.011

Adrian, E. D., and Bronk, D. W. (1929). The discharge of impulses in motor
nerve fibres: Part II. The frequency of discharge in reflex and voluntary contractions.
J. Physiol. 67, i3–i151. doi: 10.1113/jphysiol.1929.sp002557

Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C., David, P., and Elger, C. E.
(2001). Indications of nonlinear deterministic and finite-dimensional structures in
time series of brain electrical activity: Dependence on recording region and brain state.
Phys. Rev. E 64:061907. doi: 10.1103/PhysRevE.64.061907

Anwar, A. M., and Eldeib, A. M. (2020). “EEG signal classification using
convolutional neural networks on combined spatial and temporal dimensions for
BCI systems,” in Proceedings of the 2020 42nd annual international conference of the
IEEE Engineering in medicine & biology society (EMBC), (Montreal: IEEE), 434–437.
doi: 10.1109/EMBC44109.2020.9175894

Bartee, T. C., Lebow, I. L., and Reed, I. S. (1962). Theory and design of digital
machines. New York, NY: McGraw-Hill.

Bernert, M., and Yvert, B. (2019). An attention-based spiking neural network
for unsupervised spike-sorting. Int. J. Neural Syst. 29:1850059. doi: 10.1142/
S0129065718500594

Bhatia, R. (2013). Matrix analysis, Vol. 169. Berlin: Springer Science & Business
Media.

Bizopoulos, P., Lambrou, G. I., and Koutsouris, D. (2019). “Signal2image modules
in deep neural networks for EEG classification,” in Proceedings of the 2019 41st
annual international conference of the IEEE engineering in medicine and biology society
(EMBC), (Berlin: IEEE), 702–705. doi: 10.1109/EMBC.2019.8856620

Boashash, B., and Sucic, V. (2003). Resolution measure criteria for the objective
assessment of the performance of quadratic time-frequency distributions. IEEE Trans.
Signal Process. 51, 1253–1263. doi: 10.1109/TSP.2003.810300

Bresenham, J. E. (1965). Algorithm for computer control of a digital plotter. IBM
Syst. J. 4, 25–30. doi: 10.1147/sj.41.0025

Brynolfsson, J., and Sandsten, M. (2017). “Classification of one-dimensional
non-stationary signals using the Wigner-Ville distribution in convolutional neural
networks,” in Proceedings of the 2017 25th European signal processing conference
(EUSIPCO), (Kos: IEEE), 326–330. doi: 10.23919/EUSIPCO.2017.8081222

Carmena, J. M., Lebedev, M. A., Crist, R. E., O’Doherty, J. E., Santucci, D. M.,
Dimitrov, D. F., et al. (2003). Learning to control a brain–machine interface for
reaching and grasping by primates. PLoS Biol. 1:e42. doi: 10.1371/journal.pbio.
0000042

Chaudhary, S., Taran, S., Bajaj, V., and Sengur, A. (2019). Convolutional neural
network based approach towards motor imagery tasks EEG signals classification. IEEE
Sens. J. 19, 4494–4500. doi: 10.1109/JSEN.2019.2899645

Chollet, F. (2017). “Xception: Deep learning with depthwise separable convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
(Honolulu, HI: IEEE), 1251–1258. doi: 10.1109/CVPR.2017.195

Donner, R. V., and Barbosa, S. M. (2008). Nonlinear time series analysis in the
geosciences. Lect. Notes Earth Sci. 112:37. doi: 10.1007/978-3-540-78938-3

Donner, R. V., Zou, Y., Donges, J. F., Marwan, N., and Kurths, J. (2010). Recurrence
networks—a novel paradigm for nonlinear time series analysis.New J. Phys. 12:033025.
doi: 10.1088/1367-2630/12/3/033025

Gerstein, G. L., and Clark, W. A. (1964). Simultaneous studies of firing patterns in
several neurons. Science 143, 1325–1327. doi: 10.1126/science.143.3612.1325

Jolliffe, I. T. (2002). Principal component analysis for special types of data. New York,
NY: Springer, 338–372.

Kavasidis, I., Palazzo, S., Spampinato, C., Giordano, D., and Shah, M. (2017).
“Brain2image: Converting brain signals into images,” in Proceedings of the 25th ACM
international conference on multimedia, (New York, NY: Association for Computing
Machinery), 1809–1817. doi: 10.1145/3123266.3127907

Khan, N. A., Mohammadi, M., Ghafoor, M., and Tariq, S. A. (2022). Convolutional
neural networks based time-frequency image enhancement for the analysis of EEG

signals. Multidimens. Syst. Signal Process. 33, 863–877. doi: 10.1007/s11045-022-
00822-2

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Imagenet classification with
deep convolutional neural networks. Commun. ACM 60, 84–90. doi: 10.1145/306
5386

Lacasa, L., Luque, B., Ballesteros, F., Luque, J., and Nuno, J. C. (2008). From time
series to complex networks: The visibility graph. Proc. Natl. Acad.Sci. U.S.A. 105,
4972–4975. doi: 10.1073/pnas.0709247105

Lebedev, M. A., Tate, A. J., Hanson, T. L., Li, Z., O’Doherty, J. E., Winans, J. A., et al.
(2011). Future developments in brain-machine interface research. Clinics 66, 25–32.
doi: 10.1590/S1807-59322011001300004

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proc. IEEE 86, 2278–2324. doi: 10.1109/5.726791

Lewicki, M. S. (1998). A review of methods for spike sorting: The detection and
classification of neural action potentials. Network 9, R53–R78. doi: 10.1088/0954-
898X_9_4_001

Mandhouj, B., Cherni, M. A., and Sayadi, M. (2021). An automated classification
of EEG signals based on spectrogram and CNN for epilepsy diagnosis. Analog Integr.
Circuits Signal Process. 108, 101–110. doi: 10.1007/s10470-021-01805-2

Marwan, N., Donges, J. F., Zou, Y., Donner, R. V., and Kurths, J. (2009). Complex
network approach for recurrence analysis of time series. Phys. Lett. A 373, 4246–4254.
doi: 10.1016/j.physleta.2009.09.042

Myers, A., Munch, E., and Khasawneh, F. A. (2019). Persistent homology of
complex networks for dynamic state detection. Phys. Rev. E 100:022314. doi: 10.1103/
PhysRevE.100.022314

Packard, N. H., Crutchfield, J. P., Farmer, J. D., and Shaw, R. S. (1980). Geometry
from a time series. Phys. Rev. Lett. 45, 712–716. doi: 10.1103/PhysRevLett.45.712

Peng, R. D. (2020). A very short course on time series analysis. Available online
at: https://bookdown.org/rdpeng/timeseriesbook/the-fast-fourier-transform-fft.html
(accessed August 21, 2022).

Resque, P., Barros, A., Rosário, D., and Cerqueira, E. (2019). “An investigation of
different machine learning approaches for epileptic seizure detection,” in Proceedings
of the 2019 15th international wireless communications & mobile computing conference
(IWCMC), (Tangier: IEEE), 301–306. doi: 10.1109/IWCMC.2019.8766652

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. arXiv [Preprint]

Srivastava, R. K., Greff, K., and Schmidhuber, J. (2015). Highway networks. arXiv
[Preprint]

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2015). “Going
deeper with convolutions,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, (Boston, MA: IEEE), 1–9. doi: 10.1109/CVPR.2015.7298594

Takens, F. (1981). “Detecting strange attractors in turbulence,” in Dynamical systems
and turbulence, Warwick 1980 lecture notes in mathematics, Vol. 898, eds D. Rand and
L. Young (Berlin: Springer), 366–381. doi: 10.1007/BFb0091924

Tieleman, T., and Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude. Coursera 4, 26–31.

Wolfe, R., Lowther, J. L., and Shene, C. K. (2000). Rendering+ modeling+
animation+ postprocessing = computer graphics. ACM SIGGRAPH Comput. Graph.
34, 15–18. doi: 10.1145/369215.369224

Worboys, M. F., and Duckham, M. (2004). GIS: A computing perspective. Boca
Raton, FL: CRC press. doi: 10.4324/9780203481554

Xu, G., Ren, T., Chen, Y., and Che, W. (2020). A one-dimensional CNN-LSTM
model for epileptic seizure recognition using EEG signal analysis. Front. Neurosci.
14:578126. doi: 10.3389/fnins.2020.578126

Yang, Y., and Yang, H. (2008). Complex network-based time series analysis. Phys.
A Stat. Mech. Appl. 387, 1381–1386. doi: 10.1016/j.physa.2007.10.055

Zhao, J., Yang, S., Li, Q., Liu, Y., Gu, X., and Liu, W. (2021). A new bearing
fault diagnosis method based on signal-to-image mapping and convolutional neural
network. Measurement 176:109088. doi: 10.1016/j.measurement.2021.109088

Frontiers in Neuroinformatics 09 frontiersin.org

https://doi.org/10.3389/fninf.2023.1081160
https://doi.org/10.1016/j.cmpb.2008.04.011
https://doi.org/10.1113/jphysiol.1929.sp002557
https://doi.org/10.1103/PhysRevE.64.061907
https://doi.org/10.1109/EMBC44109.2020.9175894
https://doi.org/10.1142/S0129065718500594
https://doi.org/10.1142/S0129065718500594
https://doi.org/10.1109/EMBC.2019.8856620
https://doi.org/10.1109/TSP.2003.810300
https://doi.org/10.1147/sj.41.0025
https://doi.org/10.23919/EUSIPCO.2017.8081222
https://doi.org/10.1371/journal.pbio.0000042
https://doi.org/10.1371/journal.pbio.0000042
https://doi.org/10.1109/JSEN.2019.2899645
https://doi.org/10.1109/CVPR.2017.195
https://doi.org/10.1007/978-3-540-78938-3
https://doi.org/10.1088/1367-2630/12/3/033025
https://doi.org/10.1126/science.143.3612.1325
https://doi.org/10.1145/3123266.3127907
https://doi.org/10.1007/s11045-022-00822-2
https://doi.org/10.1007/s11045-022-00822-2
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1073/pnas.0709247105
https://doi.org/10.1590/S1807-59322011001300004
https://doi.org/10.1109/5.726791
https://doi.org/10.1088/0954-898X_9_4_001
https://doi.org/10.1088/0954-898X_9_4_001
https://doi.org/10.1007/s10470-021-01805-2
https://doi.org/10.1016/j.physleta.2009.09.042
https://doi.org/10.1103/PhysRevE.100.022314
https://doi.org/10.1103/PhysRevE.100.022314
https://doi.org/10.1103/PhysRevLett.45.712
https://bookdown.org/rdpeng/timeseriesbook/the-fast-fourier-transform-fft.html
https://doi.org/10.1109/IWCMC.2019.8766652
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1007/BFb0091924
https://doi.org/10.1145/369215.369224
https://doi.org/10.4324/9780203481554
https://doi.org/10.3389/fnins.2020.578126
https://doi.org/10.1016/j.physa.2007.10.055
https://doi.org/10.1016/j.measurement.2021.109088
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/

	Non-stationary neural signal to image conversion framework for image-based deep learning algorithms
	1. Introduction
	2. Dataset
	2.1. Dataset – 1
	2.2. Dataset – 2

	3. Proposed methodology
	3.1. Signal normalization and segmentation
	3.2. Rasterization
	3.3. Feature extraction and classification

	4. Results and discussion
	5. Conclusion
	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


