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Due to its high temporal resolution and non-invasive nature,

electroencephalography (EEG) is considered a method of great value for

the field of auditory cognitive neuroscience. In performing source space

analyses, localization accuracy poses a bottleneck, which precise forward

models based on individualized attributes such as subject anatomy or

electrode locations aim to overcome. Yet acquiring anatomical images or

localizing EEG electrodes requires significant additional funds and processing

time, making it an oftentimes inaccessible asset. Neuroscientific software

o�ers template solutions, on which analyses can be based. For localizing

the source of auditory evoked responses, we here compared the results

of employing such template anatomies and electrode positions versus the

subject-specific ones, as well as combinations of the two. All considered cases

represented approaches commonly used in electrophysiological studies. We

considered di�erences between two commonly used inverse solutions (dSPM,

sLORETA) and targeted the primary auditory cortex; a notoriously small

cortical region that is located within the lateral sulcus, thus particularly prone

to errors in localization. Through systematical comparison of early evoked

component metrics and spatial leakage, we assessed how the individualization

steps impacted the analyses outcomes. Both electrode locations as well as

subject anatomies were found to have an e�ect, which though varied based

on the configuration considered. When comparing the inverse solutions, we

moreover found that dSPM more consistently benefited from individualization

of subject morphologies compared to sLORETA, suggesting it to be the better

choice for auditory cortex localization.
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1. Introduction

Being inexpensive and non-invasive,

electroencephalography (EEG) is a widely used neuroimaging

method. Due to its high temporal resolution it can reflect

fast processes, which is especially advantageous in hearing

research as well as objective audiometry (Somers et al.,

2021). Its spatial resolution is limited by the number of

electrodes that can be positioned on the scalp and the indirect

measurement of neural activity through electric fields. If

the goal is to postulate about the function of specific brain

regions, inferring the sought activity requires knowledge

about the underlying brain structures and the exact electrode

locations. However, subject brain and general anatomical

characteristics present a significant variability (Bartley et al.,

1997; Yang et al., 2019; Haładaj, 2020). Individual head shapes

also cause differences in the relative placement and studies

show that the considered electrode locations can greatly affect

analyses results (Schwartz et al., 1996; Van Hoey et al., 2000;

Wang and Gotman, 2001; Dalal et al., 2014; Hirth et al.,

2020).

While individualization of those measures is possible,

every step comes at a further cost: recording the individual

electrode locations after an experiment requires the appropriate

hardware and additional processing time, as, depending

on the method used, laborious manual processing might

be necessary (Koessler et al., 2007; Taberna et al., 2019).

Acquiring individual brain anatomies can come in expensive for

research institutions, as neither the facilities nor the necessary

resources might be available. Moreover, it is oftentimes the

case that prior medical procedures or implantations prevent

individuals from procedures such as magnetic resonance

imaging. For hearing research specifically, cochlear implants

frequently fall under the latter category (Leinung et al.,

2020; Holtmann et al., 2021). In either case, a better

understanding of the effects of the individualization steps

may help the planning and uncertainty assessment of EEG

studies.

Activity recorded by scalp-EEG sensors comprises a

superposition of various brain sources, making it non-

trivial to uncover underlying mechanisms. To expose specific

information about the auditory functions in the brain, it

is often relevant to move from the sensor- to the source

space, spatially separating the signals and attributing them to

their original generators. Source estimation is a complex task,

involving several modeling steps. Localizing where the recorded

activity actually originated from requires in the first place a

representation of the elements of the subject’s head (Vorwerk

et al., 2014). The scalp, skull, gray, and white matter and

cerebrospinal fluid have different conductivity characteristics,

requiring an appropriate model accounting for them. This

information is incorporated in the forward model, which

describes how the electric field generated by a cortical source

is picked up as an electric potential by a sensor. Source

estimation based on EEG is especially subject to errors in

the forward modeling; as it is based on electric fields and

the sensors are positioned directly on the skin, it is heavily

influenced by the differences in conductivity estimates (Leahy

et al., 1998; von Ellenrieder et al., 2009). Various solutions

have been developed, and the forward-model choice mainly

relies on the available computational resources and chosen

measurement modality (Baillet et al., 2001; Hallez et al.,

2007). For EEG research, using the boundary element method

is considered an appropriate solution, offering a realistic

representation of the head model (Wang and Gotman, 2001;

Adde et al., 2003; Akalin-Acar and Gençer, 2004; Kybic et al.,

2005). For the cases where individualization steps cannot

be included, relevant software offers the option for template

anatomies and electrode locations. Those can be used on

the acquired experimental data, to approximate actual head

characteristics.

Given the forward model, the activity of the brain

regions can be estimated via the inverse solution; the

sensor data is combined to create an estimate of the

activity at the various brain locations. This constitutes

an ill-posed problem because the number of sources is

typically much larger than the number of sensors. Hence,

the inverse solution is not unique and requires additional

assumptions or constraints to become so (Baillet et al., 2001).

Various approaches have been developed toward tackling

this problem (Grech et al., 2008); among those, minimum-

norm solutions fall under the category of distributed inverse

solvers (Ou et al., 2009). They rely on minimal prior

assumptions, and are therefore well-suited in data driven

approaches, where data is too noisy or no prior knowledge

about source activity can be reliable (Hauk, 2004). Each

grid point is considered to be the location of one or a set

of equivalent current dipoles, subject to specific constraints

regarding their degrees of freedom. Those algorithms look

for a fitting solution to the data at each grid location

simultaneously, under the restriction of a minimum overall

activity amplitude. As most cognitive processing relies on

distributed sources rather than isolated sources, such approaches

offer an ecologically plausible solution, suited for mapping

complex function in the perceptual field (Komssi et al.,

2004). In the implementations of dynamic statistical parametric

mapping (dSPM; Dale et al., 2000) and standardized low-

resolution electromagnetic tomography (sLORETA; Pascual-

Marqui, 2002), noise statistics information derived either from

data or separate recordings is used to standardize the source

maps, in order to compensate for depth current-orientation

inhomogeneity (Hauk et al., 2011). Generally, the choice of

the inverse method relies on parameters such as the sensory

modality or experimental paradigm; there are, though, no
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precise guidelines on selecting a method, rendering the option

to frequently depend on common practice and preference.

Meanwhile, toolboxes offer direct implementations of multiple

inverse solutions, thereby facilitating comparative studies on

the same dataset, an oftentimes suggested approach (Nawel

et al., 2019). In auditory research, dSPM and sLORETA

are frequently applied algorithms toward solving the inverse

problem (e.g., Jaworska et al., 2012; Raghavan et al., 2017;

Justen and Herbert, 2018; Stropahl et al., 2018; Hsu et al., 2020;

Mohan et al., 2020). Based on anecdotal evidence, dSPM has

been deemed to be specifically good for modeling auditory

cortex sources (Stropahl et al., 2018). Instead, various method

comparisons demonstrated how sLORETA can return most

satisfactory results for single source localization (Grech et al.,

2008).

As the first relay of auditory information, the primary

auditory cortex (PAC) is essential in auditory research. It

is the main generator of early evoked activities denoted

as the excitatory, more exogenic P1 component and the

inhibitory, more endogenic N1 component (Picton et al.,

1999; Kudela et al., 2018), typically assessed by their peak

amplitudes and latencies. Yet, with its small size and intricate

placement on the superior temporal lobe (i.e., within the

lateral sulcus and its non-orthogonal orientation to the scalp),

the correct extraction of its activity constitutes a difficult

matter (Hari and Puce, 2017). Our aim in the current study

was to examine the effect of those individualization steps

on inferred PAC activity. For that reason we considered two

main factors that play a crucial role in the source localization

process: the electrode positions and the subject anatomy. We

combined those in pairs of two, yielding four different and

commonly used approaches in EEG experiments (template

anatomy with template electrode positions, template anatomy

with individual electrode positions, individual anatomy with

template electrode positions, individual anatomywith individual

electrode positions). Our basic assumption was that a fully

individualized configuration should lead to the most likely

precise and valid source localization (Akhtari et al., 1994;

Buchner et al., 1995; Van Hoey et al., 2000; Darvas et al., 2006;

Dalal et al., 2014) and more focal activity to elicit larger P1

and N1 component amplitudes (Picton et al., 2000). Effects

on component latencies may also occur but we had no prior

expectations on those. In addition, to more directly assess

how much the evoked activity is restricted to the PAC, we

defined a metric sensitive to spatial leakage by evaluating the

power ratio between the PAC and the surrounding region for

each component. Because the two components reflect different

postsynaptic activities with known hemispheric asymmetries

(e.g., Hine and Debener, 2007), we analyzed all metrics in

a within-subject manner and for each hemisphere separately.

To control for robustness or interaction with regard to the

specific inverse solutions used, we studied and compared each

combination of electrode and anatomical configurations with

the two inverse solutions dSPM and sLORETA.

2. Materials and equipment

For the current study we analyzed data originally collected

for an auditory spatial perception experiment (Baier et al.,

2022). The auditory stimuli used were complex harmonic tones

(Schroeder, 1970; F0 = 100 Hz, bandwidth 1–16 kHz). They

were presented through earphones (Etymotic Research, ER-

2) and were filtered with listener-specific head-related transfer

functions to sound as coming from either the right or left

direction on the interaural axis. The duration of every stimulus

was 1.2 s with an inter-stimulus interval of 500 ms. Onset and

offset ramps with raised-cosine shape had a duration of 10

ms. The stimuli were presented at a sound pressure level of

about 70 dB (all three intensity offsets of 2.5, 0, and −2.5 dB

from the original study were pooled together). The experiment

consisted of an initial passive listening part, during which

subjects were watching a silent subtitled movie while being

exposed to the 600 trials. In a second part, subjects performed

a spatial discrimination task on those stimuli. For our current

study we only considered the EEG data during passive listening,

in order to avoid any task-related effects of attention and arousal.

Our dataset was recorded with a 128-channel EEG

system (actiCAP with actiCHamp; Brain Products GmbH,

Gilching, Germany) at a sampling rate of 1 kHz. We initially

measured participants’ hearing thresholds using pure tone

audiometry between 1 and 12.5 kHz (Sennheiser HDA200,

AGRA Expsuite application, https://www.oeaw.ac.at/isf/das-

institut/software/expsuite) to ensure that they deviated not more

than 20 dB from their age mean. Further exclusion criteria

included neurological disorders. For 23 participants we acquired

individual anatomical structures and electrode positions. Our

later event-related component analyses yielded missing values

for three of our subjects with template attributes, hence we

restricted our set to the remaining 20 subjects (9 female:

meanage = 25.4; SDage = 2.51; 11 male: meanage = 25.4;

SDage = 3.04). For those three subjects, comparisons of the

evoked PAC activity time courses for the fully individualized vs.

fully default conditions are provided as Supplementary material.

3. Methods

3.1. EEG data preprocessing

EEG data were manually inspected to detect potential noisy

channels, which were then spherically interpolated. The data

were subsequently bandpass-filtered between 0.5 and 100 Hz

(Kaiser window, β = 7.2, n = 462) and epoched ([−200, 1500]

ms) relative to stimulus onset. We applied hard thresholds at
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−200 and 800 µV to remove extremely noisy trials. Undetected

bad channels were further identified through an automatic

channel rejection step; if found, they would be visually inspected

and interpolated. No additional noisy channels were detected

for any of the subjects. We performed independent component

analysis (ICA) and followed up with a manual artifact inspection

and rejection of oculomotor artifacts (removal of up to three

components per subject). The data were thereafter re-referenced

to their average. Trials were equalized within each subject by

pseudo-selection, in order to match the minimum amount

within the subject after trial rejection and maintain an equal

distribution across the recordings. On average, this resulted in

569 clean trials (SD = 27.7) per subject. All preprocessing steps

were undertaken on the EEGLAB free software (Delorme and

Makeig, 2004; RRID:SCR_007292).

3.2. Source estimation

We investigated the effects of subject anatomy, electrode

locations and inverse solution on the estimated source activity,

as detailed below. These analyses were implemented in the

Brainstorm free software (Tadel et al., 2011; RRID:SCR_001761).

3.2.1. Subject anatomy

For subject anatomy we considered two conditions, namely

a template anatomy and an individual anatomy. The template

anatomy used was the standard ICBM152 brain template

as implemented in Brainstorm. For the individual subject

anatomies, a structural T1-weighted magnetic resonance (MR)

scan for each subject was recorded at the MR center of the

SCAN-Unit (Faculty of Psychology, University of Vienna) with

a Siemens MAGNETOM Skyra 3 Tesla MR scanner (32-

channel head coil; Siemens-Healthinieers, Erlangen, Germany).

Anatomical MR scans for all subjects were subsequently

segmented via Freesurfer (Fischl, 2012; RRID:SCR_001847), and

loaded in Brainstorm. Fifteen thousand vertices were calculated

for the generated surfaces, in line with the segmentation of

the template anatomies used. They were then used as the

basis for each subject’s head model in the corresponding

cases comprising individual subject anatomies. We created

the anatomical models using the boundary element method

in OpenMEEG (Gramfort et al., 2010; RRID:SCR_002510).

Boundary surfaces were constructed by Brainstorm with 1922

vertices per layer for scalp, outer skull and inner skull, and a

skull thickness of 4 mm was considered. In line with the default

settings, the relative conductivity of the outer skull was set to

0.0125 and to 1 for the remaining layers. We kept the adaptive

integration selected, to increase accuracy of our results.

Overall, obtaining the individual structural MRIs required

about 30 min from the participant and an additional hour

from the experimenter in order to schedule the session and

post-process the data.

3.2.2. Electrode locations

Regarding electrode locations, we compared template-based

against individually tagged ones. As template electrode locations

we used the ICBM 152 BrainProducts Acticap 128 default

EEG cap as implemented in Brainstorm, thereby matching our

experimental setup. Individual electrode positions were acquired

through the following scanning process:

An optical 3D scan (Structure Sensor with Skanect Pro,

Occipital Inc., Boulder, Colorado) of each subject’s head was

made, after data collection and while still wearing the EEG cap.

The scanner was placed on a nearby surface at the level of their

ears. The seat was then being steadily rotated counter-clockwise

until a 360◦ full turn was completed. After returning to the

initial position, another quarter of a turn was done with the

scanner upwards, to record the information of the upper surface

of the head. The scans were visually checked immediately after

their recording; if their resolution or overall quality was deemed

inadequate the process was repeated. Two experimenters were

present during scanning the electrode cap and thereby assessing

the quality or need for repeating the measurement. Each

electrode scan of the subjects’ heads required at least 15 min,

including setting up the system and correctly positioning the

participant. Depending on each individual case, scans had to

be retaken until satisfactory 3D models could be created. The

individual electrodes were subsequently manually tagged on the

3D scans while we additionally added the three fiducial points

(LPA/RPA/NAS). This manual procedure lasted ∼25 min per

participant. Two experimenters were involved in the process of

electrode tagging and MRI co-registration.

An electrode file was created as an input for the upcoming

head model creation steps (Fieldtrip; Oostenveld et al., 2010;

RRID:SCR_004849). The electrode order in the channel file was

modified to match the corresponding order of the channels

in our collected data. The default channel positions were

overwritten by the individual ones in the cases comprising

individual electrode positions.

3.2.3. Co-registration

For each subject and condition (combination of subject

anatomy and electrode locations) we performed a manual co-

registration between the head models and the channel locations

using the fiducial points as an initial reference. In this process,

the electrode cap was manually adjusted on either the template

or the individual anatomy, using the translation, rotation,

or resizing options through the graphical user interface. To

minimize individual intervention and therefore inconsistencies

in reproducibility, the cap was always adjusted as a whole;

no channels were fine-tuned individually. After concluding the
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FIGURE 1

Average electrode distance between template and individual

electrode locations. The distances have been averaged between

anatomies, as the values show minimal deviation from each

other.

realignment and in cases of offsets between electrodes and head

surface, the “project to surface” functionality was used, to make

sure no electrodes were placed inappropriately. This projection

process was being monitored to make sure the projections

did not significantly deviate from the initial tagged position.

In none of the subjects were any electrodes greatly deviating

from the head surface, such that a projection would alter the

tagged position. The entirely non-individualized condition with

templates used for both the electrode locations and subject

anatomies needed no manual co-registration, as it was already

accounted for by the template models.

After co-registration, the default cap locations differed from

the individually tagged locations by a Euclidean distance of 17±

3.3 mm (mean ± SD), after adjustment to the default anatomy.

Similarly, after adjustment to the individual anatomy, the

locations of the default cap differed from the individually tagged

locations by 16 ± 3.5 mm. Given this high similarity between

the two variants of subject anatomy, we pooled the distances

to further investigate their topographic distribution (Figure 1).

Distances are largest at occipital channels and smallest at frontal

channels. There is also a slight asymmetric bias in frontal

distances that may have been caused by our scanning routine.

The counter-clockwise rotation starting with the subject facing

the scanner may have led to an accumulation of errors toward

the end of the scanning procedure.

3.2.4. Inverse solution

With dSPM and sLORETA we selected two distributed

source solutions widely used and implemented in Brainstorm.

Both aim for a minimum norm estimate with implicit depth

weighting to improve localization accuracy of deep sources (Lin

et al., 2006), but differ in the normalization approach (Hauk

et al., 2011; Nawel et al., 2019). In dSPM (Dale et al., 2000),

the current density normalization is done based on the noise

covariance information. In sLORETA (Pascual-Marqui, 2002;

RRID:SCR_013829), the current density normalization is based

on the data covariance, which is a combination of the noise

covariance and a modeled brain signal covariance estimate.

For the calculation of the covariances, we here considered

a single-trial pre-stimulus baseline interval of [−200, 0] ms.

For both solutions, the source orientations were considered

constrained; in that case, a dipole, that is assumed to be

placed perpendicular to the cortical surface, is considered for

each vertex location (Tadel et al., 2011). Noise covariance

regularization was done with a factor of λ2 = 0.1. Depth

weighting and regularization parameters were selected as

motivated and recommended by Brainstorm (depth weighting

order = 0.5, SNR= 3 dB). Generator signals were reconstructed

at 15,000 vertices describing the pial surface, representing the

interface between gray matter and cerebrospinal fluid, for all

configurations.

3.3. Evaluation

We focused our study on the evoked activity of the right and

left PAC, defined as trasverse temporal regions by the Desikan-

Killiany parcellation scheme (Desikan et al., 2006). There, we

evaluated the effects of the considered individualization factors

with respect to both spatial and temporal aspects.

3.3.1. Metrics

For each subject we extracted the evoked PAC activity for

each hemisphere. These time series of current source densities

were then low-pass filtered at 20 Hz (Hamming-based FIR,

n = 150) with ERPLAB (Lopez-Calderon and Luck, 2014;

RRID:SCR_009574) and baseline-corrected by a 100-ms-pre-

event interval; the average across trials for each subject was

subsequently calculated. Based on literature (Hari and Puce,

2017) as well as the grand average profiles, we defined a

time interval for each of the signature components P1 and

N1: [10 − 90] ms was defined for P1 and [50 − 150] ms

for N1. In those windows, the peak amplitude (maximum

for P1 and minimum for N1) and peak latency values were

extracted for each component from the individual subject trial-

averages, based on the findpeaks function as implemented

in MATLAB 2018b. The single-subject data were plotted and

inspected for accuracy. They were then analyzed and statistically

compared based on the factors electrode location (template

or individual) and subject anatomy (template or individual),

individually for each hemisphere (left or right) and inverse

solution (dSPM and sLORETA).

In the present study we assumed that the generating sources

of P1 and N1 components are linked to focal activity in the

PAC yielding maximal current source density values within

it; yet localization errors likely arise, especially at neighboring

vertices, due to the probability-based approach of the minimum

norm estimate methods. The considered inverse solutions weigh
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spatially neighboring vertices higher in order to yield a smooth

distribution of current source densities (Michel and Brunet,

2019). This artifact is often referred to as spatial leakage. In order

to assess the leakage of localized source activity from within

the PAC toward the neighboring regions, we specified a region

on the cortical surface, spatially surrounding the atlas-defined

PAC for each hemisphere. In order to aid reproducibility, we

decided to expand the region by recruiting additional atlas-

defined surrounding regions, which the PAC activity might have

leaked into. As the Desikan-Killiany parcellation was deemed

too coarse, we based our new region selection on the finer

Destrieux atlas (Destrieux et al., 2010). We hence constructed

an extended region of interest (ROI) by merging the regions

of the planum temporale, fissure, transverse temporal sulcus,

circular sulcus as well as our initially defined PAC region. On

the right hemisphere, the area covered by the extended ROI

spanned 24.67 cm2 vs. the 4.56 cm2 of the initially defined PAC

region (factor of 5.4). On the left side, the original PAC surface of

6.16 cm2 was expanded to 28.03 cm2 (factor of 4.6). For each of

the two components (P1 and N1) we considered the previously

extracted peak latency found for each subject average; for the

exact same time points we extracted the activity of the extended

ROI. We then calculated the squared amplitude ratio between

the two (squared sum over PAC vertices divided by squared sum

over extended ROI vertices), denoted as “ROI power ratio”. This

metric quantifies the proportion of evoked power contained in

the PAC relative to that occurring in the extended ROI and is

thus assumed to reflect the leakage to the neighboring regions in

the sense that higher ratios indicate less leakage.

All aforementioned analysis procedures were implemented

in MATLAB 2018b (RRID:SCR_001622).

3.3.2. Statistical analysis

Statistical analyses on the source localized time series and

the extracted data relied on a mixed-model design with a multi-

way ANOVA, considering a within-subject design. In particular,

the analysis of the peak amplitude, peak latency, and ROI power

ratio included two factors with two levels each: subject anatomy

(template or individual) and electrode positions (template or

individual). All ANOVAs were performed separately for each

inverse solution and hemisphere.

Before each test, data were z-scored within

subject and transformed according to the Box-Cox

transformation (Hawkins and Weisberg, 2017). Furthermore,

we ran Levene’s test assessing violations in the homogeneity

of variance and inspected the ANOVA residuals verifying the

normality assumption. Post-hoc analyses of interactions/contrast

have been done with Bonferroni correction. Finally, for the

metrics that violated these assumptions, non-parametric aligned

ranks transformation ANOVA (Wobbrock et al., 2011) was

performed and the Wilcoxon test was used in the post-hoc

analysis. Effect sizes are only reported if the parametric ANOVA

was applied.

All statistical analyses were performed in R Project for

Statistical Computing (RRID:SCR_001905). In addition

to the standard environment, we relied on the following

packages for the analysis: afex for the ANOVA tests (Barr

et al., 2013), emmeans for the post-hoc comparison

(RRID:SCR_018734), ARTool for the non-parametric

ANOVA (Wobbrock et al., 2011), and ggplot2 for data

visualization (RRID:SCR_014601).

4. Results

4.1. Evoked PAC activity

We compared average event-related PAC responses to

sounds locked to the stimulus onset. Figure 2 shows time courses

comparing the different individualization levels for the two

hemispheres and inverse solutions. For all source localization

conditions we reconstructed stereotypical auditory-evoked

responses in the PAC with a prominent positive deflection

between 10 and 90 ms, denoted as the P1 component, followed

by a negative deflection between 50 and 150 ms, denoting the

N1 component. The left hemisphere (Figures 2A,C) was more

clearly affected by the different configurations than the right

hemisphere (Figures 2B,D). Later components were moreover

more susceptible to latency differences than earlier components.

Additionally, time series profiles differed depending on the

inverse solution used; dSPM curves (Figures 2A,B) appeared

more pronounced for the fully individualized configurations,

while template peaks were rather more salient among the

sLORETA curves (Figures 2C,D). We statistically analyzed the

extracted source activation profiles for each hemisphere and

inverse solution separately. Detailed information regarding the

extracted values can be found in Figure 3.

Based on dSPM, the left PAC (Figure 2A) shows a

differentiation depending on the degree of individualization. At

P1, peak latencies were shorter for individual- than template

electrode locations (F = 6.59, p = 0.01) and peak

amplitudes increased with individual electrodes locations only

within template anatomies (F = 12.16, p < 0.001). At later time

points, the characteristics appear to be driven by the inclusion

or not of a template or individual brain anatomy. Concordantly,

only the use of individual anatomy yielded a significant increase

of the N1 amplitude [F(1, 19) = 5.31, p = 0.03, η2 = 0.22].

N1 latencies were significantly longer for individual anatomies

[F(1, 19) = 16.17, p < 0.001, η2 = 0.46] and individual

electrode locations [F(1, 19) = 17.19, p < 0.001, η2 = 0.47].

In the right PAC (Figure 2B) the curves of all four

individualization conditions are highly overlapping, suggesting

no strong impact of any of the individualization steps.
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A B

C D

FIGURE 2

Evoked PAC activity inferred via dSPM (top) and sLORETA (bottom) for the left (A,C) and right (B,D) PAC. Shaded areas denote the standard error

of the mean (SEM) values.

Nevertheless, individual electrode locations resulted consistently

in slightly larger P1 amplitudes (F = 16.69, p < 0.001).

For the N1 component, electrode locations were again a

significant factor (F = 6.99, p < 0.01), yielding more

pronounced peaks with individualization. No significant effect

was found on either the P1 or N1 latencies.

sLORETA applied to the left hemisphere (Figure 2C)

revealed a significant interaction between anatomy and electrode

locations on the P1 amplitude (F = 11.62, p < 0.001);

individual electrode locations generated highest values in

particular when combined with template anatomies. Significant

differences were neither found on P1 latencies nor on N1

amplitudes. The N1 latency, though, was affected by both

anatomy [F(1, 18) = 15.45, p < 0.001, η2 = 0.46] and

electrode locations [F(1, 18) = 11.86, p < 0.01, η2 = 0.40];

overall individual anatomies produced later N1 peaks than the

corresponding template configurations and individual electrode

locations yielded later peaks.

On the right hemisphere (Figure 2D), anatomy [F(1, 19) =

10.31, p < 0.001, η2 = 0.35] and electrode locations

[F(1, 19) = 20.38, p < 0.001, η2 = 0.52] showed significant

main effects on P1 amplitude for sLORETA. Template anatomies

produced higher peak values, more so in combination with

individual electrode locations. The interaction between anatomy

and electrode locations was found significant for P1 latency

[F(1, 19) = 5.22, p < 0.05, η2 = 0.22]; the combination of

individual electrode locations and template anatomies yielded

the shortest values. Anatomy caused a differentiation on the N1

peak values (F = 7.05, p < 0.01), where template anatomies led

to slightly more pronounced peaks. No significant effects were

found on N1 latency.

4.2. Spatial leakage

We inferred the brain activity not only to the PAC but to the

entire cortical surface. The corresponding brainmaps are shown

in Figure 4 for dSPM and Figure 5 for sLORETA. There was a

clear evoked activation in the temporal region, yet that activation

differed in its precise location and spread, depending on the

particular configuration considered. Generally, the activation

was attributed to regions extending rather more superior

and posterior than the atlas-defined PAC (cyan outline) and

the overall pattern seemed to be dominated by the subject

anatomies. The configurations comprising individual subject

anatomies exhibited more constrained activation patterns

within the atlas-defined PAC, whereas those with the template

anatomies showed a higher spread of activation. This was most

pronounced within the extended ROI area surrounding and

including the PAC but also reached further to other parts of

the temporal and parietal lobes. When regarding the general

brain profiles, electrode locations appeared to play a secondary
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FIGURE 3

Peak amplitudes and latencies for P1 and N1 components inferred via dSPM (top) and sLORETA (bottom) for the left and the right hemisphere.

Values correspond to the average over subjects after z-scoring per condition and within subject. Error bars denote the SEM. Statistically

significant main e�ects are reported as gray bars—horizontal bars for electrode position and vertical bars for brain anatomy—and from one to

three asterisks indicating the significance levels (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001). Significant interactions are reported in Table 1.

role; individual electrode locations did not consistently seem

to constrain the activation further. Between the two inverse

solutions, the spread was noticeably more distributed in the use

of sLORETA, compared to dSPM.

Complementary to the brainmaps, we evaluated the P1

and N1 power ratios between the PAC and the extended ROI

(Figure 6).When considering the dSPM inverse solution and the

left hemisphere, individualization of the electrode locations led

to higher P1 ratio [F(1, 19) = 5.27, p < 0.05, η2 = 0.22]. No

significant effects were found on the corresponding ratio for the

N1 component.

In the right hemisphere under the dSPM inverse solution,

anatomy had a significant main effect on both the P1 (F =

71.14, p < 0.001) and N1 [F(1, 19) = 21.84, p < 0.001, η2 =

0.53] power ratios. Individual anatomies generated higher power

ratios at the peak of both components.

When considering the sLORETA inverse solution in the left

hemisphere, anatomy [F(1, 19) = 7.05, p < 0.05, η2 = 0.27]

and electrode locations [F(1, 19) = 9.51, p < 0.01, η2 = 0.33]

were main effects for the P1 power ratio. Individual subject

anatomies led to lower power ratio values, while individual

electrode locations ameliorated the result. The corresponding

N1 power ratios were significantly affected only by anatomy

(F = 4.94, p < 0.05), with individualized subject anatomies

leading to a deterioration of the value, hence denoting higher

leakage.

In the corresponding right hemisphere, anatomy was a

significant main effect for both P1 (F = 69.92, p < 0.001) and

N1 [F(1, 19) = 17.64, p < 0.001, η2 = 0.48]. In both cases

individualization benefited the localization accuracy.

5. Discussion

In the present study our aim was to single out the effects

of different individualization steps on the accuracy of inferring

PAC activity from EEG data. We compared combinations of

template or individualized electrode locations and subject

anatomies while using two different inverse solutions

(dSPM and sLORETA). Through that we reconstructed

and characterized the evoked PAC time series and assessed the

spatial leakage around the PAC in each hemisphere. Table 1

summarizes the significant effects for all configurations and

their consistency with individualization benefit. As evident,

both the factors of electrode location as well as subject anatomy

were found to have an impact on the defined current source
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FIGURE 4

dSPM brainmaps depicting the PAC activation at the P1 (∼55 ms, top) and N1 (∼100 ms, bottom) timing for both hemispheres and all considered

configurations. For display, no minimal cluster size was set and the minimum amplitude was set at 20% of the maximum activation across all

four configurations of the inverse solution. Cyan: atlas-defined PAC; Green: extended ROI.

density metrics; yet their effect varied depending on the target

brain area (PAC in the left or right hemisphere), the evoked

component characteristic (amplitude or latency of P1 or N1),

and also the type of inverse solution (dSPM or sLORETA)

considered.

5.1. Individualization factors

The considered individualization factors influenced the two

hemispheres quite differently. In the right hemisphere, anatomy

affected mainly the power ratio indicating spatial leakage, while

electrode positions had an impact on peak amplitudes. Contrary

to that, we found a more complex pattern of effects in the

left hemisphere: individualized solutions gave earlier peaks

for P1 and later ones for N1, individual electrode locations

increased both the P1 amplitude and power ratio, and individual

anatomies interacted with that effect on P1 amplitude and

independently enlarged N1 amplitudes.

We speculate that such a regional variance in source

reconstruction could be resulting from either state or trait

effects. On the one hand, source localization estimates

could show higher variance across subjects because of

brain morphology (i.e., cerebral size, Bartley et al., 1997;

handedness, Good et al., 2001) that, on a group level, may result

in higher or lower uncertainty for different regions, especially

for template solutions. Higher inter-individual variability

is also generally found in the left auditory cortex (Ren

et al., 2021). On the other hand, the observed asymmetry

might be related to stimulus features; auditory stimulation
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FIGURE 5

sLORETA brainmaps depicting the PAC activation at the P1 (∼55 ms, top) and N1 (∼100 ms, bottom) timing for both hemispheres and all

considered configurations. For display, no minimal cluster size was set and the minimum amplitude was set at 20% of the maximum activation

across all four configurations of the inverse solution. Cyan: atlas-defined PAC; Green: extended ROI.

characteristics preferentially processed on either hemisphere,

such as unattended automatic change detection of spectral or

temporal features, may influence the variance of the source

reconstruction estimates (Schönwiesner et al., 2007; Okamoto

et al., 2009). Our stimuli moreover carry spatial characteristics,

as they are presented from either the left or right side of- and

at different distances from the listener. Spatial processing has

been shown to exhibit right-hemispheric dominance, possibly

explaining the differences we observe (Kaiser et al., 2000;

Middlebrooks, 2015; Deng et al., 2020). From a more technical

perspective, it could also be that the slight asymmetry we

observed in distances between default and individual electrode

positions may have contributed to hemispheric asymmetries

in inferred source activity, but only when using individual

electrode locations.

Individual anatomies and electrode locations allow for

a more precise attribution of the recorded activity to the

corresponding regions, thereby likely accounting for the

various inter-individual variability characteristics. Acquiring

individual electrode locations, though, usually comes with

considerable measurement uncertainty; to some degree

this also depends on the acquisition strategy. With our

procedure, a considerable amount of the experimenter’s

individual intervention is necessary in obtaining the 3D

scan as well as tagging the electrodes. The extent of it

might differ, when more automatized—and therefore also

more reproducible—methods are used (Koessler et al.,

2011; Hirth et al., 2020), potentially yielding different

effects regarding the choice between template or individual

electrode locations.
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FIGURE 6

ROI power ratios for P1 and N1 components inferred via dSPM (top) and sLORETA (bottom) for the left and right hemisphere. Higher ratios are

interpreted as indication for lower spatial leakage of inferred PAC source activity. Values correspond to the average over subjects after z-scoring

per hemisphere, inverse solution, and subject. Error bars denote the SEM. Statistically significant di�erences between main e�ects are reported

as gray bars—horizontal bars for electrode positions and vertical bars for brain anatomies—and from one to three asterisks indicating the

significance levels (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001). Significant interactions are reported in Table 1.

TABLE 1 Summary of the e�ects of anatomy (A) and electrode locations (E) as well as their interaction (A:E) resulting from the statistical tests.

Only significant results are reported (p < 0.05). Arrows indicate the direction of change from the template factor level to the individual factor level. Dashes indicate opposing interactions.

Color coding denotes the assessment of every such change as individualization benefit (green) or degradation (red). If this interpretation on the direction of change seemed ambiguous, as

is the case for latency changes and opposing interactions, the cell has not been colored.

As we were interested in localizing the PAC we restricted

our search on the cortical surface and this is where our

results apply. Our choice of constrained sources in the brain

might be an essential contributor to our outcomes: when

individual anatomies are unavailable, selecting fixed sources

might be too restricting and introduce errors in the considered

orientations (Hillebrand and Barnes, 2003; Westner et al., 2022);

therefore a different setting might be more suited for the case of

template anatomies.

In order to extract the targeted cortical activity, we focused

on the PAC region as defined by the Desikan-Killiany atlas.

Yet, as seen on Figures 4, 5, none of the configurations seem

to perfectly capture the core of the PAC activation. Different

atlases vary in their parcellation; as a result, using a different

parcellation scheme for such an investigation might capture

the activation differently and hence lead to deviating results

regarding the accuracy of localization. Another possibility could

be to move away from an atlas-based- and toward a functional
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ROI definition. Extending the study by manually defining

the PAC based on the observed, and therefore actual source

activation, could increase the effect sizes and give further insight

into the localization precision offered by the individualization

steps.

Given the aforementioned limitations and despite the clear

loss in spatial acuity obtained without individualization, we

found the stereotypical auditory evoked response elicited within

the PAC in all configurations (Figure 2). In that regard the

EEG based source localization of early evoked activity may be

considered satisfactory in all cases. This is important especially

in occasions where no individualization steps can be taken, as

could happen with infants, implantees, or situations where the

corresponding resources (time, personnel, or funds) are not

available. Contrarily, there are cases where individualization

is indispensable. Such can be investigations with known

underlying structural differences, as could be in the case of

hearing loss (Alfandari et al., 2018; Chen et al., 2021; Manno

et al., 2021). In a general setting, though, where no such

restrictions apply, our results can aid in the direction of

designing the aspects of an experimental study: depending on

the effect examined and available resources, decisions can be

made about whether template configurations would be sufficient

or a further individualization, whether electrode locations or

subject anatomy, would be in order.

5.2. Di�erences between inverse
solutions

Regarding the choice of an inverse solution itself, different

algorithms are based on different prior assumptions (Grech

et al., 2008). We here restricted our study to two widely

used methods falling under the same algorithmic category

(minimum-norm solutions); an informative and oftentimes

suggested way is to compare different algorithms before drawing

conclusions on the plausibility of the results (Nawel et al., 2019).

When comparing the analyses outcomes of our considered

source localization configurations as shown in Table 1, the

differences between inverse solutions become noticeable. With

sLORETA individualization steps yielded rather inconsistent

main effects: we found some benefit of individual electrode

positions, yet anatomy seemed to work in the opposite

direction than what was expected. Inclusion of individual

subject anatomies had incongruent effects on our metrics,

oftentimes leading to a deterioration of the accuracy with higher

individualization (Table 1, red cells). Contrary to that, dSPM

showed consistent results: all main effects contributed toward an

amelioration of the considered values with individualization of

either the subject anatomy or the electrode positions.

Though not reflected in the metrics of Table 1, there is a

considerable difference in the overall activity spread between

dSPM and sLORETA. The activity is largely distributed over the

temporal and parietal lobes using sLORETA, while with dSPM

it remains rather spatially focused. As such, dSPM seems to

be more suitable for capturing more focal auditory processes

targeting specific regions implicated in them.

In sum, our findings demonstrate the benefit of using

additional individualized information regarding brain anatomy

and electrode positioning; they further support previous

notions toward using dSPM for investigating auditory

processes (Stropahl et al., 2018). A restricted activation profile

can be especially beneficial, for instance, when considering a

differentiation between the ventral and dorsal auditory stream,

both of which also comprise relatively small areas (Bizley and

Cohen, 2013).
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