AUTHOR=Lyu Juncheng , Shi Hong , Zhang Jie , Norvilitis Jill TITLE=Prediction model for suicide based on back propagation neural network and multilayer perceptron JOURNAL=Frontiers in Neuroinformatics VOLUME=16 YEAR=2022 URL=https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2022.961588 DOI=10.3389/fninf.2022.961588 ISSN=1662-5196 ABSTRACT=Introduction

The aim was to explore the neural network prediction model for suicide based on back propagation (BP) and multilayer perceptron, in order to establish the popular, non-invasive, brief and more precise prediction model of suicide.

Materials and method

Data were collected by psychological autopsy (PA) in 16 rural counties from three provinces in China. The questionnaire was designed to investigate factors for suicide. Univariate statistical methods were used to preliminary filter factors, and BP neural network and multilayer perceptron were employed to establish the prediction model of suicide.

Results

The overall percentage correct of samples was 80.9% in logistic regression model. The total coincidence rate for all samples was 82.9% and the area under ROC curve was about 82.0% in the Back Propagation Neural Network (BPNN) prediction model. The AUC of the optimal multilayer perceptron prediction model was above 90% in multilayer perceptron model. The discrimination efficiency of the multilayer perceptron model was superior to BPNN model.

Conclusions

The neural network prediction models have greater accuracy than traditional methods. The multilayer perceptron is the best prediction model of suicide. The neural network prediction model has significance for clinical diagnosis and developing an artificial intelligence (AI) auxiliary clinical system.