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Intradialytic hypotension (IDH) is an adverse event occurred during

hemodialysis (HD) sessions with high morbidity and mortality. The key to

preventing IDH is predicting its pre-dialysis and administering a proper

ultrafiltration prescription. For this purpose, this paper builds a prediction

model (bCOWOA-KELM) to predict IDH using indices of blood routine tests.

In the study, the orthogonal learning mechanism is applied to the first half

of the WOA to improve the search speed and accuracy. The covariance

matrix is applied to the second half of the WOA to enhance the ability to

get out of local optimum and convergence accuracy. Combining the above

two improvement methods, this paper proposes a novel improvement variant

(COWOA) for the first time. More, the core of bCOWOA-KELM is that the

binary COWOA is utilized to improve the performance of the KELM. In order to

verify the comprehensive performance of the study, the paper sets four types

of comparison experiments for COWOA based on 30 benchmark functions

and a series of prediction experiments for bCOWOA-KELM based on six

public datasets and the HD dataset. Finally, the results of the experiments are

analyzed separately in this paper. The results of the comparison experiments

prove fully that the COWOA is superior to other famous methods. More

importantly, the bCOWOA performs better than its peers in feature selection
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and its accuracy is 92.41%. In addition, bCOWOA improves the accuracy by

0.32% over the second-ranked bSCA and by 3.63% over the worst-ranked

bGWO. Therefore, the proposed model can be used for IDH prediction with

future applications.

KEYWORDS

medical diagnosis, machine learning, swarm intelligence, feature selection,
intradialytic hypotension

Introduction

End-stage renal disease (ESRD) threatens tens of millions
of lives. Renal replacement therapy includes hemodialysis
(HD), peritoneal dialysis (PD), and renal transplantation.
Compared with transplantation, dialysis partially replaces
renal function. Thus, there are several complications
in dialysis patients despite intrinsic complications of
ESRD, especially HD. HD is a treatment drawing blood
out of patients, diffusing uremic toxins, ultrafiltering
extra volume, and transfusion the purified blood back
to the patient. The hemodynamics is unstable during
HD. Once the patient’s cardiac function or peripheral
vascular resistance cannot compensate, intradialytic
hypotension (IDH) occurs.

IDH is defined according to different studies or guidelines.
Even if systolic pressure (SBP) declines 20 mmHg without
any symptoms, there are still target organ injuries and
increased mortality (Burton et al., 2009a). Episodes of IDH
decease perfusion to the heart, renal, brain, limbs, and
mesenterium induces various complications. Examples are
ischemic cardiomyopathy (Burton et al., 2009b), cerebral
infarction (Naganuma et al., 2005), rapid loss of residual renal
function (Jansen et al., 2002), critical limb ischemia (Matsuura
et al., 2019), mesenteric ischemia (Ori et al., 2005), and
vascular access thrombosis (Chang et al., 2011). The symptoms
of IDH range from asymptomatic to loss of consciousness
and sudden death. Therefore, managing IDH is an excellent
way to avoid HD’s adverse events. When IDH episodes
during HD, there are several acute managements, including
administering saline, lowering the dialysate temperature
and ultrafiltration rate, reducing the dialyzer blood flow,
and increasing dialysate sodium concentration. Although
physicians combine these treatments, dialysis treatment must
be stopped in severe cases. In addition, the long-term benefits
are still debated. Some studies reported that reduction of
dialysate temperature prevented IDH, but meta-analysis
showed the effect was uncertain. Furthermore, as compared
to conventional dialysate, it may increase the rate of pain
(Tsujimoto et al., 2019).

Schytz et al. (2015) performed a randomized clinical
trial (RCT), and the results did not show any consistent
trend in blood pressure (BP) changes to a reduction of
the dialyzer blood flow. Sherman (2016) summarized the
experience in their center; it was a common practice to
lower the dialyzer blood flow in patients who developed
IDH. However, the consideration did not apply to current
dialysis practice. A meta-analysis reported that stepwise sodium
profiling rather than linear sodium profiling effectively reduced
IDH (Dunne, 2017). The results of sodium profiling were
quick, and there was worry that in the long run, sodium
profiling might result in a positive sodium balancing, increased
thirst, and interdialytic weight increases (IDWG). ARCT
showed low dialysate sodium concentration (135 mmol/L)
significantly reduced IDWG, while no statistical difference in
IDH episodes over 12 months of follow-up (Marshall et al.,
2020). Radhakrishnan et al. (2020) showed there were lower
IDWG, pre-HD SBP, and incidence of IDH when dialysate
sodium concentration was equal to individual serum sodium
level instead of high dialysate sodium concentration (140
mmol/L). Administration of saline and limited ultrafiltration
rate prevent IDH by increasing relative blood volume,
but always result in post-dialysis hypervolemia and heart
failure. An inadequate ultrafiltration prescription induces
IDH episodes, then nurses have to reducing ultrafiltration
rate, leading to ultrafiltration failure in a 4-h dialysis
session.

Artificial intelligence (AI), which focuses on modeling
human cognition in computing, has achieved significant
progress in a broad range of disciplines (Zhang J. et al.,
2021; Luo et al., 2022). AI-assisted medical systems have
recently gotten attention, making diagnosis systems and medical
decision-making more instant, autonomous, and intelligent
(Li et al., 2020c, 2022; Zhang M. et al., 2021; Liu et al.,
2022e). Thus, developing an intelligent early-warning system
to predict IDH will greatly assist HD staff in setting optimal
dialysate and ultrafiltration parameters (Lin et al., 2019). There
are a few studies that focus on the IDH prediction model.
Nafisi and Shahabi (2018), Solem et al. (2010), and Sandberg
et al. (2014), respectively conducted small sample studies
and showed that the finger photoplethysmography (PPG)
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signal helped predict IDH. However, PPG instruments are not
available in all primary hospitals. Huang et al. (2020) integrated
five machine learning models (least absolute shrinkage and
selection operator, extreme gradient boosting, random forest,
support vector regression, and multiple linear regression)
to predict BP during HD based on the databaseand found
previous BP in the last HD session and first BP reading
in the current HD session, which were the most correlated
parameters. Lin et al. (2018) developed a prediction model
using BP and ultrafiltration records of 667 patients for 30
months. Although these database studies had good accuracy,
they ignored the seasonal gradient of BP in HD patients
(Duranton et al., 2018). In addition, serum protein levels and
blood cells are associated with interdialytic BP. Ozen and
Cepken (2020) found that white blood cell (WBC) values
were significantly higher in patients developing IDH. The
difference between post-dialysis protidemia and pre-dialysis
protidemia outperformed BNP (B-natriuretic peptide) and
ultrafiltration rate as a predictor for the 30-day risk of IDH
(Assayag et al., 2020). Nephrologists still seek a simplified and
readily available method, especially in the HD setting, when
many patients start treatments while waiting for ultrafiltration
prescriptions. Under these circumstances, blood routine test
is readily accessible, cost-efficient, and can be of immediate
use in any scale HD center. In addition, many scholars have
used various machine learning methods to conduct research to
explore the relationship between multiple factors and a certain
thing.

Liu et al. (2022a) proposed a new chaotic simulated
annealing overhaul of the MVO (CSAMVO) and successfully
established a hybrid model used for disease diagnosis named
CSAMVO-KELM. Liu et al. (2022c) proposed an improved
new version of SFLA, that includes a dynamic step size
modification method utilizing historical data, a specular
reflection learning mechanism, and a simulated annealing
process that utilizes chaotic map and levy flight. Moreover, the
performance advantages of the method for feature selection
were successfully validated in 24 UCI data sets. Shi et al.
(2022) combined multiple strategies integrated slime mold
algorithm (MSSMA) with KELM technology and successfully
proposed a predictive model (MSSMA-KELM) that can be
used to predict pulmonary hypertension. El-Kenawy et al.
(2020) proposed a feature selection algorithm (SFS-Guided
WOA) that combined with well-known classifiers (KNN,
SVM, etc.) to achieve a more accurate classification prediction
of CT images of covid-19 disease. Elminaam et al. (2021)
proposed a new method for dimensionality reduction by
combining the Marine Predator Algorithm (MPA) with K-NN
and achieved predictions for 18 medical datasets in feature
selection. Houssein et al. (2021) proposed a BMO-SVM
classification prediction model for more accurate microarray
gene expression profiling and cancer classification prediction.
Le et al. (2021) used a Gray wolf optimizer (GWO) and

the adaptive Particle swarm optimizer (APSO) to optimize
the Multilayer perceptron (MLP). They proposed a novel
wrapper-based feature selection model for the predictive
analysis of early onset in diabetic patients. Senthilkumar
et al. (2021) proposed a recursive prediction model based
on AI techniques for the prediction of cervical cancer
incidence, named the ENSemble classification framework
(ENSCF).

In addition, Alagarsamy et al. (2021) introduced a technique
that embedded the functionary of the Spatially constricted
fish swarm optimization (SCFSO) technique and interval
type-II fuzzy logic system (IT2FLS) methodologies, which
settled the inaccurate forecasting of anomalies found in
various topographical places in brain subjects of magnetic
resonance imaging (MRI) modality light. Alshwaheen et al.
(2021) proposed a new model based on the long short-term
memory-recurrence neural network (LSTM-RNN) combined
with the modified Genetic algorithm (GA) to predict the
morbidity of ICU patients. Adoko et al. (2013) predicted
the rockburst intensity based on a fuzzy inference system
(FIS) and adaptive neuro-fuzzy inference system (ANFIS),
as well as field measurement data. Cacciola et al. (2013)
built a fuzzy ellipsoidal system for environmental pollution
prediction using fuzzy rules. Liu et al. (2020) proposed
an effective intelligent predictive model (COSCA-SVM) for
predicting cervical hyperextension injuries by combining a
modified Sine cosine algorithm (SCA) with a support vector
machine (SVM). Hu et al. (2022b) proposed a feature
selection model (HHOSRL-KELM model) by combining the
binary Harris hawk optimization (HHO) algorithm with the
specular reflection learning and the kernel extreme learning
machine (KELM), which was successfully applied to the
severity assessment of covid-19 disease. Therefore, it is feasible
to develop a new perspective model based on the swarm
intelligence optimization algorithms to predict IDH in this
study.

In recent years, a large number of researchers have been
exploring ways to combine machine learning techniques with
medical diagnostics due to the simplicity of operation, speed
of convergence, excellent global convergence performance,
and parallelizability of swarm intelligence algorithms. And
an increasing number of teams are using swarm intelligence
optimization algorithms to optimize the performance of
classifiers. For example, there are sine cosine algorithm
(SCA) (Mirjalili, 2016), moth-flame optimization (MFO)
(Mirjalili, 2015), particle swarm optimization (PSO) (Kennedy
and Eberhart, 1995), whale optimization algorithm (WOA)
(Mirjalili and Lewis, 2016; Mirjalili et al., 2019), bat-inspired
algorithm (BA) (Yang, 2010), gray wolf optimization (GWO)
(Mirjalili et al., 2014), grasshopper optimization algorithm
(GOA) (Saremi et al., 2017), colony predation algorithm
(CPA) (Tu et al., 2021b), slime mould algorithm (SMA) (Li
et al., 2020b), hunger games search (HGS) (Yang et al., 2021),
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weighted mean of vectors (INFO) (Ahmadianfar et al., 2022),
Harris hawks optimization (HHO) (Heidari et al., 2019b),
Runge Kutta optimizer (RUN) (Ahmadianfar et al., 2021),
firefly algorithm (FA) (Yang, 2009), ant colony optimization
(ACO) (Dorigo, 1992; Dorigo and Caro, 1999), ant colony
optimization based on continuous optimization (ACOR)
(Socha and Dorigo, 2008) crow search algorithm (CSA)
(Askarzadeh, 2016), and so on. These algorithms have
also been successfully applied to several fields, such as
optimization of machine learning model (Ling Chen et al.,
2014), image segmentation (Hussien et al., 2022; Yu et al.,
2022b), medical diagnosis (Xia et al., 2022a,b), economic
emission dispatch problem (Dong et al., 2021), plant disease
recognition (Yu et al., 2022a), scheduling problems (Gao
et al., 2020; Han et al., 2021; Wang et al., 2022), practical
engineering problems (Chen et al., 2020; Yu et al., 2022c),
multi-objective problem (Hua et al., 2021; Deng et al.,
2022b), solar cell parameter Identification (Ye et al., 2021),
expensive optimization problems (Li et al., 2020a; Wu
et al., 2021a), bankruptcy prediction (Cai et al., 2019; Xu
et al., 2019), combination optimization problems (Zhao
F. et al., 2021), and feature selection (Hu et al., 2021,
2022a). However, with the development of swarm intelligence
and the times, some original heuristic algorithms have
gradually revealed their weaknesses in problem optimization,
mainly including slow convergence speed, poor convergence
accuracy, and easily falling into local optimality in certain
problems, etc. Therefore, many scholars have conducted
relevant research on original metaheuristic algorithms in
the hope that the problem-solving ability of metaheuristic
algorithms can be improved. For example, there are chaotic
BA (CBA) (Adarsh et al., 2016), boosted GWO (OBLGWO)
(Heidari et al., 2019a), modified SCA (mSCA) (Qu et al.,
2018), hybrid BA (RCBA) (Liang et al., 2018), hybridizing
GWO (HGWO) (Zhu et al., 2015), hybrid SCA and PSO
(SCAPSO) (Nenavath et al., 2018), BA based on collaborative
and dynamic Learning (CDLOBA) (Yong et al., 2018), and
GWO based on cellular automata concept (CAGWO) (Lu et al.,
2018).

Inspired by the unique feeding behavior of humpback
whales, in 2016, Mirjalili and Lewis (2016) successfully proposed
an emerging metaheuristic, named WOA, by imitating the
foraging behavior of humpback whales in their natural state,
which at the time had a strong ability to find optimal
solutions. As the field of the application continues to evolve,
the WOA algorithm’s ability to find global optimality in new
problem optimization is declining and is prone to fall into
local optimality. As a result, a wide range of research has
been carried out for WOA, and many improved variants of
WOA have been proposed. For example, there are chaotic
WOA (CWOA) (Patel et al., 2019), improved WOA (IWOA)
(Tubishat et al., 2019), enhanced associative learning-based
WOA (BMWOA) (Heidari et al., 2020), A-C parametric WOA

(ACWOA) (Elhosseini et al., 2019), lévy flight trajectory-based
WOA (LWOA) (Ling et al., 2017), improved opposition-
based WOA (OBWOA) (Abd Elaziz and Oliva, 2018), and
enhanced WOA (EWOA) (Tu et al., 2021a). Also, many
optimized variants of WOA that were proposed by relevant
research scholars have been applied to the corresponding areas
where they are suitable. For example, Adam et al. (2020)
proposed the binary WOA (bWOA) to solve user-base station
(BS) association and sub-channel assignment problems. Cao
et al. (2021) proposed a hybrid genetic WOA (HGWOA)
that optimizes purchased equipment’s production planning
and maintenance processes. El-Kenawy et al. (2020) proposed
a stochastic fractal search (SFS)-based guided WOA (SFS-
Guided WOA) and performed feature classification balancing
experiments on it based on COVID-19 images to achieve
high accuracy classification prediction of COVID-19 diseases.
Ghoneim et al. (2021) proposed an adaptive dynamic polar
rose guided WOA (AD-PRS-Guided WOA), which improved
the parameters of the classification technique in order to
improve the diagnostic accuracy of transformers. Revathi et al.
(2020) proposed a genetic WOA by combining a Genetic
algorithm (GA) and WOA that successfully overcame the data
perturbation problem in cloud computing. Zhao et al. (2022)
proposed a hybrid improved WOA and PSO (IWOA-PSO)
method and successfully applied it to optimize time jitter path
planning to reduce vibration in tandem manipulators and
improve robot efficiency.

In the current study, to make WOA better overcome the
poor convergence accuracy, easily falling into local optimality
and weak stability of WOA for clinical classification prediction,
this paper proposes a novel and more excellent variant
(COWOA) of WOA for the first time, which introduces the
orthogonal learning mechanism and the covariance matrix
strategy into the original method to improve its optimization-
seeking performance. In COWOA, the orthogonal learning
mechanism is first applied to the first half of WOA to increase
the population diversity, which is beneficial to the traversal
range of the whale population in the solution space and
ultimately improves the search ability of the population at that
stage. Then, the covariance matrix is applied to the second half
of WOA to increase the possibility of each agent jumping out
of the local optimum. Eventually, the ability to escape from the
local optimum and the convergence accuracy are successfully
improved by this method. Finally, the ability of WOA to explore
and exploit the global optimum is greatly enhanced by the
dual mechanisms. In the process of the COWOA proposal,
this paper set up inter-mechanism comparison experiments to
verify the algorithm performance of COWOA based on 30
benchmark test functions in IEEE CEC2014. To further enhance
the persuasiveness of the COWOA, the paper also compared the
COWOA with seven WOA variants, nine original algorithms,
and eight optimization variants of other algorithms. Then, this
paper combines the binary COWOA (bCOWOA) with the
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KELM to propose a prediction model for clinical diagnosis and
prediction, named the bCOWOA-KELM model. To validate
the classification performance of the bCOWOA-KELM model,
this paper conducted comparative experiments of the proposed
method and other well-known methods based on six public
datasets. In addition, to further illustrate the superiority of the
bCOWOA-KELM model. a series of classification prediction
experiments based on current hospital collected datasets were
conducted, including comparison experiments of the different
combinations of bCOWOA and six classification methods,
comparison experiments of the bCOWOA-KELM model with
five well-known classifiers and comparison experiments based
on the swarm intelligence optimization algorithm. Moreover,
the superiority of the bCOWOA-KELM model was analyzed
by four evaluation metrics, including Accuracy, Specificity,
Precision, and F-measure. Finally, this paper concluded with a
detailed medical discussion of the critical characteristics derived
from the experimental results. The main contributions of this
study are summarized below.

(1) A higher performance optimization algorithm based on the
WOA is proposed, namely COWOA.

(2) A discrete binary algorithm based on the improved
COWOA is proposed, named bCOWOA.

(3) A classification prediction model based on bCOWOA
and the KELM is proposed, named the bCOWOA-
KELM model.

(4) The bCOWOA-KELM model is successfully applied to the
classification prediction of IDH.

The rest of the paper is structured as follows. In section
“An overview of whale optimization algorithm,” the WOA
is introduced, and its basic principles are described. In
section “The proposed COWOA,” the improvement process
of the COWOA is presented. Section “The proposed
bCOWOA-KELM model” shows the proposed process of
bCOWOA-KELM. In section “Experiments results and
analysis,” we set up comparative experiments to verify the
performance of the COWOA and the bCOWOA-KELM model.
Section “Discussion” the experimental results and the clinical
application of bCOWOA-KELM. Finally, this paper concludes
the whole paper and points out future research directions in
section “Conclusion and future works.”

An overview of whale optimization
algorithm

The WOA mimics the collaborative behavior of humpback
whales during hunting in its search for optimal solutions by
driving prey and enclosing them. During the whale’s search and
catching of prey, the researchers highlight three key phases: the

prey encirclement phase, the bubble net attack phase, and the
prey finding phase.

In the surrounding prey phase, other search agents try to
perform position updates toward the current optimal position
to close to the prey. The behavior is represented by Eq. (2).

D = |C · X∗ (t)− X (t) | (1)

X (t + 1) = X∗ (t)− A · D (2)

where X∗ denotes the optimal search agent explored so far. t
is the number of iterations of the current population update.
D indicates the distance with the weight between the current
best whale position and the current whale position. A and C
are the control parameters of the formula, expressed as in Eq.
(3) and Eq. (4).

A = 2a1 · r − a1 (3)

C = 2 · r (4)

a1 = 2−
2 × FEs
MaxFEs

(5)

where r denotes a random number in the interval [0,1]
and a1 decreases gradually from 2 to 0 as the number of
evaluations increases in each iteration. FEs is the current
number of evaluations, and MaxFEs is the maximum
number of evaluations.

In the bubble net attack phase, also known as the
exploitation phase of the WOA, a total of two whale bubble
behaviors are involved, including the enveloping contracting
behavior and the spiral updating position. It finds the optimum
within a specific range by mimicking how humpback whales
attack their prey. When |A| < 1, the whales develop a
constricting envelope around the prey in the enveloping
contracting phase, the essence of the principle is the same as the
behavior in the enveloping prey phase, as shown in Eq. (6).

X (t + 1) = X∗ (t)− A · D (6)

The distance among the whale location and the food
location is first computed in the spiral improvement was made,
and then a spiral equation is established between the whale and
target positions to simulate the spiral motion of the humpback
whale, as illustrated in Eq. (7) and Eq. (8).

D′ = |X∗ (t)− X (t) | (7)

X (t + 1) = D′ · ebl
· cos

(
2πl

)
+ X∗ (t) (8)

where D
′

indicates the distance between the current best and
current whale positions. b is a constant that can determine the
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shape of the logarithmic spiral in the mathematical model, and
it is set to 1 in the experiment. l is a random number between
the interval [−2,1] that is used to control the shape of the spiral
when the whale attacks the target, as shown in Eq. (9).

l = (a2 − 1) · rand + 1 (9)

a2 = − 1−
FEs

MaxFEs
(10)

where rand is a random number taking values in the
interval [0,1], and a2 decreases linearly with the number of
evaluations in [−2,−1].

In order to ensure the good performance of the whale
algorithm, the two update mechanisms are balanced and
controlled in the actual model by artificially introducing a
random parameter p on the interval [0,1] so that both location
update strategies have a 50% probability of being executed. In
summary, the complete development model for the attack phase
of the bubble network is shown in Eq. (11).

X(t + 1) =

{
X∗(t)− A · D, if p < 0.5
D′ · ebl

· cos (2πr)+X∗(t), if p ≥ 0.5
(11)

In the prey finding phase, also known as the exploration
phase of the WOA model. In this process, the whale’s position
update approach is designed by referring to the position of
an arbitrarily selected individual in the whale population.
Furthermore, the introduction of random whale individuals
increases the diversity of individuals in the population to a
certain extent, giving the whales the possibility to jump out
of the local optimum to find the optimum. At the same time,
parameter A is introduced into the process control phase, whose
absolute magnitude controls the selection of the whale’s position
in the optimization phase.

When |A| = 1, the whale’s feeding process enters the prey-
seeking phase. Based on the working principles described above,
the behaviors of the whale searching for prey during this phase
can be defined by Eq. (12) and Eq. (13).

D′′ = |C · (t)− X (t) | (12)

X (t + 1) = Xrand (t)− A · D′′ (13)

where Xrand(t) indicates the position of a random individual in
the current population. X(t) Indicates the location of individuals
in the current population of whales. D′′ denotes the distance of
a random individual whale from the current individual whale
under the effect of parameter C. C is a random number on
the interval [0,2].

Based on the above, the following paper will give the
flowchart and the pseudo-code of the traditional WOA, as
shown in Figure 1 and Algorithm 1, respectively.

Input: The fitness function F(x),

maximum evaluation number (MaxFEs),
population size (N), dimension (dim)

Output: The best Whale (Leader_pos)
Initialize a population of random

whales X
Initialize position vector and score

for the leader: Leader_pos, Leader_score
Initialize the parameters: FEs, t;

While (FEs < MaxFEs)
For i = 1: size(X,1)

Return back the search agents that

go beyond the boundaries of the search

space

Calculate objective function for

each search agent

FEs = FEs + 1

Update Leader_pos
End for
For i = 1: size(X,1)

Updates the parameters of WOA

Position update of population

individuals using the population update

mechanism of WOA

End for
t=t+1

End while

Return Leader_pos

Algorithm 1. Pseudocode for the traditional WOA.

In summary, it is easy to find that the complexity of the
WOA is mainly determined by the initializations, updating
the population position, updating the weights, and the fitness
value calculation. As the time spent by the algorithm is closely
related to the specific problem to be solved, the following
analysis will focus on the complexity of the WOA in the
following aspects, mainly including initializing the population
O(N ∗ D), updating the population position O(N ∗ D ∗ T),
updating the weights O(N ∗ T) and calculating the fitness value
O(N ∗ T). Therefore, the time complexity of the WOA can be
derived as O(((2+ D) ∗ T + D) ∗ N) by combining the above
time complexity analysis. T denotes the maximum number of
evaluations and can be derived from the maximum number of
iterations. N denotes the number of individuals in the whale
population, and D denotes the number of dimensions of the
individual whales.

The proposed COWOA

WOA is one of the more popular population-based
metaheuristic optimization algorithms that has been used to
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FIGURE 1

Flowchart of the traditional WOA.

solve continuity problems and has achieved significant results
in real-world problems. However, the convergence accuracy and
convergence speed of the original WOA are not satisfactory,
and it tends to fall into local optima. Due to the above two
shortcomings of the original WOA, this paper applies the
covariance matrix strategy (CMS) and orthogonal learning
mechanism (OLM) to WOA, which not only improves the
convergence speed and convergence accuracy of the WOA
but also enhances its ability to escape from local optima.
In this section, we will go into more detail about the
optimization process of the COWOA and the two optimization
methods of CMS and OLM.

Covariance matrix strategy

In the original WOA, its guidance of individuals of the whale
population in the search for the best focuses on the local area
near the best individuals. However, it ignores the possibility of
whales finding the best solution near those random individuals,
resulting in the original WOA being very susceptible to falling
into local optimization. Similarly, when the stochastic parameter
p < 0.5, the attenuation parameter a1 controls the exploration
and exploitation of the whale population by influencing the
absolute value of the key factor A. If |A| = 1, the algorithm
enters the exploration phase. However, as the number of
evaluations increases, a1 decreases linearly from 2 to 0, while
the absolute value of |A| also gradually decays non-linearly and

randomly from 2 to 0. After the number of evaluations increases
to a certain level, there is no longer a possibility that |A| is greater
than 1, so the original WOA cannot find the global optimum
at the late stage of each exploration phase. Therefore, this
study addresses these shortcomings by introducing a covariance
matrix strategy (CMS) (Beyer and Schwefel, 2002; Hu et al.,
2021) into the original WOA, allowing WOA to escape from
local optima. It works in three main phases, including the
sampling phase, the selection and reorganization phase, and the
location update phase. Each of them will be described below.

In the sampling phase, the CMS selects a random individual
in the whale population and then uses a normal distribution
to generate a new population in its vicinity centered on that
individual. The process works as shown in Eq. (14).

X (t + 1) ∼ m (t)+ σ (t) ∗ N(0, C (t)) (14)

where X (t + 1) denotes the new population generated based on
the random solution, and t denotes the number of iterations
of the population in the evolutionary process. m denotes
the random solution selected in the whale population during
the iteration and is the central individual that generates the
next generation population. σ represents the step size of each
move. N denotes the multinomial normal distribution, and
C denotes the covariance matrix applied in this operation, as
shown in Eq. (16).

In the selection and recombination phase, some
representative individuals will be selected from the optimal

Frontiers in Neuroinformatics 07 frontiersin.org

https://doi.org/10.3389/fninf.2022.956423
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-16-956423 October 25, 2022 Time: 16:34 # 8

Li et al. 10.3389/fninf.2022.956423

FIGURE 2

Flowchart of the COWOA.

set of the best individuals obtained after each update and
the selected individuals will be recombined to generate a
subpopulation relative to the overall population. The formula is
shown in Eq. (15).

m (t + 1) =

µ∑
i = 1

ωi ∗ Xi(t + 1) (15)

where m (t + 1) denotes the central individual of the new
population generated for the next iteration, whose position is
progressively closer to the optimal solution of the population.
Xi denotes the ith population individual selected during the
iteration. µ denotes the size of the subpopulation. ωidenotes the
adaptive weights of the corresponding population individuals,
and ω1+ω1+ω3+ · · ·+ωµ = 1.

In the position update phase, this process involves two
main update methods, named the Rank− u− update update
model and the Rank− 1− update update model, respectively,
which guide the individuals of the entire population in the
global level search for superiority by updating the covariance

matrix of the population. As shown, respectively, in Eq. (16), Eq.
(17) and Eq. (18).

C (t + 1) =
(
1− c1 − cµ

)
· C (t)+ R1 + Ru (16)

R1 = c1 · Pc (t + 1) · (Pc (t + 1))T (17)

Ru = cµ ·

µ∑
i = 1

ωi · Yi (t + 1) · (Yi (t + 1))T (18)

Yi (t + 1) =
(Xi (t + 1)−m (t))

σ(t)
(19)

In the above equation, R1 denotes the Rank− 1− update
update mode, Ru denotes the Rank− u− update update mode,
and c1 and cµ denote the learning rates of the two update
modes, respectively, which are calculated as shown in Eq.
(20) and Eq. (21).

c1 =
2

D2 (20)
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FIGURE 3

Flowchart of the bCOWOA-KELM model.

cµ ≈ min(
µeff

D2 , 1− c1) (21)

where µeff represents a choice set subject to variance, whose
mathematical model is shown in Eq. (22)

µeff =

(
µ∑

i = 1

ωi
2

)−1

(22)

During the work of the mechanism, Pc represents how
the matrix evolves when the CMS mechanism functions
in the search for an advantage, and its update process is
shown in Eq. (23).

Pc (t + 1) = (1− c1) ∗ Pc (t)+√
cc ∗ (2− cc) ∗ µeff

[
m (t + 1)−m(t)

σ(t)

]
(23)

In the above equation, cc denotes the learning rate of Pc; σ is
the step parameter in matrix evolution. The initial value of σ is
Sbest/S in which Sbest is the variance of the global best individual
in each dimension relative to the population mean position and
S is the sum of the variances of each individual in the population

in each dimension relative to the population mean position. Its
updating process is shown in Eq. (24).

σ (t + 1) = exp
(

cσ

dσ

(
||Pσ(t + 1)||

E ||N(0, I)||
− 1

))
∗ σ(t) (24)

where E(·) is the mathematical expectation function; I is a unit
matrix used to calculate the step size. cσ is the learning rate
of σ; dσ is the way of the step size that is updated for the
damping coefficient. The initial value of Pσ is equal to 0 and is
an evolutionary way of the step size, whose mathematical model
is shown in Eq. (25).

Pσ (t + 1) = (1− cc) ∗ Pσ (t)+

√
cc ∗ (2− cc) ∗ µeff ∗ C (t)−

1
2 ∗

[
m (t + 1)−m (t)

σ (t)

]
(25)

Orthogonal learning mechanism

Under the experimental conditions set by the original WOA,
the optimal whale search agent in the population was prone to
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fall into a local optimum (LO) in guiding other group members
in the process of finding and apprehending prey, which greatly
affected the ability of the whale population to explore and exploit
the global optimum (GO). In this paper, an orthogonal learning
mechanism (OLM)(Kadavy et al., 2020; Hu et al., 2021) is used
to guide the population in a direction closer to the optimal
solution by constructing a bootstrap vector after the original
whale optimization mechanism, which to some extent improves
the convergence speed and the ability of the WOA to explore the
optimal solution in the early stages throughout the experiment.
The OLM utilized in this experiment is described in the section
below.

First, we will locate a guided individual. To better apply the
advantages of OLM to the renewal process of whale populations,
this study used three randomly selected whale individuals
from the original whale population to locate a theoretically
relatively better superior whale for the OLM to update the whale
population. The expression is shown in Eq. (26).

Xleader = Xk1 + rand(1, dim) · (Xk2 − Xk3) (26)

where Xleader represents the guide whale positioned by random
individuals Xk1 ,Xk2 andXk3 represent the three selected random
whales, respectively.

Then, this study introduces the OLM to the WOA and
combines it with the acquisition of individual guided whales
for guided updating of whale populations. At the same time,
to better exploit the advantages of the OLM for exploring
whale populations, this study carried out random grouping and
hierarchical construction of whale populations and individuals,
respectively. We will describe the OLM below; the details can be
found in Ref. (Hu et al., 2021).

In order to make full use of each dimension in the individual
whale and to better exploit its strengths, this experiment
constructed Q levels for each dimension. The working model is
shown in Eq. (27).

Levelq = Xi,d +
q− 1
Q− 1

(
Xj,d − Xi,d

)
, q = 1, 2, . . . , Q (27)

where q denotes the level at which the corresponding dimension
is located in the hierarchy construction process.

In each round of experiments, we will obtain the
corresponding candidate solutions and then compare
each candidate solution’s evaluated values, allowing us to
select the best experimental combination solution among
many candidates as the current best prediction solution. As
shown in Eq. (28).

4i,j =

(
Q
M

)∑
Zi,j

fiti (28)

where fitidenotes the evaluation value corresponding to each
orthogonal combination solution generated by OLM; 4i,j is

the average evaluation value obtained for each influence factor
at each level; Z denotes the prediction solution obtained;
M denotes the number of prediction solutions. Finally, we
select the experimental combination solution having the lowest
average evaluation value as the best prediction solution by
comparing the evaluation value of each candidate solution at
different dimensions and levels.

Implementation of COWOA

In this section, the optimization process of COWOA is
given based on the above two optimization strategies for the
first time. As shown in Algorithm 2, this table describes the
overall framework of the COWOA proposed in this paper
with pseudo-code. As shown in Figure 2, this chart shows the
overall workflow of the COWOA with flowcharts. The COWOA
proposed in this paper largely compensates for the shortcomings
of exploring and exploiting better solutions for the original
WOA. In the first half of the whole experimental process, the
exploration ability of the original algorithm is increased by
introducing the OLM, which improves the convergence ability
of WOA in the early part of the experiment to a certain extent.
In the second half of the experimental process, the CMS was
introduced to make the original WOA more likely to jump out
of the local optimum, greatly improving the population’s search
ability and convergence accuracy.

Based on the improvement process and overall workflow
of the COWOA, we can find that the initializations mainly
determine the complexity of the COWOA, population position
update, fitness value calculation, sorting, and the introduction
of the OLM and the CMS in WOA together. As the time spent
by the algorithm is closely related to the specific problem to be
solved, the following analysis will focus on the complexity of
COWOA in the following aspects, mainly including initializing
the population O(N ∗ D), updating the weights O(N ∗ T),
sorting O(N ∗ logN ∗ T), whale position update O(N ∗ D ∗
T/2), CMS update O(N ∗ T/2) and OLM update O(N ∗ (M ∗
D+M ∗ K)T/2). Therefore, the time complexity of the
COWOA can be derived as O(N ∗ T ∗ (logN + (M ∗ D+M ∗
K)+ 2)+ N ∗ D) by combining the above time complexity
analysis. T denotes the maximum number of evaluations and
can be derived from the maximum number of iterations. N
denotes the number of individuals in the whale population, and
D denotes the number of dimensions of the individual whales.

The proposed bCOWOA-KELM
model

Binary transformation method

It is well known that the WOA is an excellent algorithm
proposed for solving continuous problems. Similarly, the
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COWOA, an improved variant of the WOA proposed in
this paper, is also oriented toward continuous problems.
However, the core experiments in this paper require a discrete
classification technique for feature selection, so the COWOA
cannot be applied directly to the feature selection experiments.
Therefore, a discrete binary version of the COWOA is proposed,
named bCOWOA. The discrete process of the COWOA is
described below.

Input: The fitness function F(x),
maximum evaluation number (MaxFEs),
population size (N), dimension (dim)
Output: The best Whale (Leader_pos)
Initialize a population of random

whales X
Initialize position vector and score

for the leader: Leader_pos, Leader_score
Initialize the parameters FEs, t, Q, F,

flag, alpha_no
While (FEs < MaxFEs)
For i = 1: size(X,1)
Return back the search agents that

go beyond the boundaries of the search

space
Calculate the objective function for

each search agent
FEs = FEs + 1
Update Leader_pos
Update parameters: flag, alpha_no
End for
If (FEs < MaxFEs/2)
Updating the optimization parameters

of the WOA
For i = 1: size(X,1)
Updating the optimization parameters

of the WOA
Updating individual whale

populations based on the original WOA

update mechanism and calculate the

assessment value of each individual
Locating an individual based on

three random individuals
Obtain variant individuals using the

OLM
End for
Else
Updating the population of

individuals using the CMS
End if
t=t+ 1

End while
Return Leader_pos

Algorithm 2. The pseudocode for the COWOA.

1) Based on the knowledge of discretization techniques, we
can quickly determine that the solution domain of a
discretization problem is [0,1].

2) As shown in Eq. (29), the bCOWOA is required to convert
the searched solution to 0 or 1 by means of the S-shaped
transformation function during the experiment.

Xd (t + 1) =

{
1, sigmoid(Xd (t)) ≥ r
0, otherwise

(29)

where r is a random number in the interval [0,1].
Xd (t + 1) denotes a new solution obtained after the binary
solution update. 1 indicates that the feature is selected, and 0
indicates that the feature is not selected. And the sigmoid(·)

denotes the S-type transformation function used for the
Xd (t) position update, as shown in Eq. (30).

sigmoid (x) =
1

1+ e−x/3 (30)

where x denotes the solution generated during the
process of the COWOA.

Kernel extreme learning machine

The KELM (Tian et al., 2019; Zhang et al., 2020; Zou et al.,
2020; Chen H. et al., 2021; Wang and Wang, 2021) is an
improved technology based on the Extreme Learning Machine
(ELM) combined with a kernel function, which improves the
predictive performance of the model while retaining the benefits
of the ELM and is a single hidden feedforward neural network
with a three-layer independent layer structure, including the
input layer, the output layer, and the implicit layer. For a training
set with N samples: S = (xj, tj) ∈ Rn × Rm, its target learning
function model F(x) can be expressed in Eq. (31).

F (xi) =

L∑
i = 1

βif (ωixj + bi) = tj, j = 1, 2, 3, . . . , N (31)

where xj denotes the jth input vector. ωi denotes the ith
random input weight of the input vector. β denotes the ith
output weight. f

(
ωixj + bi

)
denotes the activation function of

the model. tj denotes the corresponding output expectation.
Following the requirement of scientific research on the principle
of simplicity and rigorousness of formulas, Eq. (31) can be
rewritten as Eq. (32).

TN = HNβN (32)

In the above equation,
TN = [t1, t2, t3, . . . , tN ]

T, βN = [β1, β2, β3, . . . , βN ]
T,

HN is a pre-feedback network matrix consisting of ∗N f (·).
According to the above equation, the functional model of the
output weights can be represented by Eq. (33).

βN = HT
N

(
HN HT

N

)−1
TN (33)
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A regularization factor C and a unit matrix I can be
incorporated to boost the neural network’s reliability, and the
least squares result for the final weights is presented in Eq. (34).

βN = HT
N

(
HN HT

N +
I
C

)−1
TN (34)

Based on the ELM, the kernel function model is introduced
to obtain the KELM whose function model is shown in Eq. (35).

Y(x) =


K (x, x1)

...

K (x, xN)


T(

�ELM +
I
C

)−1
T (35)

�ELM
(
i, j
)
= HHT

= h (xt) ∗ h
(
xj
)
= K

(
xi, xj

)
(36)

K
(
xi, xj

)
= exp

(
−
||xi − xj||

2

γ2

)
(37)

where �ELM denotes a kernel matrix consisting of kernel
functions. K

(
xi, xj

)
denotes the kernel functions introduced in

the ELM. where xi and xj denote the input vectors of the sample
training set and γ is the parameter in the kernel function.

Implementation of the
bCOWOA-KELM model

This section proposes a novel and efficient model based on
the bCOWOA and the KELM for feature selection experiments,
named the bCOWOA-KELM model. The model is mainly
used to select key features from the dataset. The core
model construction method is the optimal solution found by
the bCOWOA, and then the optimal solution is extracted by
the KELM classifier for secondary classification to improve the
classification efficiency and accuracy of the model. In this model,
we evaluate the quality of the solution vectors obtained by the
bCOWOA through Eq. (38) (Chen et al., 2012, 2013; Hu et al.,
2022b,c; Yang et al., 2022a), and use this evaluation as the basis
for selecting the optimal solution vector, which is also a key step
in the whole feature selection experiment.

Fitness = α · error + β ·
|R|
|D|

(38)

where error is the error rate of the classifier model. D is the
dimensionality of the dataset and also represents the number of
attributes of the datasets. R represents the number of attributes
in the subset obtained from the experiment. α is a key parameter
used to evaluate the classification and represents the weight for
calculating the importance of the error rate. β denotes the length
of the selected features. In this paper, α = 0.99 and β = 0.01.

In summary, we can obtain the bCOWOA-KELM model
by combining the proposed bCOWOA with the KELM in this
paper, and its workflow is shown in Figure 3.

Experiment results and analysis

The purpose of setting up this section is to verify the
comprehensive performance of the COWOA and to enhance
the persuasiveness of the method proposed in this paper
through the analysis results of the experimental data, which
mainly include the comparison experiments of the benchmark
functions and the classification prediction experiments of the
dataset, with two main categories of experimental content.
Assessment of computational tasks is a decisive stage that
needs benchmarks, available data, and suitable metrics for a
valid comparison (Cao Z. et al., 2022; Liu et al., 2022b,d).
The evaluation criteria involved include the average value
and variance of the relevant experimental data and Accuracy,
Specificity, F-measure, and Precision used in the classification
prediction experiments. In the benchmark experiment section,
the COWOA is compared with the two single-strategy WOA
variants and the original WOA, respectively, to demonstrate
the better convergence performance of WOA under the dual-
strategy effect. To further test the convergence performance
of the COWOA, this section also sets up three comparison
experiments based on the 30 functions of IEEE CEC2014 so
that the COWOA is experimentally compared with seven WOA
variants, nine original algorithms, and eight optimized variants
of other algorithms, respectively. In the feature selection
section, to validate the classification predictive power of the
bCOWOA-KELM model and its effectiveness and scalability, the
experiments are conducted based on six UCI public datasets and
one medical dataset (HD dataset), respectively. Please see below
for details of the experiments.

Benchmark function validation

This section mainly aims to verify the experimental
performance of the COWOA proposed in this paper from
several aspects, thus providing the basis for the next step of
validating the bCOWOA-KELM classification prediction model
proposed in this paper.

Experiment setup
This section focuses on the basic performance testing of the

COWOA proposed in this paper in four aspects, including the
comparison between the COWOA optimization mechanisms,
the comparison between the COWOA and nine original
algorithms, the comparison between the COWOA and seven
WOA optimization variants, and the comparison between the
COWOA and eight optimization variants of other algorithms.
Specific details of the 30 benchmarking functions of IEEE
CEC2014 are given in Table 1. The parameters of the involved
algorithm are as shown in Table 2 in all function experiments
(Table 3).
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TABLE 1 Description of the 30 benchmark functions.

Class No. Functions F∗i = Fi(x∗)

Unimodal functions 1 Rotated high conditioned elliptic function 100

2 Rotated bent cigar function 200

3 Rotated discus function 300

Simple multimodal functions 4 Shifted and rotated Rosenbrock’s function 400

5 Shifted and rotated Ackley’s function 500

6 Shifted and rotated Weierstrass function 600

7 Shifted and rotated Griewank’s function 700

8 Shifted Rastrigin’s Function 800

9 Shifted and rotated Rastrigin’s Function 900

10 Shifted Schwefel’s Function 1,000

11 Shifted and Rotated Schwefel’s Function 1,100

12 Shifted and rotated Katsuura function 1,200

13 Shifted and rotated HappyCat function 1,300

14 Shifted and rotated HGBat function 1,400

15 Shifted and rotated expanded Griewank’s plus Rosenbrock’s function 1,500

16 Shifted and rotated expanded Scaffer’s F6 function 1,600

Hybrid functions 17 Hybrid function 1 (N = 3) 1,700

18 Hybrid function 2 (N = 3) 1,800

19 Hybrid function 3 (N = 4) 1,900

20 Hybrid function 4 (N = 4) 2,000

21 Hybrid function 5 (N = 5) 2,100

22 Hybrid function 6 (N = 5) 2,200

Composition functions 23 Composition function 1 (N = 5) 2,300

24 Composition function 2 (N = 3) 2,400

25 Composition function 3 (N = 3) 2,500

26 Composition function 4 (N = 5) 2,600

27 Composition function 5 (N = 5) 2,700

28 Composition function 6 (N = 5) 2,800

29 Composition function 7 (N = 3) 2,900

30 Composition function 8 (N = 3) 3,000

For the experimental data, we use the experimentally
derived average value (AVG) to reflect the performance of
the corresponding algorithm, and the lower the mean value
indicates, the more outstanding performance of the algorithm;
we use the variance (STG) to reflect the stability of the
algorithm, and the lower the variance indicates the relatively
more stable performance of the algorithm. Also, in order
to further discuss the comprehensive performance of all the
algorithms participating in the comparison experiments, the
Wilcoxon signed-rank test (García et al., 2010) and Friedman
test (García et al., 2010) were also used to analyze the
experimental results, and in the paper, respectively, are given
in the form of tables and bar charts. In the results of the
Wilcoxon signed rank test, “+” in the corresponding table given
below indicates that COWOA performs better overall than
the other algorithms, “ = ” indicates that it performs almost
exactly the same as the other algorithms, and “-” indicates
that it performs relatively worse than the other algorithms.

Finally, in order to visually discuss the convergence ability
of the algorithms and the ability to escape local optima, the
partial convergence images of the algorithms are also given in
the paper.

We have recommendations in other papers for fair empirical
comparison between two or more optimization methods,
which demand assigning the same computational resources
per approach (Li et al., 2017; Chen J. et al., 2021; Liu K.
et al., 2021; Zheng et al., 2022). To ensure the fairness of
the external factors, we unified all the experiments based on
functions in this section in the same environment, with the
parameters of the specific experimental environment, as shown
in Table 4.

Impacts of components
This section discusses the proposed process of COWOA,

with the main purpose of providing a minimum practical
basis for the COWOA proposed in this paper; it also
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TABLE 2 Description of the parameters in involved algorithms.

Class Algorithms Parameters

WOA variants COWOA F = 4;Q = 3; a1 = [2, 0] ; a2 = [−2,−1] ; b = 1

ACWOA a1 = [2, 1] ; a2 = [−2,−1] ;w = [0.5, 1] ; b = 1

IWOA a1 = [2, 0] ; a2 = [−2,−1] ; b = 1; crossover = 0.1

BMWOA a1 = [2, 0] ; a2 = [−2,−1] ; b = 1; bw = 0.001;Beta = 0.1

LWOA a1 = [2, 0] ; a2 = [−2,−1] ; b = 1

EWOA wMax = 0.7;wMin = 0.2; a = [2, 0] ;

CWOA cindex = 5; a1 = [2, 0] ; a2 = [−2,−1] ; b = 1

OBWOA a1 = [2, 0] ; a2 = [−2,−1] ; b = 1

Basic algorithms WOA a1 = [2, 0] ; a2 = [−2,−1] ; b = 1

SCA r1 = [2, 0]

GWO a = [2, 0]

MFO a = 2; b = 1

GOA cMax = 0.1; cMin = 0.00004

BA Qmin = 0;Qmax = 2

PSO Vmax = 6; c1 = 2; c2 = 2

CSA AP = 0.1; f1 = 2

FA alpha = 0.5; betamin = 0.2; gamma = 1

ACOR k = 10; q = 0.5; ibslo = 1

Advanced peers SCAPSO M = 4;N = 9; c1 = 2; c2 = 2; a = 2

RCBA Qmin = 0;Qmax = 2; u = [0, 1] ; p = [0, 1]

CBA Qmin = 0;Qmax = 2

HGWO betamax = 0.8; betamin = 0.2;Cossover = 0.2; a = [2, 0]

OBLGWO a1 = [2, 0] ; a2 = [−2,−1] ; b = 1; beta = [2, 0]

mSCA JR = 0.1;a = 2;r1 = [2, 0]

CDLOBA Qmin = 0;Qmax = 2

CAGWO type = 2; a = [2, 0]

In addition, when conducting the experimental setup of the baseline functions, we unified some necessary experimental parameters to avoid the influence of internal factors of the
experiments, as shown in Table 3.

explores the impact of the CMS and the OLM on the
WOA during the experimental process and the advantages
that the COWOA exhibits in the experiments, such as
the superior convergence speed compared to the WOA.
Therefore, this subsection sets up a comparison experiment
between the COWOA and the CMS-based WOA variant
(CMWOA), the OLM-based WOA variant (OWOA), and the
original WOA based on the 30 benchmark test functions
in IEEE CEC2014.

According to Supplementary Table 1, it is easy to see
that among the 30 benchmark function test experiments, the
COWOA is relatively more prominent in terms of the number
of times it has a smaller mean and variance performance
compared to the other three algorithms. Among them, the
more the mean value of COWOA, it means that COWOA
has more vital exploration and exploitation ability on the
optimal problem and also means that it is easier to get
a better solution; the more the number of times to get
smaller mean value means that COWOA is more adaptable
on the optimization problem. In addition, we can see that
the variance of the COWOA is relatively small, and the

number of performances is relatively high, which indicates
that the COWOA proposed in this paper is relatively more
stable on the preliminary benchmark function test. Therefore,
we can conclude that the comprehensive performance of
the COWOA is better when the benchmark functions are
optimized using COWOA, CMWOA, OWOA, and WOA,
which also tentatively indicates that the COWOA has the
prerequisites to be proposed.

To further demonstrate the performance of the COWOA
and to enhance the persuasiveness of the COWOA proposed
in this paper, two more intuitive statistical methods, the
Wilcoxon signed-rank test, and the Freedman test, are
used below to analyze and evaluate the experimental
data. Table 5 shows the results of the Wilcoxon signed-
rank test, where the second column of Table 5 gives the
comparative details of the experiments, from which we can
see that the COWOA proposed in this paper is superior
to the original WOA in as many as 25 out of 30 basis
functions, with one having similar performance and only
four being relatively poor, which also shows that there
is still room for improvement in the COWOA, but does
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TABLE 3 Parameter setting of the experiment.

Parameter name Value

The population size 30

Random tests number 30

Objective function dimensions 30

The upper boundary of the search space 100

The lower boundary of the search space -100

Maximum evaluations number 300,000

TABLE 4 Description of the experimental environment.

Equipment
specifications

Specification parameters

System version Windows 11 Professional Edition

System type 64-bit operating systems, x64-based processors

Processor 11th Gen Intel(R) Core (TM) i7-11700 @ 2.50GHz 2.50
GHz

RAM on the
machine

32.0 GB

Operating
equipment

Matlab2021b

TABLE 5 Results of Wilcoxon signed-rank test.

Algorithm +/-/ = Mean-level Rank

COWOA ∼ 1.73 1

CMWOA 11/0/19 2.13 2

OWOA 16/2/12 2.53 3

WOA 25/1/4 3.50 4

not negate the fact that the COWOA is superior to the
original WOA. Similarly, we can see that the COWOA also
outperforms the CMWOA and OWOA. Also, the table
gives the Wilcoxon ranking, and COWOA is ranked first in
the comparison.

Table 6 gives the P-values obtained for this experiment
based on the Wilcoxon signed-rank test, and the bolded
parts in the table represent the results of experiments
with P-values less than 0.05. By looking at the P-values, it
can be seen that only a few values are greater than 0.05,
which indicates that the COWOA exhibits much better
performance than the single mechanism improvement
variant and the original WOA in this comparison
experiment.

Figure 4 Shows the Friedman ranking results of this
improvement experiment, from which it can be more intuitively
seen that the COWOA can obtain a smaller Friedman
average than the other three comparative algorithms in the
improvement process under the dual effect of CMS and OLM,

TABLE 6 P-values of COWOA on the Wilcoxon test.

Functions CMWOA OWOA WOA

P-value P-value P-value

F1 3.93334E-01 1.73440E-06 1.73440E-06

F2 1.00000E+00 1.73440E-06 1.73440E-06

F3 1.00000E+00 1.73440E-06 1.73440E-06

F4 2.95878E-01 1.73440E-06 1.73440E-06

F5 6.26828E-02 1.73440E-06 1.73440E-06

F6 3.51524E-06 7.81264E-01 3.18168E-06

F7 1.95408E-04 1.73440E-06 1.73440E-06

F8 1.73440E-06 5.79245E-05 1.73440E-06

F9 5.21649E-06 7.03564E-01 5.30699E-05

F10 1.73440E-06 1.65027E-01 1.73440E-06

F11 6.83586E-03 1.83258E-03 1.02463E-05

F12 8.97178E-02 1.73440E-06 1.73440E-06

F13 1.84622E-01 4.52807E-01 4.71617E-02

F14 4.40522E-01 6.58331E-01 2.98944E-01

F15 2.35342E-06 2.70292E-02 2.12664E-06

F16 4.38962E-03 3.28571E-01 2.18267E-02

F17 1.52861E-01 1.73440E-06 1.73440E-06

F18 9.42611E-01 1.73440E-06 1.73440E-06

F19 8.58958E-02 4.86026E-05 1.49356E-05

F20 5.99936E-01 1.73440E-06 1.73440E-06

F21 2.80214E-01 1.73440E-06 1.73440E-06

F22 3.87230E-02 1.52861E-01 4.71617E-02

F23 1.00000E+00 1.73440E-06 3.11232E-05

F24 2.53644E-01 1.11380E-03 3.58884E-04

F25 1.16130E-01 1.58855E-01 4.28430E-01

F26 9.36756E-02 7.52133E-02 3.82034E-01

F27 1.24526E-02 5.30440E-01 7.52133E-02

F28 2.30381E-02 1.92092E-06 3.06500E-04

F29 3.82034E-01 2.80214E-01 1.73440E-06

F30 1.20445E-01 8.29013E-01 1.73440E-06

which indicates that the COWOA is ranked first in this test
method. Therefore, we can tentatively determine that the
performance of the COWOA is optimal in this improvement
experiment.

Figure 5 gives some of the convergence curves of the four
algorithms in the process of finding the optimal solution. The
30 benchmark test functions used in the experiments are divided
into four categories: unimodal, simple multimodal, hybrid, and
combinatorial functions. Therefore, in order to highlight the
performance of the COWOA, we selected the convergence plots
so that Figure 5 covers these four categories. It is relatively
intuitive to see from the plots that the convergence ability
of COWOA on functions F10, F11, and F16 performs very
well relative to the other three algorithms. Their convergence
curves explore the relatively optimal solutions early in the pre-
convergence period, indicating that the COWOA also runs
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FIGURE 4

Results of Friedman ranking between the COWOA optimization mechanisms.

the risk of being unable to escape from the local optimum in
some problems. However, the convergence ability it possesses
in this experiment is also unmatched by the WOA and cannot
be compared. On functions F1, F2, F12, and F17, the shapes
of the convergence curves of the COWOA and the CMWOA
are extremely similar, but in terms of the final convergence
accuracy, except for the equal convergence accuracy on function
F2, COWOA is superior; in addition, we can also see that
the convergence curve of COWOA reaches a relatively better
time earlier than that of CMWOA, which indicates that the
COWOA has been strengthened after the introduction of
the OLM based on the CMWOA. Not only the convergence
accuracy has been improved, but also the convergence speed
has been significantly enhanced. The convergence curves of
COWOA on functions F1, F2, F11, F12, F16, and F17 all have
inflection points in the middle and early stages of the whole
experiment, which indicates that the optimization algorithm can
escape the local optimum at that stage. In summary, through
the comparative experiments and analysis of COWOA with
CMWOA, OWOA, and WOA, we can conclude that COWOA
is an excellent optimized swarm intelligence algorithm among
the improved WOA variants under different combinations of
the two optimization methods.

Balance analysis experiment
The balance analysis results are given in Figure 6

based on partial benchmark functions. The balance analysis
results of COWOA are shown in Figure 6A. The balance
analysis results of CMWOA are shown in Figure 6B.
The balance analysis results of OWOA are shown in
Figure 6C. The balance analysis results of WOA are shown
in Figure 6D. Finally, Figure 6E gives the convergence
curves obtained by the above four algorithms for the
corresponding benchmark function experiments. According
to the equilibrium analysis results shown in Figure 6,
it can be seen from the functions F6, F12, F17, and
F19 that the CMS can enhance the exploration ability

of WOA to a certain extent. The OLM improves the
development ability of WOA. Combining the results of the
equilibrium analysis and the corresponding convergence curves,
it can be easily seen that the combination of CMS and
OLM can make COWOA reach a better balance point in
exploration and exploitation, so that COWOA can obtain
better convergence accuracy and convergence speed than
CMWOA, OWOA, and WOA in the benchmark function
experiments.

Comparison with whale optimization algorithm
variants

In this subsection, to demonstrate that the COWOA still
has outstanding optimization performance in the improved
WOA variants and to further enhance the persuasiveness of the
COWOA proposed in this paper, seven optimization variants of
WOA were purposely selected for comparative experiments and
results analysis on 30 benchmark functions. There are CWOA
(Patel et al., 2019), IWOA (Tubishat et al., 2019), BMWOA
(Heidari et al., 2020), ACWOA (Elhosseini et al., 2019), LWOA
(Ling et al., 2017), OBWOA (Abd Elaziz and Oliva, 2018), and
EWOA (Tu et al., 2021a). In Supplementary Table 2 shows the
AVG and STD of the eight improvement variants of the WOA,
including the COWOA, obtained in this experiment. By looking
at the table, we can see that the COWOA obtains not only the
relatively smallest mean value but also the variance on 13 of the
30 benchmark functions, such as functions F1, F2, F3, F4, F5,
F7, F17, F18, F19, F20, F21, F29, and F30. This indicates that the
COWOA is able to obtain not only relatively optimal solutions,
but also possesses a stability that is difficult to match with the
other seven WOA optimization variants. Based on the table of
30 benchmark functions in the experimental setup section, we
can find that the 13 listed optimization problems cover the four
categories of benchmark functions in the table, which indicates
that the COWOA is still more adaptable among the participating
WOA variants. In summary, we can conclude that the COWOA
is an improved variant of WOA that performs well.
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FIGURE 5

Convergence curves of COWOA performance tests.

In order to further verify the excellent performance of the
COWOA, two test results that are statistically significant are
presented next, which are the results of the Wilcoxon signed-
rank test and the results of Friedman ranking, as shown in
Table 7 and Figure 7, respectively. As can be seen from Table 7,
the COWOA has a significant average ranking advantage and
the final Wilcoxon signed-rank test ranks first among the
algorithms involved in the comparison; the second column of
Table 7 gives the strengths and weaknesses of the COWOA
relative to the other WOA variants in the Wilcoxon signed-rank
test. Although the relative strengths and weaknesses are mixed,
the final results show that the COWOA is relatively the best.

Table 8 gives the P-values obtained for this experiment
based on the Wilcoxon signed-rank test, and the bolded parts
of the table represent the results of experiments with P-values
greater than 0.05. According to the results in the table, the
number of P-values greater than 0.05 is a much smaller
proportion of the overall results than the proportion less than
0.05, which indicates that the COWOA is superior to the other
7 well-known WOA variants in this evaluation method.

As seen in Figure 7, the COWOA obtained a Friedman
mean of 2.71 and the smallest compared to the seven
well-known WOA improvement variants, indicating that
the COWOA ranks first under this test method. For
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FIGURE 6

The balance analysis results of COWOA, CMWOA, OWOA, and WOA.

the other seven compared algorithms, the mean value
obtained by COWOA is 0.48 smaller than the second-
ranked EWOA and 3.56 smaller than the poorly ranked
CWOA. In summary, we can prove through this experiment
that the COWOA is an excellent new variant of WOA
improvement.

To confirm the superiority of the COWOA, we next took
the convergence curves obtained throughout the experiment
and selected images of the optimization process for nine
functions according to the principle of including four
classes of benchmark functions, as shown in Figure 8.
The convergence curves of the COWOA on the listed

functions are significantly better than those of the other
seven WOA variants, except for F9, which shows that the
COWOA is relatively the strongest in these optimization
problems. On functions F1, F2, F12, F17, F21, F29, and
F30, the other seven WOA variants’ convergence curves
are relatively smooth. In contrast, the convergence curves
of the COWOA have one or two inflection points in the
middle and early stages of the experiment, which indicates
that the COWOA can escape the local optimum early
in the process of finding the optimal solution and that
the convergence achieved in the end is the accuracy is
also relatively optimal. In summary, in the comparative
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TABLE 7 Results of Wilcoxon signed-rank test.

Algorithm +/-/ = Mean-level Rank

COWOA ∼ 2.60 1

ACWOA 24/3/3 6.27 7

IWOA 14/7/9 3.10 3

BMWOA 21/5/4 5.20 6

LWOA 20/2/8 4.00 4

EWOA 16/8/6 3.00 2

CWOA 26/0/4 6.93 8

OBWOA 21/5/4 4.87 5

experiments set up in this paper, the convergence ability
of the COWOA proposed can achieve relatively better
than the seven WOA variants of the algorithm. Therefore,
this experiment proves that the COWOA is an excellent
WOA variant.

The results of the experiments that compare the
computational costs of COWOA and the 7 WOA variants
are shown in Figure 9. To ensure the experiment’s fairness,
the experiment uniformly uses the same experimental
setup as the benchmark function validation experiments.
In addition, the results of this experiment are counted in
seconds. As seen in Figure 9, COWOA, IWOA, EWOA,
and CWOA have similar time costs in optimizing the 30
basic problems, and all have relatively higher complexity
than ACWOA, BMWOA, LWOA, and OBWOA. This
is due to the different complexity of the optimization
methods introduced in the WOA variants. For COWOA,
the CMS and the OLM bring more computational overhead
to it. The comprehensive analysis of the experimental
results presented in this section concludes that COWOA
is computationally acceptable in terms of the time
cost spent.

Comparison with basic algorithms
In this subsection, we set up a comparison experiment

between the COWOA and the well-known original algorithms
of today, and there are SCA, MFO, PSO, WOA, BA, GWO,
GOA, FA, ACOR, and CSA. The main purpose of this section
is to provide a practical basis for the COWOA proposed in
this paper and to further demonstrate that the COWOA also
has relatively outstanding convergence capabilities among other
original algorithms.

Supplementary Table 3 presents the corresponding
experimental results in the form of AVG and STG in
Supplementary Table. By comparing and looking at the
mean values; we can see that the COWOA exhibits the
smallest mean values for functions F1, F2, F3, F4, F7, F10,
F12, F17, F18, F19, F20, F21, F23, F29, and F30 out of the 30
is benchmark functions. The COWOA excelled in this area
with 15 benchmark functions compared to other algorithms, a
capability that other algorithms participating in the comparison
experiments did not have. In addition, the COWOA showed
the smallest variance in functions F1, F2, F3, F4, F7, F12, F17,
F18, F20, F21, F23, F29, and F30, indicating that the COWOA
is relatively more stable in its optimization of these benchmark
functions. In summary, the COWOA is not only highly adaptive
to the optimization problem, but also achieves relatively better
solutions in comparison with the nine well-known original
algorithms; the relatively small variance of the optimal solution
for most of the problems demonstrates that the COWOA is
more stable most of the time. Therefore, the overall capability
of the COWOA is worthy of recognition, and the COWOA is a
very good improvement algorithm.

To make the experimental results more scientific,
the Wilkerson signed-rank test was used to evaluate the
experimental results below, as shown in Table 9. According to
Table 9, we can see that the COWOA ranks first in the overall
ranking of the comparison experiments in this setup. The two

FIGURE 7

Result of Friedman ranking between the COWOA and the well-known WOA variant algorithms.
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columns Mean-level and Rank give the final ranking data more
intuitively. In addition, the second column of the table shows
the details of the experimental results based on 30 benchmark
functions, from which it is easy to see that the original algorithm
performs better on at least 17 optimization problems and at
most 28 optimization problems for the different original
algorithms. Although the performance on some problems is
not as outstanding as the other original algorithms, this does
not affect the overall performance of the COWOA, which
is relatively the best among them, but only shows that the
COWOA still has much room for optimization in the future.

Further validation of the Wilcoxon signed-rank test is given
in Table 10, where the bold data indicates a p-value greater
than 0.05. The number of p-values greater than 0.05 in the
overall results of the COWOA against the 9 well-known original

TABLE 8 P-values of COWOA vs. well-known WOA variants on
the Wilcoxon test.

Functions ACWOA IWOA BMWOA LWOA

P-value P-value P-value P-value

F1 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

F2 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

F3 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

F4 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

F5 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

F6 8.46608E-06 1.19734E-03 3.18168E-06 7.73094E-03

F7 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

F8 1.73440E-06 1.73440E-06 1.73440E-06 1.02011E-01

F9 1.47728E-04 8.22065E-02 4.89690E-04 1.31942E-02

F10 1.73440E-06 3.51524E-06 1.73440E-06 6.58331E-01

F11 7.69086E-06 7.27105E-03 1.73440E-06 1.24526E-02

F12 1.73440E-06 5.19307E-02 1.73440E-06 5.21649E-06

F13 1.63945E-05 2.13358E-01 1.20445E-01 6.88359E-01

F14 1.92092E-06 5.71646E-01 8.13017E-01 2.56371E-02

F15 1.92092E-06 2.30381E-02 2.35342E-06 2.05153E-04

F16 4.77947E-01 2.41470E-03 2.89477E-01 2.13358E-01

F17 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

F18 1.73440E-06 1.92092E-06 1.73440E-06 1.73440E-06

F19 1.73440E-06 5.85712E-01 1.73440E-06 2.76527E-03

F20 1.73440E-06 7.51366E-05 1.73440E-06 2.12664E-06

F21 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

F22 4.38962E-03 3.49346E-01 4.68184E-03 5.98356E-02

F23 7.73527E-08 1.73440E-06 1.73440E-06 1.73440E-06

F24 1.73440E-06 1.73440E-06 3.11232E-05 1.97295E-05

F25 2.70159E-05 5.66635E-01 2.59671E-05 1.89097E-04

F26 4.44934E-05 5.57743E-01 1.30592E-01 7.65519E-01

F27 3.70935E-01 1.48393E-03 1.73440E-06 2.13358E-01

F28 7.52133E-02 2.89477E-01 1.73440E-06 5.98356E-02

F29 3.18168E-06 1.73440E-06 1.73440E-06 1.73440E-06

F30 4.72920E-06 1.73440E-06 1.92092E-06 1.73440E-06

(Continued)

TABLE 8 (Continued)

Functions EWOA CWOA OBWOA

P-value P-value P-value

F1 1.73440E-06 1.73440E-06 1.73440E-06

F2 1.73440E-06 1.73440E-06 1.73440E-06

F3 1.73440E-06 1.73440E-06 1.73440E-06

F4 1.73440E-06 1.73440E-06 1.73440E-06

F5 1.73440E-06 1.73440E-06 1.73440E-06

F6 9.84214E-03 1.73440E-06 2.84342E-05

F7 1.73440E-06 1.73440E-06 1.73440E-06

F8 1.73440E-06 1.73440E-06 1.73440E-06

F9 1.02011E-01 8.30707E-04 4.89690E-04

F10 1.48393E-03 1.73440E-06 1.73440E-06

F11 2.18267E-02 1.73440E-06 4.72920E-06

F12 4.07023E-02 1.73440E-06 1.73440E-06

F13 8.22065E-02 9.36756E-02 4.71617E-02

F14 7.52133E-02 1.71376E-01 1.20445E-01

F15 3.11232E-05 1.73440E-06 1.73440E-06

F16 4.11403E-03 2.41470E-03 9.58990E-01

F17 1.73440E-06 1.73440E-06 1.73440E-06

F18 8.46608E-06 1.73440E-06 1.73440E-06

F19 1.84622E-01 1.73440E-06 1.73440E-06

F20 2.18267E-02 1.73440E-06 1.73440E-06

F21 1.73440E-06 1.73440E-06 1.73440E-06

F22 4.71617E-02 7.73094E-03 1.35908E-01

F23 1.73440E-06 3.11232E-05 4.32046E-08

F24 1.97295E-05 2.59671E-05 3.11232E-05

F25 1.59094E-02 6.56707E-01 2.70159E-05

F26 1.58855E-01 2.25512E-03 1.92092E-06

F27 3.50090E-02 3.49346E-01 1.73440E-06

F28 4.16534E-01 7.15703E-04 6.83586E-03

F29 1.73440E-06 1.73440E-06 6.73280E-01

F30 1.73440E-06 1.73440E-06 2.76527E-03

algorithms is very small, which proves that the COWOA still
performs very well in comparison with the well-known WOA
variants.

The results of the Friedman test are given in Figure 10, from
which it can be seen that the COWOA has the smallest mean
value of the Friedman compared with the nine well-known
original algorithms, which indicates that the COWOA is ranked
first in this basis function experiment. If the difference between
the second-ranked ACOR and the COWOA is defined as4, then
the absolute value of 4 is greater than 1, |4| > 1. As a result, it
can be proven that the COWOA still has an obvious advantage
under this evaluation method.

To further demonstrate the benefits of COWOA, this
subsection also uses the same experimental structure set up in
the performance testing section of COWOA to give convergence
curves for the entire iterative process and the convergence
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curves for the nine functions selected by the four classes of
benchmark functions, as shown in Figure 11. It can be seen
from the convergence plots that the convergence speed of
COWOA has an undeniable advantage over the entire iterative
process. The ability to develop a global optimum is relatively
the best relative to the nine original algorithms. In addition, the
convergence curves of the COWOA on functions F1, F2, F17,
F21, F29, and F30 all have obvious inflection points, and the
inflection points are relatively forward, which indicates that the
optimization algorithm has an undeniable ability to escape the
local optimum in the early stage of finding the optimal solution,
which is a convergence performance that the other nine original
algorithms do not have. In summary, through the analysis of
the comparative experiments in this setup, we can conclude that
the COWOA proposed in this paper is an excellent variant of
WOA.

Comparison with advanced peers
In this section, we make a comparative experiment and

analysis of COWOA with eight optimization variants of other
algorithms, which will be the most powerful interpretation
of COWOA performance in the experimental part of this
paper on basis functions. They are CBA (Adarsh et al., 2016),
OBLGWO (Heidari et al., 2019a), mSCA (Qu et al., 2018),
RCBA (Liang et al., 2018), HGWO (Zhu et al., 2015),
SCAPSO (Nenavath et al., 2018), CDLOB (Yong et al., 2018),
and CAGWO (Lu et al., 2018). Supplementary Table 4
shows the AVG and STG of the benchmark experimental
results of COWOA against the eight improved algorithms.
By comparing and looking at the average values, we find
that for most of the benchmark functions, COWOA has
the smallest average value. This indicates that the COWOA
has a relatively higher quality optimization capability in this
experiment. Furthermore, the relatively smallest variance of
the optimal solutions obtained is a strong indication of the
better stability of the COWOA’s optimization capability on these
benchmark functions. Therefore, we can tentatively conclude
that the COWOA is a novel and excellent improvement
algorithm.

Table 11 shows the final analysis and evaluation details of
the Wilkerson signed-rank test, from which it can be seen that
the mean of the COWOA has a significant advantage in this
set-up of the comparison experiment and is ranked first among
the compared algorithms. In addition, the second column of the
table gives the degree of superiority of the COWOA compared
to the other eight algorithms, from which we can see that
the COWOA exhibits relatively more outstanding optimization
capabilities for most of the optimization problems, which not
only demonstrates the greater performance of the COWOA but
also proves that it has better adaptability to many optimization
problems.

Table 12 shows the p-values of the COWOA for the eight
well-known variants, where the bolded data indicate p-values

greater than 0.05. According to the table, the number of data less
than 0.05 occupies the majority of the overall portion, indicating
that the COWOA performs better than the well-known variant
algorithms.

Figure 12 shows the result of the Friedman ranking, from
which it can be seen that the COWOA has the smallest average,
which indicates that it still has a very strong advantage under this
testing method. Therefore, COWOA is still a relatively better
swarm intelligence optimization algorithm for the experiments
in this setup.

In order to enhance the conviction that the optimization
capability of the COWOA is relatively better in the comparison
experiments, nine convergence curves obtained during the
experiments are given below, as shown in Figure 13. The
convergence curves of the COWOA have a convergence
advantage over the other eight algorithms, except for the
optimization F26, which finally achieves a relatively optimal
convergence accuracy. In addition, the convergence curves of
the eight compared algorithms are relatively smooth throughout
the convergence process. In contrast, the convergence curves
of the COWOA have different numbers of inflection points,
and there is a very obvious drop in the curve after the
inflection point, which indicates that the COWOA not only
jumps out of the local optimum but also has a faster
convergence speed. In summary, we can conclude that the
convergence ability of the COWOA proposed in this paper
is relatively more excellent compared to the eight excellent
variants of other algorithms. Therefore, this experiment
proves that the COWOA is an excellent swarm intelligence
algorithm.

Feature selection experiments

Experimental setup
To confirm the performance of the bCOWOA-KELM

model in the direction of feature selection, this section
conducts feature selection experiments based on six public
datasets in the UCI and a medical dataset (HD) collected
at the moment, respectively. To enhance the persuasiveness
of the experimental results, this paper also uses nine
binary swarm intelligence optimization algorithms in the
feature selection experiments for comparison experiments with
the bCOWOA, including bWOA, bGWO, bHHO, bMFO,
bSCA, bSMA, bSSA, bCSO, and BBA. The experimental
parameters of the corresponding algorithms are given in
Table 13.

In the experimental section of the public datasets, we
set up comparison experiments based on six public datasets
from the UCI repository, which are used to validate the
performance of the bCOWOA-KELM model on the feature
selection problem. Since the medical data problem addressed
in this paper is binary in nature, the public datasets selected
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FIGURE 8

Convergence curves of COWOA with the WOA variants.

for this section are all of the binary type. Details of the
parameters of these six public datasets are presented in
Table 14.

In the experimental section of the HD dataset, HD sessions
were recorded from April 1, 2020, to April 18, 2020, in an
outpatient HD unit at First Affiliated Hospital of Wenzhou
Medical University. The inclusion criteria are as follows: (1)
age ≥ 18 years; (2) maintenance HD ≥ 3 months; (3) the
frequency of the treatment was three times per week, and
the duration of the treatment was 4 hours. The exclusion

criteria are as follows: (1) HD sessions with missing data;
(2) HD therapy without using of heparin or low molecular
heparin. A total of 156 patients with 1239 HD sessions
were included. The dialysate temperature was 37◦C, sodium
concentration was 140 mmol/L, and calcium concentration was
1.5 mmol/L at the beginning of the sessions. Patients were
detected blood routine once a month. The fast serological
specimens were collected from a peripheral vein in a sitting
position before dialysis on April 1st or April 2nd (mid-
week therapy). BP was measured five times in each treatment
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FIGURE 9

The computational cost of COWOA with the WOA variants.

session: At 0-h, 1 h, 2 h, 3 h after drawing blood and at
reinfusion. Extra measurements of BP were carried out when
patients suffered discomforts. IDH was defined as a drop
of SBP ≥ 20 mmHg or a drop of (mean arterial pressure)
MAP ≥ 10 mmHg from pre-dialysis to nadir intradialytic levels
plus ≥ 2 repetitive measures (K/Doqi Workgroup, 2005). The
description of this dataset’s details is given below, as shown in
Table 15.

IDH denotes intradialytic hypotension and IQR denotes
interquartile range.

In addition, this paper analyses and compares the average
value (Avg) and standard deviation (Std) of the experimental
results and evaluates the comprehensive performance of
each binary classification model by ranking them, thus
demonstrating more intuitively that the bCOWOA-KELM
model has relatively better feature selection performance.

Finally, to ensure the fairness of the experimental
process of feature selection, we set the overall size of

TABLE 9 Results of Wilcoxon signed-rank test.

Algorithm +/-/ = Mean-level Rank

COWOA ∼ 2.90 1

SCA 26/2/2 8.27 9

GWO 18/8/4 5.03 6

MFO 25/2/3 7.10 8

GOA 19/8/3 4.33 4

BA 26/2/2 5.70 7

PSO 22/6/2 4.90 5

CSA 19/4/7 3.80 2

FA 28/1/1 8.83 10

ACOR 17/8/5 4.13 3

each algorithm population to 20 and the number of
iterations to 100 times uniformly; to ensure the consistency
of the experimental environment and to avoid the
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influence of environmental factors on the experimental
results, the running environment of all experiments in
this section is consistent with the experimental part of
the basic function.

Performance evaluation metrics
In this subsection, we present some of the analytical

evaluation methods used to analyze the results of the feature
selection experiments (Hu et al., 2022a,b; Liu et al., 2022a,c; Shan
et al., 2022; Shi et al., 2022; Xia et al., 2022a; Yang et al., 2022b;
Ye et al., 2022). The aim is to provide a valid theoretical basis
for demonstrating that the bCOWOA-KELM model performs
better in feature selection than other comparative models. In
the following, each of the mentioned evaluation methods is
described.

In experiments, we usually classify the truth of the data
as true (T) and false (F). We would then predict and classify
them by machine learning, and the resulting positive predictions
are defined as Positive (P) and the negative results are defined
as Native (N). Thus, throughout the feature classification
experiments, we typically derive four performance evaluation
metrics that are used to assess the performance of the binary
classifier model, as shown in Table 16.

The following is a detailed description of Table 16.

(1) TP (True Positive): indicates a positive class prediction,
where the classifier predicts the same data sample situation
as the true one.

(2) FP (False Positive): The classifier misrepresents the negative
class prediction as a positive class prediction, where the

TABLE 10 P-values of COWOA vs. the well-known original algorithms on the Wilcoxon test.

Functions SCA GWO MFO GOA BA

P-value P-value P-value P-value P-value

F1 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

F2 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

F3 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

F4 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06 5.30699E-05

F5 1.73440E-06 1.73440E-06 1.92092E-06 1.73440E-06 1.73440E-06

F6 1.92092E-06 1.73440E-06 8.22065E-02 4.72920E-06 2.60333E-06

F7 1.73440E-06 1.73440E-06 2.56308E-06 1.73440E-06 1.73440E-06

F8 1.73440E-06 3.60039E-01 1.73440E-06 6.15641E-04 1.73440E-06

F9 1.73440E-06 6.33914E-06 4.19551E-04 1.79885E-05 2.35342E-06

F10 1.73440E-06 5.21649E-06 1.73440E-06 1.73440E-06 1.73440E-06

F11 1.73440E-06 1.35948E-04 1.31942E-02 6.14315E-01 1.60464E-04

F12 1.73440E-06 4.11403E-03 6.89229E-05 2.37045E-05 1.73440E-06

F13 1.73440E-06 4.99155E-03 1.73440E-06 7.73094E-03 1.35908E-01

F14 1.73440E-06 5.31968E-03 1.73440E-06 5.98356E-02 3.93334E-01

F15 1.73440E-06 2.71155E-01 1.92092E-06 2.35342E-06 2.53644E-01

F16 3.88111E-04 5.21649E-06 1.47954E-02 3.60943E-03 2.60333E-06

F17 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

F18 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

F19 1.73440E-06 2.60333E-06 1.23808E-05 1.56585E-02 4.07151E-05

F20 1.73440E-06 1.73440E-06 1.73440E-06 5.21649E-06 3.51524E-06

F21 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

F22 1.02011E-01 1.47728E-04 4.68184E-03 4.99155E-03 6.33914E-06

F23 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

F24 3.32689E-02 1.77907E-01 1.73440E-06 1.92092E-06 1.73440E-06

F25 1.96458E-03 1.98610E-01 3.38856E-01 5.31968E-03 2.22483E-04

F26 3.58884E-04 4.16912E-03 3.58884E-04 2.58456E-03 6.28843E-01

F27 2.53644E-01 5.31968E-03 4.16534E-01 3.68261E-02 1.70877E-03

F28 2.22483E-04 9.27103E-03 2.76527E-03 1.35908E-01 1.36011E-05

F29 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

F30 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

(Continued)
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TABLE 10 (Continued)

Functions PSO CSA FA ACOR

P-value P-value P-value P-value

F1 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

F2 1.73440E-06 1.73440E-06 1.73440E-06 1.73331E-06

F3 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

F4 1.73440E-06 1.73440E-06 1.73440E-06 1.90777E-06

F5 1.73440E-06 7.69086E-06 1.73440E-06 1.73440E-06

F6 6.83586E-03 1.74228E-04 1.92092E-06 1.73440E-06

F7 1.73440E-06 1.73440E-06 1.73440E-06 1.94383E-04

F8 1.73440E-06 2.12532E-06 1.73440E-06 3.60943E-03

F9 1.36011E-05 4.16534E-01 1.73440E-06 2.30381E-02

F10 1.73440E-06 1.73440E-06 1.73440E-06 1.12654E-05

F11 2.87860E-06 1.15608E-01 1.73440E-06 8.61213E-01

F12 1.73440E-06 2.35342E-06 1.73440E-06 1.73440E-06

F13 3.11232E-05 6.73280E-01 1.73440E-06 6.14315E-01

F14 2.10526E-03 1.24526E-02 1.73440E-06 1.83258E-03

F15 4.44934E-05 1.58855E-01 1.73440E-06 9.42611E-01

F16 2.70292E-02 5.85712E-01 2.61343E-04 3.40526E-05

F17 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

F18 1.73440E-06 1.25057E-04 1.73440E-06 1.92092E-06

F19 8.91873E-05 1.12654E-05 1.73440E-06 8.77403E-01

F20 6.33914E-06 2.84342E-05 1.73440E-06 1.73440E-06

F21 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

F22 1.30592E-01 5.85712E-01 2.95746E-03 1.48393E-03

F23 1.73440E-06 1.73440E-06 1.73440E-06 1.11234E-06

F24 2.35342E-06 1.12654E-05 1.73440E-06 1.73440E-06

F25 2.21022E-01 2.06711E-02 2.35342E-06 1.83258E-03

F26 1.73440E-06 7.52133E-02 3.58884E-04 6.87136E-02

F27 8.72967E-03 3.06500E-04 4.19551E-04 1.75184E-02

F28 2.35342E-06 1.73440E-06 7.49871E-01 2.41180E-04

F29 1.28663E-03 1.73440E-06 1.73440E-06 1.73440E-06

F30 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

classifier discriminates the data sample situation as the
opposite of the true situation and misidentifies the negative
result as a positive result.

(3) TN (True Negative): indicates a negative class prediction
and the classifier correctly identifies the negative
class prediction.

(4) FN (False Negative): Positive class prediction is treated as a
negative class prediction, resulting in the classifier missing
the positive class prediction.

In addition, in order to better facilitate the evaluation of the
feature extraction capability and classification capability of the
bCOWOA-KELM model and to enhance the persuasiveness of
the model proposed in this paper, this paper uses four categories
of evaluation criteria commonly used in the fields of machine
learning and information retrieval, and there are Accuracy,

Specificity, Precision, and F-measure. The following section
describes the details of the 4 evaluation criteria for the classifier
experiments are described as follows:

(1) Accuracy indicates the number of samples successfully
classified by the classifier as a proportion of all samples. In
general, a larger accuracy rate indicates better performance
of the classifier.

Accuracy =
TP + TN

TP + TN + FP + FN
(39)

(2) Specificity indicates the proportion of all negative cases
that are successfully classified, and measures the classifier’s
ability to identify negative cases.

Specificity =
TN

TN + FP
(40)
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FIGURE 10

Result of Friedman ranking between the COWOA and the well-known original algorithm.

(3) Precision indicates the proportion of true positive
prediction instances among all instances discriminated by
the classifier as positive prediction outcomes.

Precision =
TP

TP + FP
(41)

(4) F-measure (F) is a special comprehensive evaluation
criterion among the several types of evaluation criteria
mentioned in this section, and is used to evaluate the overall
performance of the binary model in the same way as error
rate and accuracy. Its evaluation value is the weighted
average of precision (P) and recall (R).

R =
TP

TP + FN
(42)

F =
(
α2
+ 1

)
P · R

α2(P + R)
(43)

where α generally takes a value of 1; P denotes Precision
as mentioned above; and R denotes Recall, which is an
assessment criterion covering the range ability and describes the
underreporting of positive class predictions and the degree of
recall of positive class results.

Public dataset experiment
In this section, we set up comparative experiments based

on six public datasets from the UCI repository to verify that
the comprehensive performance of the bCOWOA-KELM model
is relatively optimal in this experiment and also demonstrate
that the bCOWOA-KELM model is more adaptive. For the
experimental analysis, three evaluation methods were selected.
The results were analyzed and validated by the Avg and Std
design in each evaluation method and the average ranking

of the algorithms involved in the comparison experiment
on the six public datasets. The experimental analysis is
presented below.

The experimental results of the classification accuracy of the
bCOWOA-KELM model compared with other feature selection
methods are given in Supplementary Table 5. The table shows
the average classification of the bCOWOA-KELM model on the
Breast, Ionosphere, HeartEW, Congress, Breastcancer, and heart
datasets. The accuracy was always the largest, and their average
classification accuracies were all above 94.81%, indicating that
the bCOWOA-KELM model has relatively optimal classification
ability. To further enhance the convincing power, the average
ranking of each algorithm on the six public datasets was counted
in this experiment, as shown in Table 17. It can be seen
that bCOWOA ranks first in terms of average classification
accuracy, which indicates that bCOWOA has outstanding
adaptability to different datasets; BBA has the worst average
ranking, which indicates that BBA has the relatively worst
adaptability.

The results of this experiment describing the precision
are given in Supplementary Table 6. As seen from the table,
the average of bCOWOA on the six public datasets is always
relatively the largest and its average precision is above 93.36%,
which indicates that the bCOWOA-KELM model has the
relatively best rate of correct classification among the compared
methods. In addition, we also present the average ranking of
each algorithm on the six datasets, as shown in Table 18.
In particular, the bCOWOA-KELM model ranked first in
terms of accuracy, bSMA ranked second, and bSCA ranked
last.

Supplementary Table 7 shows the mean F-measure
and variance of the bCOWOA-KELM model and the nine
comparison models participating in the experiment on six
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FIGURE 11

Convergence curves of COWOA with the well-known original algorithms.

public datasets. The F-measure is known to be a comprehensive
criterion for assessing the classification performance of an
algorithm, and it provides a more comprehensive assessment
of the classification capability of bCOWOA. As can be seen
from the table, the average F-measure values of bCOWOA are
consistently the largest and their average accuracy is above
95.39%. As shown in Table 19, we also give the average ranking
of each classification method on the six datasets. It can be seen
that the bCOWOA-KELM model ranks first on average in terms
of F-measure.

Hemodialysis dataset experiment
In this section, in order to verify whether the bCOWOA-

KELM model is effective, we collected information such
as the clinical features, dialysis parameters and indexes
of blood routine test from the dataset. We conducted
prediction IDH comparison experiments on the bCOWOA-
KELM model proposed in this paper. To analytically validate
the performance of the proposed bCOWOA-KELM model, four
different classifier evaluation metrics were used to assess the
comprehensive performance of the model as far as possible,
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TABLE 11 Results of Wilcoxon signed-rank test.

Algorithm +/-/ = Mean-level rank

COWOA ∼ 2.37 1

SCAPSO 20/8/2 4.00 2

RCBA 27/0/3 5.13 5

CBA 27/0/3 6.03 8

HGWO 24/3/3 6.67 9

OBLGWO 18/5/7 4.40 3

mSCA 21/5/4 5.53 6

CDLOBA 25/0/5 5.73 7

CAGWO 19/9/2 4.90 4

including Accuracy, Specificity, Precision and F-measure. To
demonstrate that the bCOWOA-KELM model is superior, we
compare bCOWOA-KELM with combinations of bCOWOA

TABLE 12 The p-values of COWOA vs. well-known algorithms on
the Wilcoxon test.

Functions SCAPSO RCBA CBA HGWO

P-value P-value P-value P-value

F1 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

F2 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

F3 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

F4 1.73440E-06 2.12664E-06 1.73440E-06 1.73440E-06

F5 1.73440E-06 1.73440E-06 3.51524E-06 1.73440E-06

F6 1.25057E-04 2.12664E-06 1.73440E-06 8.29013E-01

F7 1.73440E-06 1.73440E-06 2.00130E-05 1.73440E-06

F8 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

F9 1.47728E-04 1.73440E-06 3.88218E-06 2.12664E-06

F10 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

F11 5.28725E-04 3.60943E-03 7.15703E-04 1.92092E-06

F12 1.73440E-06 6.31976E-05 1.92092E-06 1.73440E-06

F13 1.58855E-01 9.75387E-01 7.65519E-01 1.73440E-06

F14 7.51366E-05 6.58331E-01 2.36936E-01 1.73440E-06

F15 1.47728E-04 5.70965E-02 2.16302E-05 1.73440E-06

F16 1.35908E-01 2.60333E-06 1.73440E-06 9.27103E-03

F17 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

F18 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

F19 4.28569E-06 6.33914E-06 2.60333E-06 1.73440E-06

F20 6.98378E-06 3.72426E-05 1.73440E-06 1.73440E-06

F21 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

F22 5.30699E-05 1.92092E-06 1.73440E-06 5.30699E-05

F23 4.32046E-08 1.73440E-06 1.73440E-06 1.81225E-06

F24 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

F25 2.70159E-05 4.07151E-05 5.75165E-06 2.70159E-05

F26 2.16302E-05 1.31942E-02 5.99936E-01 2.60333E-06

F27 1.73440E-06 2.43075E-02 1.35948E-04 2.21022E-01

F28 1.73440E-06 1.23808E-05 4.44934E-05 2.53644E-01

F29 3.06500E-04 1.73440E-06 1.73440E-06 1.14992E-04

F30 1.23808E-05 1.73440E-06 1.73440E-06 3.11232E-05

(Continued)

TABLE 12 (Continued)

Functions OBLGWO mSCA CDLOBA CAGWO

P-value P-value P-value P-value

F1 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

F2 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

F3 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

F4 1.73440E-06 1.73440E-06 2.12664E-06 1.73440E-06

F5 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

F6 6.15641E-04 4.07151E-05 1.73440E-06 1.73440E-06

F7 1.73440E-06 1.73440E-06 5.75165E-06 1.73440E-06

F8 8.46608E-06 3.18168E-06 1.73440E-06 2.28880E-01

F9 4.16534E-01 7.34325E-01 1.73440E-06 3.16034E-02

F10 1.73440E-06 1.73440E-06 1.73440E-06 7.69086E-06

F11 6.56411E-02 7.97098E-01 3.60943E-03 1.05695E-04

F12 1.73440E-06 2.16302E-05 9.36756E-02 1.73440E-06

F13 5.44006E-01 1.63945E-05 3.70935E-01 1.48393E-03

F14 2.41470E-03 3.51524E-06 9.26255E-01 1.74228E-04

F15 2.22483E-04 1.73440E-06 1.73440E-06 3.60943E-03

F16 1.20445E-01 3.16176E-03 1.92092E-06 1.83258E-03

F17 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

F18 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

F19 9.42611E-01 1.73440E-06 1.73440E-06 1.73440E-06

F20 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

F21 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

F22 7.97098E-01 1.17481E-02 2.60333E-06 4.68184E-03

F23 3.11232E-05 1.73440E-06 1.73440E-06 1.73440E-06

F24 1.24526E-02 7.86467E-02 1.73440E-06 8.93644E-01

F25 2.70159E-05 3.08615E-01 1.48393E-03 2.70159E-05

F26 8.97178E-02 2.12664E-06 8.58958E-02 3.16034E-02

F27 4.28569E-06 2.59671E-05 3.28571E-01 1.36011E-05

F28 1.05695E-04 7.71217E-04 3.40526E-05 9.31566E-06

F29 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

F30 1.73440E-06 1.73440E-06 1.73440E-06 1.73440E-06

and four other classical classifiers, including bCOWOA-
FKNN, bCOWOA -KNN, bCOWOA-MLP, and bCOWOA
-SVM. To further compare the performance differences
between the categorical prediction model based on swarm
intelligence optimization algorithm and classical machine
learning algorithms such as RandomF, AdaBoost, and CART, we
set up a comparison experiment between the bCOWOA-KELM
model and these methods. Furthermore, to demonstrate that
the predictive performance of the combination of bCOWOA-
KLEM in the swarm intelligence optimization algorithms is
also relatively better, we selected nine well-known swarm
intelligence algorithms to set up a comparison experiment of
with bCOWOA in this section, such as bGWO, bHHO, bSMA
and so on. Finally, in order to demonstrate that the bCOWOA-
KELM model has practical application value in the prediction
of IDH and to reduce the effect of random factors on the
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FIGURE 12

Result of Friedman ranking between the COWOA and the well-known variant algorithms.

experiment, we set up a 10-fold cross-validation (CV) analysis
experiment on it.

In general, the same binary algorithm combined
with different classifier methods often produces different
classification results. The comparison experiment of
the bCOWOA-KELM model with four other classifier
combinations, including bCOWOA-FKNN, bCOWOA -
KNN, bCOWOA-MLP, and bCOWOA -SVM, the analysis
of the results for the four evaluation methods is given in a
box plot in Figure 14. The graph shows that the values of the
four evaluation criteria for the bCOWOA-KELM model are
relatively more concentrated and have the relatively highest
mean values. This indicates that the combined approach has
the relatively best classification prediction ability and the most
stable classification performance. bCOWOA-MLP model is
the worst in the four aspects. The bCOWOA-FKNN model
and the bCOWOA-KELM model perform similarly. However,
looking closely at the box diagram, it is not difficult to find that
the bCOWOA-KELM classification combination model has
better means on all evaluation criteria, and the evaluation data
generated by the experiment is relatively more concentrated.
This shows that the bCOWOA-KELM is not only better at
the end result but also proves that it has stronger stability.
Therefore, we can conclude that the bCOWOA-KELM model
is the best classification prediction model among the five
combined approaches.

In order to examine the effect of the swarm intelligence
optimization algorithm on the classification performance of
the classifier in terms of feature selection experiments, we
compared the bCOWOA-KELM model with five machine
learning methods that did not incorporate the bCOWOA, and
the comparison results are shown in Figure 15. Compared with
BP, the proposed bCOWOA-KELM model has better stability
than BP, although it is less optimal. Compared with the other

four classification methods, the proposed bCOWOA-KELM
model is better in terms of Accuracy and specificity and has
a more stable performance. In summary, the comprehensive
performance of the bCOWOA-KELM model proposed in this
paper is better than the original classification method without
the swarm intelligence algorithm.

To demonstrate the practical relevance of the prediction
model and to further verify that the performance of the
bCOWOA-KELM model is relatively optimal on the IDH
dataset, the proposed bCOWOA was compared with nine
binary algorithms based on the KELM classification technique,
including bWOA, bGWO, bHHO, bMFO, bSCA, bSMA, bSSA,
Bcso, and BBA. Then, all combinations of the above binary
algorithms and KELM were analyzed and evaluated in terms
of six aspects: Accuracy, Specificity, Precision, F-measure,
Error, and time spent.

The statistical results of this experiment on the HD dataset
are given in Figure 16. According to the results, the combination
of bCOWOA and KELM on the first five evaluation criteria
have a relatively concentrated box plot distribution compared
to the combination of the other nine algorithms, indicating
that the bCOWOA-KELM model has very considerable stability
compared to the other algorithms. Meanwhile, bCOWOA also
has the highest average value, indicating that bCOWOA has
better classification capability than all the algorithms compared.
However, the bCOWOA’s average value is the highest in terms
of time spent, which is one of the drawbacks that should be
of concern for the future of the algorithm. In conclusion, this
part of the experiment demonstrates that the bCOWOA-KELM
model has the relatively best classification ability for the HD
dataset.

Table 20 analyses the results of the bCOWOA-KELM
model after completing 10 feature selection experiments. In
rows 2–11 of Table 20, the Fold column indicates the number
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FIGURE 13

Convergence curves of COWOA with the well-known variant algorithms.

TABLE 13 Key parameters of the algorithms.

Algorithms bCOWOA bWOA bGWO bHHO bMFO

Values a = [0,2]
F = 4
Q = 3

a = [0,2] a = [0,2] E1 = [0,2]
E0 = [-1,1]

a = 2
b = 1

Algorithms bSCA bSMA bSSA bSCO BBA

Values r1 = [0,2] a = [0,5]
b = [0,1]

∼ ∼ A = 0.5
r = 0.5
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of experiments, the second column indicates the number of
features selected in each feature selection experiment, the
remaining four columns indicate the Accuracy, Specificity,
Precision and F-measure obtained, and the last two rows of
Table 20 give the average value and variance corresponding
to the four evaluation criteria, respectively. As can be seen
from the table, the average classification accuracy value of
the bCOWOA-KELM is 0.9241, the average specificity value
is 0.9492, the average accuracy value is 0.9415 and the
average F-measure is 0.9180. According to Table 21, it is
easy to find that bCOWOA obtains the better scores on
the four metrics In addition, bCOWOA improves 0.32%
in accuracy, 0.62% in specificity, 0.54% in Precision, and
0.29% in F-measure over the second-ranked bSCA. bCOWOA
improved 3.63% in accuracy, 4.62% in specificity, 4.94% in
Precision, and 3.70% in F-measure over the worst-ranked
bGWO.

To further verify the predictive performance of the
bCOWOA-KELM model, we conducted a 10 times 10-fold
crossover experiments based on the HD dataset. To facilitate
the selection of features and the analysis of experimental
results, we present 36 features and their selection through a
histogram, as shown in Figure 17. What’s more, the features
selected by bCOWOA-KELM to predict IDH are illustrated in
Table 22.

In Figure 17, the vertical axis represents the code name
of the feature that appeared in this experiment and the
abscissa axis represents the number of times each feature
was selected in 100 experiments. The characteristics of the
green color in the figure are the key features selected
in this experiment, including F22, F11, F14, F13, F3,
F1, F21, and F23. They, respectively, represent platelet to
lymphocyte ratio (PLR), MAP, white blood cells (WBCs),
gender, ultrafiltration volume, dialysis vintage, monocyte to
lymphocyte ratio (MLR) and neutrophil to monocyte ratio
(NMR). Finally, we concluded that the eight key features
selected by the bCOWOA-KELM model in this experiment
are in line with clinical practice. Therefore, we have once
again demonstrated the effectiveness of the bCOWOA-
KELM model in combination with the clinical experience of
IDH.

Discussion

Comparison with previous studies and
summary

Although the definition of IDH was different in various
studies, even in recent studies, IDH was defined as an SBP below
to 90 mmHg, to build an early warning system, IDH was defined
according to guidelines of the National Kidney Foundation
Kidney Disease Quality Outcomes Initiative (K/DOQI) (K/Doqi

Workgroup, 2005). To predict IDH episodes, previous studies
analyzed pre-dialysis BP, demographic characteristics and
ultrafiltration parameters. Liu et al. (2022e) study applied
the least absolute shrinkage and selection operator (LASSO)
to select features from dialysis parameters and patients’
characteristics. The sensitivity and specificity were below 90%.
Some of them also included serum biomarkers in the analysis to
improve accuracy. Assayag et al. (2020) analyzed B-natriuretic
peptide using a logistic mixed model to predict the 30-
day risk of IDH. The accuracy was still not satisfactory.
Our previous study got good accuracy from an artificial
neural network (ANN) model utilizing chronic kidney disease-
mineral and bone disorders (CKD-MBD) biomarkers. The
biomarkers mentioned above are associated with volume or
vasoactivity, which are determinants of BP. Compared with
these biomarkers, blood routine test is generally carried out in
basic hospitals and are inexpensive, though does not have a
direct correlation with BP. The prediction models are divided
into logistic regression models and ANN models. As we know,
the events are not linearly dependent on features in clinical
practice. Various ANN models are apt to deal with non-linear
relationships.

To predict IDH, our team built different models to screen
various factors. Yang et al. (2022a) proposed an IDH prediction
model (BSWEGWO-KELM) based on improved GWO and
KELM. And this method successfully screened four key features
that affect the incidence of IDH, including dialysis vintage,
MAP, alkaline phosphatase (ALP), and intact parathyroid
hormone (iPTH). Hu et al. (2022c) proposed a promising
model (MQGWO-FKNN) using the Fuzzy K-Nearest Neighbor
(FKNN) based on the mutation quantum GWO, and the
method enabled the prediction of serum albumin increases
and decreases to assist in the diagnosis of IDH. Also, the
key features selected by the MQGWO-FKNN model were
analyzed with physiological significance, including age, dialysis
vintage, diabetes, and baseline albumin. It is worth noting that
although the methods mentioned above compensate for the
performance shortcomings of a single technique by enabling
the combination of swarm intelligence optimization algorithms
with classical classification techniques and achieve prediction of
the influencing factors of IDH, it is not difficult to find crossover
and complementarity between the classification results of the
above two methods, which shows that the factors that affect
IDH are not a single subset of features and also illustrates the
real and non-linear relationship between clinical features and
IDH.

Therefore, in order to further explore those clinical features
that are more relevant to IDH morbidity, this paper proposes
another novel classification approach (bCOWOA-KELM) to
predict IDH. And unlike the former, the dataset collected
this time has been adjusted in terms of features and number
of features. Finally, the experimental results show that the
proposed method successfully predicts eight key characteristics
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affecting IDH. Compared with the former two, the features
predicted by the bCOWOA-KELM model are more abundant,
which once again supplements the experimental basis to predict
IDH and expands the direction of related research in the
future. At the same time, this paper once again verifies
that the clinical characteristics and IDH incidence are not
linear, which is also one of the important practical medical
significances of this paper. In addition, the features screed

TABLE 14 Description of public datasets.

Datasets Samples Features Classes

Breast 569 31 2

Ionosphere 351 35 2

HeartEW 270 14 2

Congress 435 17 2

Breastcancer 699 10 2

Heart 270 14 2

TABLE 15 Description of attributes screened by the classifiers.

No. Feature Detailed description

F1 Dialysis vintage
(months)

Non-IDH group (median, IQR) = 68, 74
IDH group (median, IQR) = 100, 124

F2 Diabetes No = 0; Yes = 1

F3 Ultrafiltration
volume (kg)

Non-IDH group (median, IQR) = 2.0, 1
IDH group (median, IQR) = 2.2, 1

F4 Age (years old) Non-IDH group (median, IQR) = 66, 18
IDH group (median, IQR) = 66, 13

F5 Dry weight (kg) Non-IDH group (median, IQR) = 56.1, 14.7
IDH group (median, IQR) = 54.0, 12.9

F6 Pre-dialysis weight
(Kg)

Non-IDH group (median, IQR) = 58.1, 14.5
IDH group (median, IQR) = 56.2, 13.9

F7 Interdialytic weight
gain (kg)

Non-IDH group (median, IQR) = 1.9, 1
IDH group (median, IQR) = 2.1, 1

F8 Percentage of
interdialytic weight
gain (%)

Non-IDH group (median, IQR) = 3.46, 2.23
IDH group (median, IQR) = 3.87, 1.78

F9 Systolic blood
pressure (mmHg)

Non-IDH group (median, IQR) = 133, 29
IDH group (median, IQR) = 150, 30

F10 Diastolic blood
pressure (mmHg)

Non-IDH group (median, IQR) = 74, 15
IDH group (median, IQR) = 79, 17

F11 Mean arterial
pressure (mmHg)

Non-IDH group (median, IQR) = 93, 18
IDH group (median, IQR) = 103, 19

F12 Heart rates (bpm) Non-IDH group (median, IQR) = 76, 16
IDH group (median, IQR) = 77, 15

F13 Gender Male = 1; female = 0

F14 White blood cell
(109/L)

Non-IDH group (median, IQR) = 5.39, 1.83
IDH group (median, IQR) = 5.25, 2.37

F15 Neutrophil (%) Non-IDH group (median, IQR) = 65.0, 8.9
IDH group (median, IQR) = 64.4, 13.2

F16 Eosinophil (%) Non-IDH group (median, IQR) = 3.3, 3.5
IDH group (median, IQR) = 3.1, 3.5

F17 Basophil (%) Non-IDH group (median, IQR) = 0.1, 0.2
IDH group (median, IQR) = 0.2, 0.3

(Continued)

TABLE 15 (Continued)

No. Feature Detailed description

F18 Monocyte (%) Non-IDH group (median, IQR) = 7.3, 3.2
IDH group (median, IQR) = 8.0, 3.5

F19 Lymphocyte (%) Non-IDH group (median, IQR) = 22.0, 9.7
IDH group (median, IQR) = 22.3, 10.0

F20 Neutrophil to
lymphocyte ratio

Non-IDH group (median, IQR) = 3.03, 1.70
IDH group (median, IQR) = 2.90, 1.92

F21 Monocyte to
lymphocyte ratio

Non-IDH group (median, IQR) = 0.33, 0.19
IDH group (median, IQR) = 0.37, 0.22

F22 Platelet to
lymphocyte ratio

Non-IDH group (median, IQR) = 145.5, 91.3
IDH group (median, IQR) = 145.5, 82.9

F23 Neutrophil to
monocyte ratio

Non-IDH group (median, IQR) = 8.76, 4.48
IDH group (median, IQR) = 8.76, 5.06

F24 Red blood cell
(1012/L)

Non-IDH group (median, IQR) = 3.64, 0.50
IDH group (median, IQR) = 3.57, 0.61

F25 Hemoglobin (g/L) Non-IDH group (median, IQR) = 114, 13
IDH group (median, IQR) = 114, 16

F26 Hematocrit Non-IDH group (median, IQR) = 0.34, 0.04
IDH group (median, IQR) = 0.35, 0.06

F27 Mean corpuscular
volume (fL)

Non-IDH group (median, IQR) = 95.6, 5.3
IDH group (median, IQR) = 96.1, 6.1

F28 Mean corpuscular
hemoglobin (pg)

Non-IDH group (median, IQR) = 31.3, 2.1
IDH group (median, IQR) = 31.0, 2.1

F29 Mean corpuscular
hemoglobin
concentration (g/L)

Non-IDH group (median, IQR) = 327, 10
IDH group (Median, IQR) = 324, 12

F30 Red cell volume
distribution width
(%)

Non-IDH group (median, IQR) = 13.8, 1.1
IDH group (median, IQR) = 14.3, 1.2

F31 SD of red cell volume
distribution (fL)

Non-IDH group (median, IQR) = 48.1, 4.3
IDH group (Median, IQR) = 48.8, 6.2

F32 Platelet (109/L) Non-IDH group (median, IQR) = 177, 86
IDH group (median, IQR) = 187, 80

F33 Thrombocytocrit Non-IDH group (median, IQR) = 0.19, 0.08
IDH group (median, IQR) = 0.19, 0.07

F34 Mean platelet
volume (fL)

Non-IDH group (median, IQR) = 10.4, 1.2
IDH group (median, IQR) = 10.4, 1.1

F35 SD of platelet
distribution (fL)

Non-IDH group (median, IQR) = 11.9, 2.4
IDH group (median, IQR) = 12.2, 2.5

F36 Platelet large cell
ratio (%)

Non-IDH group (median, IQR) = 27.8, 9.8
IDH group (median, IQR) = 27.7, 9.0

TABLE 16 Description of classification details.

Class Positive (P) Native (N)

True (T) TP TN

False (F) FP FN

by bCOWOA-KELM are contain indices of blood routine
test. Compared with the former study, blood routine test is
easier to use and more cost-efficient biomarkers than CKD-
MBD.
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TABLE 17 Average classification accuracy ranking.

Algorithms bCOWOA bWOA bGWO bHHO bMFO bSCA bSMA bSSA bCSO BBA

Rank-Avg 1 5.33 9.17 5.67 3.83 4.5 4.83 6.33 4.5 9.83

Rank 1 5 8 6 2 3 4 7 3 9

TABLE 18 Average classification precision ranking.

Algorithms bCOWOA bWOA bGWO bHHO bMFO bSCA bSMA bSSA bCSO BBA

Rank-Avg 1 6 6.83 5.17 5.83 8.83 4.67 5.17 5.17 6.33

Rank 1 5 7 3 4 8 2 3 3 6

TABLE 19 Average ranking of F-measure.

Algorithms bCOWOA bWOA bGWO bHHO bMFO bSCA bSMA bSSA bCSO BBA

Rank-Avg 1 5.5 9.17 4.83 4.83 4.33 4.33 6.17 5 9.83

Rank 1 5 7 3 3 2 2 6 4 8

FIGURE 14

Comparison results of the five bonding methods.

Physiological significance of the
selected features

In this study, COWOA is first built, which is a verified
excellent swarm intelligence algorithm. This class of methods
can be applied many fields, such as dynamic module detection
(Ma et al., 2020; Li et al., 2021), power flow optimization
(Cao X. et al., 2022), information retrieval services (Wu et al.,
2020a,b, 2021c), human activity recognition (Qiu et al., 2022),
location-based services (Wu et al., 2020c, 2021b), disease
identification and diagnosis (Su et al., 2019; Tian et al.,

2020), pharmacoinformatic data mining (Zhu et al., 2012;
Yin et al., 2020), autism spectrum disorder classification (Hu
et al., 2022d), endoscope imaging (Zhang Z. et al., 2022),
and image-to-image translation (Zhang X. et al., 2022). Then,
bCOWOA-KELM based on COWOA was also established. The
critical features selected by bCOWOA-KELM were PLR, MAP,
WBC, gender, ultrafiltration volume, dialysis vintage, MLR, and
NMR.

Female gender is a risk factor of IDH assessed by
logistic regression in previous studies (Sands et al., 2014;
Halle et al., 2020). Females always have smaller body
sizes than males; thus, even if the IDWG is the same
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FIGURE 15

Comparison results of the bCOWOA-KELM with five classifiers.

FIGURE 16

Comparison results of bCOWOA with other binary algorithms.
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TABLE 20 Results of the bCOWOA-KELM model.

Fold Number of features selected Accuracy Specificity Precision F-measure

#1 17 0.9516 0.9846 0.9818 0.9474

#2 16 0.9516 0.9539 0.9492 0.9492

#3 16 0.9194 0.9692 0.9623 0.9107

#4 24 0.9355 0.9231 0.9180 0.9333

#5 20 0.9194 0.9539 0.9455 0.9123

#6 24 0.8952 0.9231 0.9107 0.8870

#7 16 0.9350 0.9531 0.9474 0.9310

#8 20 0.9274 0.9385 0.9310 0.9231

#9 17 0.9355 0.9539 0.9474 0.9310

#10 17 0.8710 0.9385 0.9216 0.8546

AVG ∼ 0.9241 0.9492 0.9415 0.9180

STD. ∼ 0.0250 0.0192 0.0216 0.0289

TABLE 21 The average of bCOWOA and well-known binary algorithms.

Accuracy Specificity Precision F-measure

AVG AVG AVG AVG

bCOWOA 0.9241 92.41% 0.9492 94.92% 0.9415 94.15% 0.9180 91.80%

bWOA 0.9201 92.01% 0.9368 93.68% 0.9286 92.86% 0.9145 91.45%

bGWO 0.8878 88.78% 0.9030 90.30% 0.8921 89.21% 0.8810 88.10%

bHHO 0.9169 91.69% 0.9383 93.83% 0.9302 93.02% 0.9105 91.05%

bMFO 0.9168 91.68% 0.9399 93.99% 0.9316 93.16% 0.9107 91.07%

bSCA 0.9209 92.09% 0.9430 94.30% 0.9361 93.61% 0.9152 91.52%

bSMA 0.9193 91.93% 0.9338 93.38% 0.9272 92.72% 0.9142 91.42%

bSSA 0.9153 91.53% 0.9414 94.14% 0.9327 93.27% 0.9088 90.88%

bCSO 0.9136 91.36% 0.9307 93.07% 0.9221 92.21% 0.9079 90.79%

BBA 0.8878 88.78% 0.9105 91.05% 0.8988 89.88% 0.8799 87.99%

in males and females, the percentage of IDWG and the
ultrafiltration rates are higher in females than males. To
get a good clinical outcome and avoid IDH, the suggested
percentage of IDWG is below 4% (Wong et al., 2017),
and the ultrafiltration rates is below 10 mL/h/kg (Flythe
et al., 2011). The comorbidities and complications of CKD
damage peripheral vascular resistance with dialysis vintage.
First, baroreceptor variability is impaired by uremia toxins.
Second, CKD-MBD and diabetes induce vascular calcification
and aggravate atherosclerosis and arterial stiffness. Third, ß2
microglobulin amyloid deposits in cardiac myocytes and blood
vessel wall (Takayama et al., 2001), impairs cardiac output and
peripheral resistance. Cardiac output and peripheral resistance
compensate for BP when blood volume is reduced during
dialysis.

High MAP is equal to high BP. High BP causes
cardiovascular injury. High BP is associated with coronary
artery disease (Yeo et al., 2020), cardiac systolic dysfunction,
and left ventricular hypertrophy (Chao et al., 2015). There
are cause-and-effect relationships between these factors and

IDH. High BP also induces endothelial dysfunction and arterial
stiffness. In a clinical trial, both of them are independent risk
factors of IDH (Dubin et al., 2011). The ultrafiltration volume
is associated with IDH, especially after the first 90 min session
(Keane et al., 2021).

PLR, WBC, MLR, and NMR represent inflammation and
predict prognosis of cancer (Kumarasamy et al., 2021), infective
(Palladino, 2021) and inflammatory diseases (Gasparyan et al.,
2019). There are also relationships between these hematological
indices and cardiac abnormalities. For example, increased
MLR is an independent risk factor of death in patients with
hypertension (Boos et al., 2021) or heart failure (Delcea et al.,
2021). Our study demonstrated the hematological indices and
IDH for the first time. Platelets, monocytes, and neutrophils
are classified as pro-inflammatory cells, while lymphocytes are
anti-inflammatory. These cells interact with each other. Since
the parameters contain leukocyted, neutrophils, monocytes,
lymphocytes, and platelets, we hypothesize the cytokines derived
from these blood cells play roles in regulating BP. Yu et al.
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FIGURE 17

Results of 10 times 10-fold cross-validation analysis.

TABLE 22 Clinical features selected by in IDH and Non-IDH groups.

Selected features index Non-IDH group (n = 649) IDH group (n = 590) p-value

Platelet to lymphocyte ratio (median, IQR) 145.5, 91.3 145.5, 82.9 0.930

Mean arterial pressure (median, IQR, mmHg) 93, 18 103, 19 <0.001

White blood cell (median, IQR, 109/L) 5.39, 1.83 5.25, 2.37 0.409

Gender (male %) 59% 55% 0.197

Ultrafiltration volume (median, IQR, kg) 2.0, 1 2.2, 1 0.001

Dialysis vintage (median, IQR, months) 68, 74 100, 124 <0.001

Monocyte to lymphocyte ratio (median, IQR) 0.33, 0.19 0.37, 0.22 0.144

Neutrophil to monocyte ratio (median, IQR) 8.76, 4.48 8.76, 5.06 0.006

IDH denotes intradialytic hypotension and IQR denotes an interquartile range.
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(2021) found the levels of serum tumor necrosis factor-α (TNF-
α) and interleukin-1β (IL-1β) were higher in the IDH group.
TNF-α and IL-1β are pro-inflammatory cytokines secreted by
myeloid cells and able to activate platelet. These blood cells
and cytokines regulate BP through cross-talk with renal renin-
angiotensin system, sympathetic system, and oxidative stress
(Zhang R. M. et al., 2021).

Conclusion and future works

The main contributions of the present study are as follows:
(1) a novel WOA-based swarm intelligence optimization
algorithm was proposed, named COWOA, (2) a new IDH
disease early warning model by combining the binary COWOA
and the KELM was proposed, named bCOWOA-KELM, (3) the
classification potential of KELM was successfully tapped based
on the improved WOA and (4) the key features influencing the
incidence of IDH are accurately identified using the bCOWOA-
KELM model. PLR, WBC, MLR, and NMR are readily available,
easy to use, and cost-efficient biomarkers, especially for those
basic HD centers.

In COWOA, we successfully improved the search capability
and the ability to escape local optima of the original WOA
by introducing the OLM and the CMS into the WOA. To
verify its performance, we set up four comparison experiments
based on 30 benchmark test functions successively, including the
comparison experiments between WOA and two mechanisms
under different combinations, the comparison experiments
between COWOA and seven excellent variants of WOA, the
comparison experiments between COWOA and nine other
original algorithms and the comparison experiments between
COWOA and eight excellent variants of other algorithms.
Based on the results of the above comparison experiments,
the convergence ability of the COWOA is relatively the best
compared to the other comparison algorithms. Therefore, The
COWOA is an improved validated variant of WOA.

In bCOWOA-KELM, it is used for clinical prediction. First,
to validate the performance of the bCOWOA-KELM model
and its effectiveness, we set up two types of classification
prediction experiments, including comparison experiments
based on six public datasets and comparison experiments
based on the HD dataset, and validated the classification
results with Accuracy, Specificity, Precision and F- measure
as the evaluation criteria to validate the comprehensive
performance of the bCOWOA-KELM model. Second, we
selected eight features based on the feature selection results
of the HD dataset. Finally, the clinical significance of the
eight characteristics is discussed in detail. The value of the
bCOWOA-KELM model in disease prediction was further
confirmed by all the features selected by it were comprehensible
for nephrologist.

However, there are still a few limitations in our study,
mainly including the COWOA itself and the HD dataset.
For the COWOA, since the method proposed in this
paper is based on the improved WOA, the introduction of
CMS and OLM optimization methods greatly improves the
performance of WOA, but it also affects the complexity of
the proposed model, which results in it needing to spend
more time cost to exert its stronger performance. For the
HD dataset, its shortcomings are mainly manifested in three
aspects, including: (1) the sample size was small, (2) the
blood routine was only detected once to predict a half-
month risk of IDH, and (3) IDH was divided into two
groups without an order of severity or time-dependent.
Therefore, we will further improve this design from the above
aspects in the future.

In the future, we will solve the complexity of the COWOA,
for example, (1) starting from the complex, under the premise
of ensuring its performance, we continue to improve the
COWOA, and (2) distributed computing, high-performance
computing, and other advanced technologies should be applied
in the process of disease prediction. Moreover, the IDH
prediction model will be more available. Furthermore, an
intelligent HD management system will be built based on an
improved algorithm. In addition, we will also explore other
application areas of COWOA, such as image segmentation
(Liu L. et al., 2021; Zhao D. et al., 2021), engineering
optimization (Qi et al., 2022; Qiao et al., 2022), resource
allocation (Deng et al., 2022a).
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