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Background: Liver transplantation surgery is often accompanied by massive blood loss
and massive transfusion (MT), while MT can cause many serious complications related
to high mortality. Therefore, there is an urgent need for a model that can predict the
demand for MT to reduce the waste of blood resources and improve the prognosis of
patients.

Objective: To develop a model for predicting intraoperative massive blood transfusion in
liver transplantation surgery based on machine learning algorithms.

Methods: A total of 1,239 patients who underwent liver transplantation surgery in three
large grade lll-A general hospitals of China from March 2014 to November 2021 were
included and analyzed. A total of 1193 cases were randomly divided into the training
set (70%) and test set (30%), and 46 cases were prospectively collected as a validation
set. The outcome of this study was an intraoperative massive blood transfusion. A total
of 27 candidate risk factors were collected, and recursive feature elimination (RFE) was
used to select key features based on the Categorical Boosting (CatBoost) model. A
total of ten machine learning models were built, among which the three best performing
models and the traditional logistic regression (LR) method were prospectively verified in
the validation set. The Area Under the Receiver Operating Characteristic Curve (AUROC)
was used for model performance evaluation. The Shapley additive explanation value was
applied to explain the complex ensemble learning models.

Results: Fifteen key variables were screened out, including age, weight, hemoglobin,
platelets, white blood cells count, activated partial thromboplastin time, prothrombin
time, thrombin time, direct bilirubin, aspartate aminotransferase, total protein, albumin,
globulin, creatinine, urea. Among all algorithms, the predictive performance of the
CatBoost model (AUROC: 0.810) was the best. In the prospective validation cohort,
LR performed far less well than other algorithms.
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Conclusion: A prediction model for massive blood transfusion in liver transplantation
surgery was successfully established based on the CatBoost algorithm, and a certain
degree of generalization verification is carried out in the validation set. The model may
be superior to the traditional LR model and other algorithms, and it can more accurately
predict the risk of massive blood transfusions and guide clinical decision-making.

Keywords: liver transplantation, massive blood transfusion, red cell transfusion, machine learning, prediction
model

INTRODUCTION

Liver transplantation is generally accepted as the only treatment
option for liver diseases such as hepatocellular carcinoma,
liver failure, and end-stage liver disease (Jadlowiec and Taner,
2016). Liver transplantation surgery is often accompanied by
massive blood loss and massive transfusion (MT; Eghbal et al.,
2019; Iyer et al., 2021). In the past, the decision to transfuse
red blood cells (RBC) was based on different hemoglobin
thresholds set by anesthesiologists (Thai et al., 2020). Affected by
many factors, there are certain differences in blood transfusion
practices in different institutions. Patient blood management
(PBM) is the process of applying evidence-based transfusion
guidelines to optimize patient outcomes (Connor et al., 2021).
Using hemoglobin concentration as the only trigger for blood
transfusion does not fit the modern concept of PBM.

Although MT can save lives in crises, it can cause many
serious complications related to high mortality, such as
acidosis and blood transfusion-related acute lung injury (TRALI;
Muirhead andWeiss, 2017; Meyer et al., 2018; Karim et al., 2020;
de Souza et al., 2021). Studies have shown that the need for
intraoperative blood transfusion is associated with an increased
risk of death after liver transplantation and it is identified as the
most important predictor of patient survival (Rana et al., 2013;
Cleland et al., 2016; Viguera et al., 2021). A cohort study found
that patients who received MT during the perioperative period
of liver transplantation had a worse long-term prognosis than
non-MT patients, with higher 30-daymortality and complication
rates (Tan et al., 2021). Besides, the economic pressure and
disease transmission risk brought by MT will further increase.

Machine learning is a subfield of artificial intelligence that
allows algorithms to improve their performance on certain tasks
based on empirical data (Handelman et al., 2018; Bi et al.,
2019; Choi et al., 2020). In recent years, with the development
of interdisciplinary, machine learning, as a research hotspot of
artificial intelligence, has been widely used in the medical field
(Connor, 2019; Sultan et al., 2020; Ding et al., 2021; Hornstein
et al., 2021; Huang et al., 2021; Hung et al., 2021; Santos, 2021).
In many cases, machine learning algorithms can better describe
the complexity and unpredictability of human physiology (Heo
et al., 2019). A reliable predictive model can make reasonable use
of blood bank resources to avoid waste, besides, it is beneficial to
the survival and prognosis of liver transplant patients. Although
there have been studies that have constructed predictive models
of MT in liver transplantation surgery, they are all based on the
traditional logistic regression (LR) method or based on a single-
center database. Herein, the new machine learning algorithms

are applied to predict MT in liver transplantation based on
a multicenter database, aiming to provide a more scientific,
reasonable, and effective basis for clinical blood transfusion
decision-making and realize the reasonable allocation of blood
bank resources.

METHODS

As a retrospective cohort study, we included all patients
undergoing liver transplantation in three large grade lll-A
general hospitals of China: The Second Xiangya Hospital
of Central South University, The Third Xiangya Hospital
of Central South University, and Renji Hospital affiliated
to Medical College of Shanghai Jiao Tong University from
March 2014 to April 2021. Exclude patients: (1) receive
preoperative preventive intervention; (2) living donor liver
transplantation; (3) orthotopic liver re-transplantation (re-OLT);
(4) less than 18 years old; and (5) data loss rate exceeds
20%. Preoperative preventive intervention includes prophylactic
platelet transfusion and prophylactic plasma transfusion, which
refer to platelet or plasma transfusion in patients without
bleeding symptoms before surgery. The blood transfusion
strategies implemented by the three hospitals use the restrictive
strategies recommended by the current perioperative patient
blood management guidelines. A hemoglobin concentration of
7 g/dl was used as a transfusion trigger. When hemoglobin is
between 70 g/L and 100 g/L, the clinician will comprehensively
judge whether to transfuse or not according to the patient’s
age, bleeding volume, bleeding speed, cardiopulmonary function,
hypoxia symptoms, and other factors. The goal of blood
transfusion is to exceed the threshold and improve the
patient’s symptoms. Forty-six adult patients who underwent liver
transplantation in the Third Xiangya Hospital of Central South
University from May 2021 to November 2021 were collected for
prospective verification.

Variable Selection and Definition
Based on literature search, clinical experience, and expert
discussion, 27 candidate risk factors were collected through the
electronic medical record system, including patient demographic
characteristics, clinical characteristics, diagnosis, and laboratory
results. For variables with multiple measurement results, the
value closest to the date of the surgery was selected for inclusion
in the study. The units of the same indicators were converted
into consistent before analysis. The outcome of this study was
intraoperative MT, which was defined as the intraoperative
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FIGURE 1 | The flowchart of our study.

transfusion of ≥18 U RBC suspension (1 U RBC suspension
equals 200 ml whole blood; Yang et al., 2017).

Modeling Strategy
The data set was randomly divided into the training set (70%,
for model development and optimization) and the test set (30%,
for model testing). Multiple imputations were used to deal with
missing values. The vital features selected by RFE constitute
a feature set. Ten machine learning models were established:
Categorical Boosting (CatBoost), Extreme Gradient Boosting
(XGBoost), Adaptive boosting (AdaBoost), Light Gradient
Boosting Machine (LightGBM), Gradient Boosting Decision
Tree (GBDT), Random Forest (RF), K-Nearest Neighbors
(KNN), Naïve Bayes, Multi-Layer Perceptron (MLP), Support
Vector Machines (SVM), LR (Figure 1).

Recursive Feature Elimination (RFE) obtains the optimal
combination of variables that can maximize the performance
of the model by adding or removing specific feature variables,
which was applied to screen key variables. Fifteen key variables
were screened out based on the training set, all of which were
continuous variables. Further, boxplots were drawn with the
key variables to analyze the distribution differences of variables
between the two groups. And heatmap was drawn to evaluate the
correlation between variables. Then we test the performance of
models in an independent test set. In order to test the robustness
of the results, we performed 1,000 bootstrap sampling on the test
set and evaluated the model separately to generate a confidence
interval for the performance of the model.

The existing prediction models are all based on LR analysis,
which is very traditional and has limitations. Therefore,
after building models, the area under the receiver operating

characteristic curve (AUROC), recall rate, sensitivity, and
accuracy were used to evaluate and compare the model
performance. Three models with better performance were
compared with the LR method in the prospective validation set.

Statistical Analysis
The quantitative data were expressed as mean ± standard or M
(P25, P75) as appropriate, and the qualitative data were expressed
as frequency (percentage). The Student’s t-test or rank-sum test
was used to compare the qualitative data based on whether
the variable was normally distributed. The Chi-square test or
Fisher’s exact test was used to compare the qualitative data. After
modeling, the Shapley additive explanation (SHAP) value was
applied to explain the complex ensemble learning model. All
analyses were performed using Python (Version 3.7.9) and R
(Version 3.6). P < 0.05 was considered statistically significant.

RESULTS

Clinical Characteristics of the Study
Population
A total of 1,193 patients were enrolled in this study, with
an average age of 46.15 (11.77) years old, and 210 males
(17.60%). According to whether receiving intraoperative MT,
they were divided into the MT group [with an average age of
48.96 (9.36) years old, accounting for 15.83% of men] and the
non-MT group [with an average age of 45.77 (12.01) years old,
accounting for 17.84% of men]. The indexes with statistically
significant differences between the two groups were shown in
Table 1, including age, clinical diagnosis, portal hypertension,
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ascites, albumin, activated partial thromboplastin time (APTT),
creatinine, hemoglobin, hematocrit, total protein (TP), and
urea (p < 0.05). All included patients received piggyback liver
transplantation.

Key Features
Fifteen key features on the training set were selected by RFE,
including age, weight, hemoglobin, platelets, WBC count, APTT,
PT, TT, DBIL, AST, TP, ALB, GLO, creatinine, and urea.
Boxplots were used to show the distribution of variables between
groups in the training set, from which we can know that patients
who is older or whose preoperative hemoglobin lever is lower
had a higer risk of receiving intraoperative MT (Figure 2).
Pearson correlation coefficients were calculated and a heatmap
was used to analyze the correlation between variables. The
absolute value of the correlation coefficient ranged from 0 to
1, the greater the absolute value, the stronger the correlation.
A positive value indicated positive correlation, while a negative
value indicated negative correlation. Generally, the correlation
strength of variables was judged by the value range of the
following absolute values: 0.0–0.2 (very weak correlation or
no correlation), 0.2–0.4 (weak correlation), 0.4–0.6 (medium
correlation), 0.6–0.8 (strong correlation), 0.8–1.0 (very strong

correlation). For instance, the correlation coefficient between PT
and APTT was 0.52, indicating positive and strong correlation,
while the correlation coefficient between TP and DBIL was
−0.32, indicating negative and weak correlation (Figure 3).

Prediction Model Performance
Ten machine learning models were constructed. As shown in
Table 2, CatBoost performed best in all algorithms (AUROC:
0.81), with a sensitivity of 89% and a specificity of 66%
(Figure 4A). The variables included in different models were
inconsistent, the relative importance of variables included in
CatBoost, LightGBM, and XGBoost were shown in the histogram
(Figures 4B–D). Hemoglobin was the most important variable in
the CatBoost model, age in the Light GBM model, and Cr in the
XG Boost model.

Prospective Verification
The three best-performing models (CatBoost, LightGBM, and
XGBoost) and the traditional LR method were prospectively
verified in the validation set. As shown in Table 3, the sensitivity
of CatBoost was 100%, which indicated that the model accurately
identified all patients receiving MT in the queue, but the
specificity was not the best among several methods. The accuracy
of LR was the lowest.

TABLE 1 | Clinical characteristics.

All Patients (n = 1,193) Non-MT group (n = 1,054) MT group (n = 139) P-Value

Age, mean (SD), year 46.15 (11.77) 45.77 (12.01) 48.96 (9.36) <0.001
Sex, M, n (%) 210 (17.60) 188 (17.84) 22 (15.83) 0.641
Diagnosis, n (%) Cirrhosis 150 (17.46) 140 (18.49) 10 (9.80) 0.019

Liver malignant tumor 154 (17.93) 138 (18.23) 16 (15.69)
Liver failure 83 (9.66) 79 (10.44) 4 (3.92)
Alcoholic hepatitis 42 (4.89) 33 (4.36) 9 (8.82)
Viral hepatitis 255 (29.69) 218 (28.80) 37 (36.27)
Cholestatic liver disease 24 (2.79) 21 (2.77) 3 (2.94)
Others 151 (17.58) 128 (16.91) 23 (22.55)

Portal hypertension, n (%) 335 (28.08) 280 (26.57) 55 (39.57) 0.002
Hepatic encephalopathy, n (%) 136 (11.40) 117 (11.10) 19 (13.67) 0.609
Ascites, n (%) 385 (32.27) 321 (30.46) 64 (46.04) <0.001
Weight, mean (SD), kg 64.13 (13.24) 64.38 (13.49) 62.31 (11.10) 0.121
ALB, mean (SD), g/L 34.77 (6.17) 34.96 (6.04) 33.50 (6.86) 0.045
ALT, median [Q1, Q3], U/L 53.85 [26.98, 154.93] 53.85 [27.00, 150.25] 51.85 [26.53, 253.50] 0.729
APTT, mean (SD), s 51.21 (20.13) 50.24 (18.85) 57.25 (26.09) 0.010
AST, median [Q1, Q3], U/L 72.00 [39.00, 197.35] 72.00 [38.40, 183.85] 73.75 [41.22, 283.38] 0.236
CR, median [Q1, Q3], µmol/L 66.90 [55.80, 88.00] 66.00 [55.38, 85.35] 71.00 [58.10, 114.95] 0.010
DBIL, median [Q1, Q3], µmol/L 69.45 [15.97, 231.20] 65.80 [15.30, 237.10] 85.10 [21.95, 200.45] 0.498
GLO, mean (SD), g/L 26.98 (8.77) 27.06 (8.59) 26.48 (9.87) 0.586
HB, mean (SD), g/L 102.47 (25.23) 104.47 (25.20) 89.58 (21.39) <0.001
HCT, mean (SD), % 30.47 (7.34) 31.14 (7.31) 26.67 (6.36) <0.001
INR, median [Q1, Q3 1.63 [1.29, 2.30] 1.63 [1.28, 2.30] 1.58 [1.36, 2.27] 0.700
PLT, median [Q1, Q3], *109/L 69.00 [42.00, 104.00] 71.00 [43.00, 105.00] 63.00 [40.00, 97.00] 0.191
PT, median [Q1, Q3], s 18.95 [15.20, 25.23] 19.00 [15.20, 25.20] 18.10 [15.40, 25.35] 0.881
TBIL, median [Q1, Q3], µmol/L 107.55 [33.82, 380.83] 104.00 [32.30, 384.10] 140.70 [48.05, 336.50] 0.414
FIB, mean (SD), g/L 4.70 (13.77) 3.12 (4.90) 12.10 (30.19) 0.053
TP, median [Q1, Q3], g/L 61.50 [55.00, 68.40] 62.05 [55.30, 68.70] 59.45 [53.27, 65.53] 0.016
TT, median [Q1, Q3], s 19.50 [17.40, 22.20] 19.45 [17.23, 22.10] 19.70 [17.88, 22.92] 0.162
UA, median [Q1, Q3], µmol/L 224.45 [134.40, 332.05] 223.00 [135.05, 330.08] 243.65 [133.20, 357.65] 0.288
UREA, median [Q1, Q3], mmol/L 5.45 [3.87, 8.09] 5.39 [3.82, 7.62] 6.58 [4.07, 10.81] 0.003
WBC, median [Q1, Q3], *109/L 5.22 [3.43, 8.09] 5.28 [3.38, 8.22] 4.95 [3.50, 7.31] 0.318

Definition of abbreviations: SD, Standard Deviation; ALT, Alanine Aminotransferase; APTT, Activated Partial Thromboplastin Time; AST, Aspartate Aminotransferase; DBIL, Direct
Bilirubin; INR, International Standard Ratio; PT, Prothrombin Time; TBIL, Total Bilirubin; TP, Total Protein; TT, Thrombin Time; UA, Uric Acid; WBC, White Blood Cell.

Frontiers in Neuroinformatics | www.frontiersin.org 4 May 2022 | Volume 16 | Article 893452

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Chen et al. ML Predicts MT During LT

FIGURE 2 | Variable distribution. This figure described the distribution of key variables between groups in the training set. Orange represents MT group, blue
represents non-MT group, ∗p < 0.05, ∗∗p < 0.01.

Application of Model
SHAP (Shapley Additive Explanation) is a ‘‘model
interpretation’’ package developed in Python, which can
interpret the output of a machine learning model and directly
quantify the contribution of each feature to the model’s
prediction results. We sorted the included features by calculating
the SHAP value (Figure 5). According to the predictive model,

the higher the SHAP value of the characteristic, the greater the
risk of intraoperative MT. The figure depicted the situation
of all samples, including the level of SHAP values of different
features and the concentration of SHAP values in the training
set. As shown in the figure, the SHAP value of hemoglobin
was the highest, which means that hemoglobin concentration
contributes the most to the predicted results of the model. When
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FIGURE 3 | Heatmap. The value in the grid corresponding to the abscissa
and ordinate is the correlation value of the two indicators. Corresponding
colors and values indicate the degree of relevance.

hemoglobin concentration decreased (blue), the model output
value was more likely to be bigger (the SHAP value is positive),
which means the greater the risk of intraoperative MT.

Interactive Application
We built a user interface1 (Figure 6), which allows the
anesthesiologist or physician to interact with the model by
entering parameter values specific to each patient. The model
will predict the probability of intraoperativeMT, and doctors can
make clinical decisions based on probability.

DISCUSSION

Predicting the need for MT is directly related to the
clinical outcomes and prognosis of patients. This is the
first study using machine learning algorithms to build a
model to predict the risk of intraoperative MT in patients
undergoing liver transplantation. A prediction model with good
performance based on CatBoost is successfully constructed, and
its performance is better than other machine learning models
and LR. The application of the model can reduce the waste of
blood products and improve prognosis by predicting the demand
for MT and customizing the transfusion scheme. Preoperative
hemoglobin, hematocrit, and platelet concentration are often
regarded as vital variables for blood transfusion (Stanhiser et al.,
2017; Kang et al., 2020). It was found that HCT, FIB, and
ALT were important risk factors for MT in liver transplantation
patients (124 cases, LR method; Danforth et al., 2020). In the
study of Pustavoitau et al. (2017), hemoglobin and platelet
concentration were important predictors of MT (203 cases, LR
method). Although the variables included in the two studies

1http://www.aimedicallab.com/tool/aiml-livermassive.html

are not the same, they seem to be connected to each other.
The clinical significance of HCT and hemoglobin are similar
and can be used for the diagnosis and classification of anemia.
Our study also found that these two indicators of MT patients
were significantly lower than those of the NMT group. ALT
was not included as a key variable in our model, which exists
in various cells, especially in hepatocytes. When liver cells are
damaged, they will be released into the blood, and the serum
ALT level we detected will increase. Patients undergoing liver
transplantation often have different degrees of liver lesions,
which has been confirmed in our study. ALT in patients with
MT and NMT both increased and without significant difference.
Therefore, in the prediction of blood transfusion, although ALT
will change, it may not be specific and does not perform well in
the classifier.

Age, albumin, and creatinine are risk factors for massive
hemorrhage in liver transplantation, which has been used
by Mccluskey et al. (2006) to develop the McCluskey risk
index, guiding MT during surgery. The correlation between the
important characteristics involved in the risk index and MT has
been verified in two different cohorts. It is worth mentioning
that the definitions of MT in the two studies are different. Justo
et al. (2021) and the original study defined it as ≥6 U, while
Pustavoitau et al. (2020) defined it as ≥10 U. Consistently, these
correlations were also found in our study and were screened as
key features. In addition, we need to emphasize the reason why
our definition of MT is so different from the existing definition.
According to the Chinese standard, 1 U RBC suspension equals
200 mL whole blood, which is based on the evidence of clinical
transfusion practice in Chinese hospitals, while most of the
existing definitions are based on 1 U RBC suspension equals
450–500 ml whole blood (Gurevitz, 2011; Kogutt and Vaught,
2019). Therefore, our definition seems to be significantly far from
the current benchmark.

WBC count is generally used for screening blood system
diseases and infection, which has been found to be a predictive
application in pediatric liver transplantation for MT (Jin et al.,
2017). Jin believes that leukocytosis can cause massive bleeding
in patients with liver dysfunction. In this study, the model
screened the WBC count as an important variable, and in
SHAP analysis, its contribution to the prediction result ranked
8/13. We found that the lower the WBC count, the higher
the risk of MT, which is inconsistent with other studies. We
consider that even if the result is based on the algorithm, it
may have no significance in clinical practice, because in fact,
the difference in WBC count between groups is not significant,
and the mean values are within the normal range. The main
non-surgical causes of MT during liver transplantation are
coagulation dysfunction caused by coagulation factor deficiency,
thrombocytopenia, and hyperfibrinolysis (Villarreal et al., 2019).
Therefore, the conventional indicators of coagulation function
are of great significance for the prediction of MT. In addition to
these indicators, our study also included weight, APTT, PT, AST,
TP, globulin, and urea. We believe the reasons why the above
studies did not include these indicators may be limited by the
relatively small sample size, which reduces the ability to identify
important risk factors.
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FIGURE 4 | Performance of models and key features. (A) Receiver operating characteristic curves for the machine learning models and logistic regression. (B)
Relative importance of variables included in CatBoost model. (C) Relative importance of variables included in LightGBM model. (D) Relative importance of variables
included in XGBoost model.

In this research, we built 10 machine learning models. The
three better performers are CatBoost, LightGBM, and XGBoost.
Among them, Catboost has the best comprehensive performance.
CatBoost is a GBDT framework based on trees with fewer
parameters, supporting categorical variables, and high accuracy.
It solves the problems of gradient bias and prediction shift,
thereby reducing the occurrence of overfitting and improving

the accuracy and generalization ability of the algorithm (Ambe
et al., 2021; Zhang et al., 2021). Compared with XGBoost and
LightGBM, CatBoost is an innovative algorithm that embeds
automatic processing of categorical features into numerical
features. Although LR is easy to understand and implement and
is widely used in the study of risk factors for clinical diseases,
it has many shortcomings, such as easy under-fitting and low

TABLE 2 | Prediction model performance.

Model AUROC Accuracy (%) Youden index Sensitivity (%) Specificity (%) F1 Score

CatBoost 0.81 (0.75–0.87) 68 (63–73) 0.55 89 (79–98) 66 (60–70) 0.41 (0.32–0.49)
LightGBM 0.75 (0.68–0.82) 70 (65–75) 0.45 76 (62–88) 69 (65–74) 0.38 (0.29–0.48)
XGBoost 0.75 (0.67–0.81) 67 (63–72) 0.46 80 (67–90) 66 (60–71) 0.37 (0.28–0.45)
KNN 0.74 (0.66–0.81) 70 (66–75) 0.43 73 (59–86) 70 (65–75) 0.38 (0.28–0.47)
Naïve Bayes 0.73 (0.64–0.80) 69 (64–74) 0.40 71 (57–83) 69 (63–74) 0.36 (0.26–0.45)
RF 0.72 (0.63–0.80) 74 (69–78) 0.43 68 (53–82) 75 (70–80) 0.39 (0.29–0.49)
AdaBoost 0.72 (0.65–0.80) 62 (58–67) 0.38 78 (65–89) 60 (55–66) 0.34 (0.25–0.41)
LR 0.72 (0.65–0.78) 51 (46–57) 0.41 96 (88–100) 45 (40–51) 0.32 (0.25–0.40)
GBDT 0.70 (0.63–0.77) 56 (52–62) 0.35 82 (70–93) 53 (48–59) 0.32 (0.24–0.39)
MLP 0.69 (0.61–0.76) 56 (50–61) 0.34 82 (69–93) 52 (46–57) 0.31 (0.23–0.38)
SVM 0.66 (0.57–0.74) 55 (50–61) 0.28 75 (62–88) 53 (47–58) 0.29 (0.21–0.37)

Definition of abbreviations: CatBoost, Categorical Boosting; LightGBM, Light Gradient Boosting Machine; XGBOOST, Extremely Gradient Boosting; KNN, K-Nearest Neighbor; RF,
Random Forest; AdaBoost, Adaptive boosting; LR, Logistic Regression; GBDT, Gradient Boosting Decision Tree; MLP, Multi-Layer Perceptron; SVM, Support Vector Machine.
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TABLE 3 | Prospective verification.

Model AUROC Accuracy (%) Youden index Sensitivity (%) Specificity (%) F1 Score

CatBoost 0.75 (0.60–0.88) 63 (50–78) 0.41 100 (100–100) 41 (24–60) 0.67 (0.49–0.80)
LightGBM 0.72 (0.54–0.87) 78 (65–89) 0.51 65 (39–88) 87 (73–97) 0.69 (0.44–0.86)
XGBoost 0.72 (0.54–0.87) 72 (57–85) 0.45 78 (56–95) 69 (50–86) 0.67 (0.47–0.82)
LR 0.61 (0.42–0.77) 59 (43–72) 0.30 89 (71–100) 42 (23–59) 0.61 (0.43–0.75)

FIGURE 5 | SHAP analysis of the CatBoost model on the validation set. This
figure described data from the validation set. Each point represents a sample,
and a wide area means a large number of samples are gathered. The color on
the right indicates the value of the feature, red indicates that the feature value
is high, and blue indicates that the feature value is low.

classification accuracy. In this cohort study, compared with LR
method-based model, the machine learning model significantly
improved the discrimination of risks of intraoperative MT, and

had better model predictive capabilities. Regardless of whether
it is in the test set or the validation set, machine learning
algorithms are always significantly better than LR. However,
it should be noted that the hierarchical structure of machine
learning algorithm makes it possible that there may not be a
linear relationship between the features and the output, such as
weight and AST, although they are listed as important features,
they did not show significant differences in the comparison
between groups.

The SHAP analysis was performed on the model to observe
the impact of each feature on the prediction results. At present,
many guidelines and clinical practices only use hemoglobin as
the basis for blood transfusion. Similarly, our research also found
that hemoglobin has the largest contribution to the model’s
prediction results, illustrating the importance of hemoglobin in
predictingMT. However, importance does not mean uniqueness.
In addition to hemoglobin, the role of APTT, ALB, and other
variables in the model cannot be ignored, which reminds
us that when making blood transfusion decisions, we should
comprehensively consider various indicators and not just focus
on hemoglobin. It should be noted that some features, such as
AST, are not important features for most people, but they may be
important for a small group of people. Our figure only represents
the overall situation, not everyone’s situation.

CatBoost accurately predicts the risk of MT in the prospective
data set, with a sensitivity of 100%. But compared with other
methods, the specificity is not the best. We consider this result

FIGURE 6 | Example of tool usage. Entering the specific input value of each patient to obtain the specific output value. Showing the contribution of each indicator
to the prediction result.
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because the prospective sample size is too small to show the
best performance of the model. Although in clinical practice, it
seems safer to not miss MT patients. Identifying patients with
a high risk of blood transfusion can improve the utilization
of blood management during the perioperative period, thereby
potentially reducing blood transfusion and its associated risks
and costs. In clinical applications, the classification model can be
used as a screening tool to quickly and accurately identify patients
who require MT. However, we need to recognize that machine
learning is a tool that can identify factors that predict a given
result, but it cannot prove cause and effect. One of the abilities
of machine learning is to help determine new hypotheses for
further research. In this case, machine learning has determined
that hemoglobin plays a role in prediction, but this does not
mean that hemoglobin has a causal role in the need for blood
transfusion. More clinical trials may be needed in the future to
help understand its causality.

In this study, we proposed a machine learning model to
accurately predict the MT need of adult liver transplant patients
and a prediction tool that enables clinicians to use to guide
clinical decision-making. Its clinical utility lies in that it has
specific input and output values for each patient so that precision
medicine advice can be generated.

Our study also has some limitations. The first limitation
is the inclusion of candidate risk factors. A study found that
preoperative blood transfusion was an important risk factor for
MT (Danforth et al., 2020). However, due to the large number
of missing data on preoperative blood transfusion volume, this
factor was not included in the candidate risk factors for this study.
In addition, although our study considered the possible effects of
different primary diseases on MT, the patient’s disease severity
and underlying diseases may also affect intraoperativeMT, which
was not included in our candidate risk factors. It may have an
impact on the ability of our prediction model to identify MT
risks. The second limitation is that our study is based on available
preoperative indicators. Intraoperative MT is likely to be affected
by the transfusion volume of other blood products. Potential
intraoperative factors cannot be incorporated into our model for
the time being. We hope to overcome this difficulty in the future,
which may need to be solved through the interaction of multiple
prediction models. Finally, as we discussed above, the number

of samples in the prospective validation cohort of the models
is limited, which may affect the evaluation of the generalization
ability of the model to a certain extent. Multicenter cooperation
is expected to make up for this deficiency.

CONCLUSION

We have demonstrated that a machine learning algorithm can
be used to predict the demand for intraoperative MT in patients
undergoing liver transplantation, and we have successfully
developed a prediction model based on CatBoost algorithm,
which may be superior to the traditional LR method and other
algorithms. For better clinical application, we have established an
interactive website as a tool, which is the first of its kind known to
us. Our team will also be committed to implementing it to bring
it into the future clinical workflow.
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