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Introduction: Atopic dermatitis (AD) is an allergic disease with extreme

itching that bothers patients. However, diagnosing AD depends on clinicians’

subjective judgment, which may be missed or misdiagnosed sometimes.

Methods: This paper establishes a medical prediction model for the first time

on the basis of the enhanced particle swarm optimization (SRWPSO) algorithm

and the fuzzy K-nearest neighbor (FKNN), called bSRWPSO-FKNN, which is

practiced on a dataset related to patients with AD. In SRWPSO, the Sobol

sequence is introduced into particle swarm optimization (PSO) to make the

particle distribution of the initial population more uniform, thus improving the

population’s diversity and traversal. At the same time, this study also adds a

random replacement strategy and adaptive weight strategy to the population

updating process of PSO to overcome the shortcomings of poor convergence

accuracy and easily fall into the local optimum of PSO. In bSRWPSO-FKNN,

the core of which is to optimize the classification performance of FKNN

through binary SRWPSO.

Results: To prove that the study has scientific significance, this paper first

successfully demonstrates the core advantages of SRWPSO in well-known

algorithms through benchmark function validation experiments. Secondly,

this article demonstrates that the bSRWPSO-FKNN has practical medical

significance and effectiveness through nine public and medical datasets.

Discussion: The 10 times 10-fold cross-validation experiments demonstrate

that bSRWPSO-FKNN can pick up the key features of AD, including

the content of lymphocytes (LY), Cat dander, Milk, Dermatophagoides

Pteronyssinus/Farinae, Ragweed, Cod, and Total IgE. Therefore, the

established bSRWPSO-FKNN method practically aids in the diagnosis of AD.

KEYWORDS

swarm intelligence optimization, FKNN, feature selection, machine learning, atopic
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1. Introduction

Atopic dermatitis (AD) is a chronic inflammatory skin
disease accompanied by allergic reactions characterized by itchy
eczematous skin-lesions and dry skin, which is common in
childhood and influences at least 20% of children around the
world (Rehbinder et al., 2020; Asano et al., 2022; Johansson et al.,
2022). Considering the starting point of the atopic march with
the development of food allergy, asthma, and allergic rhinitis, it
is important to distinguish AD and intervene (Spergel, 2021).
There are many diagnostic criteria for AD in the world, such as
Hanifin & Rajka diagnostic criteria, Williams diagnostic criteria,
International Study of Asthma and Allergy in Children (ISAAC)
questionnaire, which depends on the subjective judgment of
dermatologists (Williams et al., 1994; Williams, 1996). William’s
criteria are the primary basis for diagnosing AD, which includes
an itchy skin condition for the last 12 months and three minor
criteria (Williams, 1996; Williams et al., 1996). Depending on
the clinicians’ extensive experiences, some patients are missed
or misdiagnosed. The sensitivity of diagnosis is enhanced when
combined with serology results (Poto et al., 2022). Thus, a
comprehensive evaluation of combination clinic symptoms with
serology gradually attracts attention.

However, exploring such questions relies on vast amounts of
relevant data. A large subject of research is medical information
systems, which aid clinicians in providing quicker and more
accurate medical diagnoses (Li C. et al., 2022; Liu S. et al.,
2022; Zhuang et al., 2022). In this regard, manual analysis is
impractical because it is time-consuming, inefficient, and error-
prone for vast amounts of data. Consequently, it is essential
to establish a machine learning model for studying AD, which
will help AD staff better and more efficiently explore the factors
and pathogenic features affecting AD. Moreover, some machine
learning studies focus on AD. Gustafson et al. (2017) described
a machine learning-based phenotyping algorithm that obtained
higher positive predictive values (PPV) than previous low-
sensitivity algorithms and demonstrated the utility of natural
language processing (NLP) and machine learning in EHR-
based phenotyping. Suhendra et al. (2019) proposed a machine
learning algorithm that successfully combined a multi-class
SVM classifier to classify and predict AD severity based on
skin color, texture, and redness with an overall accuracy of
about 0.86. Maintz et al. (2021) analyzed the association of 130
factors with AD severity based on a machine learning gradient
boosting approach, cross-validated tuning, and multinomial
logistic regression. It was demonstrated that the associations
among AD patients identified in this study contribute to
a deeper understanding, prevention, and treatment of AD
disorders.

Guimarães et al. (2020) established a fully automated
method based on a convolutional neural network (CNN)
combined with multiphoton tomography (MPT) imaging to
achieve AD morbidity prediction successfully. Li X. et al. (2021)

used three machine learning models to analyze AI-assisted AD
diagnosis and subclassify AD severity by 3D Raster Scanning
Photoacoustic Mesoscopy (RSOM) images to extract features
from volumetric vascular structures and clinical information.
Jiang et al. (2022) developed a precise and automatic machine
learning classifier on the basis of transcriptomic and microbiota
data to predict the risk of AD. This method can accurately
distinguish 161 subjects with AD from healthy individuals.
Holm et al. (2021) developed two machine learning models
to predict AD and explore the relationship between various
immune markers in the serum of AD patients and AD disease
severity based on clinically obtained biomarkers. Clayton
et al. (2021) conducted a dermatological biopsy transcriptome
profiling for AD. They performed cross-validation at different
skin inflammation conditions and disease stages by using co-
expression clustering and machine learning tools, ultimately
revealing the impact of keratin-forming cell programming on
skin inflammation and suggesting that perturbation of uniaxial
immune signaling alone may not be sufficient to resolve keratin-
forming cell immunophenotype abnormalities. Berna et al.
(2021) constructed a machine learning framework for exploring
the association between AD pathogenesis and low-frequency,
rare alleles. However, because of the variety of factors that
influence the physiological status of AD. Although the above
scholars have conducted a series of explorations and studies
for the prevention, diagnosis and treatment of AD, these extant
studies are still inadequate for AD.

Therefore, to further explore the key factors affecting
the physiological condition of AD, we propose a novel
and effective feature selection method, bSRWPSO-FKNN, by
combining the swarm intelligence optimization algorithm and
machine learning techniques in this paper. While proposing
the method to make the feature selection performance of the
combination of particle swarm optimization (PSO) and the
FKNN more outstanding, we first enhance the PSO. Thus,
an improved variant of PSO combined with Sobol sequence
population initialization (SOB), random replacement strategy
(RRS), and adaptive weight strategy (AWS), named SRWPSO,
is proposed for the first time. In SRWPSO, this study exploits
the advantage of uniform distribution of low discrepancy
sequences by the SOB, which enhances the diversity of the
initial population and the traversal of the population space. It
makes it easier for PSO to find the optimal particle position
at the beginning. RRS and AWS are also introduced into PSO,
which cooperate to make the PSO overcome the shortcomings of
poor convergence ability and having fallen into local optimum.
Moreover, the comprehensive performance of SRWPSO is
demonstrated on 30 benchmark functions of CEC 2014, mainly
including mechanism combination verification experiments,
quality analysis experiments, comparison experiments with
traditional algorithms, comparison experiments with famous
variants, and comparison experiments with new peer variants.
The benchmark function validation experiments show that
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SRWPSO, under the action of the three enhancement strategies,
has the relatively best all-around performance among all the
well-known algorithms involved in the comparison. Then, to
apply SRWPSO to feature prediction, a binary version of
SRWPSO is proposed in this paper, named bSRWPSO. Next,
this paper combines bSRWPSO with FKNN to propose the
bSRWPSO-FKNN model.

What’s more, to prove the feature selection performance
of the model, the article firstly uses nine public datasets of
the UCI to compare bSRWPSO with 10 other binary versions
of the algorithm based on FKNN through the 10-fold cross-
validation experiment. Then, this article also sets up a series
of comparison experiments for the model on a medical dataset
by the 10-fold cross-validation, including the comparison
experiments of bSRWPSO combined with five classifiers, the
comparison experiments of bSRWPSO-FKNN with other well-
known classification models and the comparison experiments of
11 FKNN models combined with swarm intelligence algorithms.
In this paper, we analyze the results of the experiments
and demonstrate that bSRWPSO-FKNN has a significant core
advantage over all the methods involved in the comparison
experiments by combining the following evaluation indicators:
Accuracy, Sensitivity, Matthews correlation coefficient (MCC),
and F-measure. Finally, based on the bSRWPSO-FKNN and
the medical dataset (AD), the key features affecting AD are
extracted by 10 times 10-fold cross-validation experiments,
mainly including the content of lymphocytes (LY), Cat dander,
Milk, Dermatophagoides Pteronyssinus/Farinae, Ragweed, Cod,
and Total IgE. The correctness and validity of the experimental
results are also verified in the context of clinical medical practice.
The main contributions of this study are summarized below.

1. An improved variant is proposed based on the PSO,
named SRWPSO, which has stronger convergence in
global optimization tasks.

2. A binary algorithm is proposed for solving discrete
problems, named bSRWPSO.

3. A novel and efficient medical prediction method
is proposed by combining bSRWPSO and FKNN,
named bSRWPSO-FKNN.

4. The bSRWPSO-FKNN is successfully applied to AD
prediction and provides a scientific approach to diagnosing
AD and other disorders.

The rest of the paper is structured as follows. Section
2 describes the main work related to this article. Section 3
introduces the principle of operation of the original PSO.
In section 4, the improvement process of the SRWPSO is
presented. In section 5, the proposed bSRWPSO-FKNN is
described. Section 6 sets up a series of benchmark function
experiments to verify the advantages of SRWPSO. Section 7
sets up a series of feature selection experiments for bSRWPSO-
FKNN and validates the potential of the method by the 10 times

10-fold cross-validation experiments. At last, section 8 reviews
all the contents and guides the future work.

2. Related works

In recent years, feature selection technology based on
swarm intelligence algorithms and machine learning techniques
has gained wide attention in the field of medical diagnosis.
Furthermore, many excellent machine learning methods have
also been developed and applied to link diseases with various
factors (El-Kenawy et al., 2020; Liu et al., 2020; Houssein et al.,
2021; Hu et al., 2022a; Liu S. et al., 2021; Li Y. et al., 2022). For
example, Hu et al. (2022b) presented a predictive framework
based on an improved binary Harris hawk optimization (HHO)
algorithm combined with a kernel extreme learning machine
(KELM), which provides adequate technical support for early
and accurate assessment of COVID-19 and differentiation
of disease severity. Hu et al. (2022c) proposed a diagnostic
model based on an improved binary mutation quantum grey
wolf optimizer (MQGWO) and the FKNN techniques. They
validated the model for hypoalbuminemia by predicting trends
in serum albumin levels.

Liu et al. (2020) used the suggested COSCA method to
optimize the two critical parameters of the SVM. As a result, they
proposed a medical model that can self-directed the prediction
of cervical hyperextension injury, named COSCA-SVM. Wu
S. et al. (2021) combined an improved variant of the sine
cosine algorithm (LSCA) and the FKNN techniques to propose a
medical predictive model, named LSCA-FKNN, and successfully
Its effectiveness has been validated on the disease in 3 medical
datasets and lupus nephritis. Based on the proposed dispersed
foraging sine cosine algorithm (DFSCA) and the KELM. Xia
et al. (2022) established a new machine learning model called
DFSCA-KELM. The medical diagnostic significance of the
model was successfully confirmed by six public datasets and
two real medical cases in the UCI library. Yang X. et al. (2022)
proposed a feature selection framework called BSWEGWO-
KELM and successfully verified the framework’s effectiveness
by analyzing 1,940 records from 178 HD patients. Ye H. et al.
(2021) proposed a predictive model that utilizes the HHO to
optimize the FKNN, called HHO-FKNN. They successfully used
this model to distinguish the severity of COVID-19, which one
of the most hard cases in medicine (Li H. et al., 2021). Zuo
et al. (2013) proposed an effective and efficient diagnostic system
for Parkinson’s disease (PD) diagnosis based on particle swarm
optimization (PSO) enhanced FKNN, which provides strong
technical support for the diagnosis of PD.

Optimization methods are the oldest methods that can
quickly bring feasible solutions using deterministic and gradient
info (Cao et al., 2020b, 2021a,b) or without them (metaheuristic
class). Also, as an emerging evolutionary computing technique,
swarm intelligence algorithms have become the focus of more
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and more researchers. With the escalation of the solution
problem, many different swarm intelligence optimization
algorithms have gradually emerged to suit different problems.
For example, there is ant colony optimization based on
continuous optimization (ACOR) (Dorigo, 1992; Dorigo and
Caro, 1999; Socha and Dorigo, 2008), particle swarm optimizer
(PSO) (Cao et al., 2020a), different evolution (DE) (Storn and
Price, 1997), sine cosine algorithm (SCA) (Mirjalili, 2016),
HHO (Heidari et al., 2019b), grey wolf optimization (GWO)
(Mirjalili et al., 2014), hunger games search (HGS) (Yang et al.,
2021), Harris hawks optimization (HHO) (Heidari et al., 2019b),
slime mould algorithm (SMA) (Li S. et al., 2020), Runge Kutta
optimizer (RUN) (Ahmadianfar et al., 2021), weighted mean of
vectors (INFO) (Ahmadianfar et al., 2022), colony predation
algorithm (CPA) (Tu et al., 2021b), whale optimization
algorithm (WOA) (Mirjalili and Lewis, 2016), bat-inspired
algorithm (BA) (Yang, 2010), moth-flame optimization (MFO)
(Mirjalili, 2015), wind-driven optimization (WDO)(Bayraktar
et al., 2010), and so on. As time progresses, the drawbacks of
the traditional swarm intelligence algorithm have also gradually
emerged with the change of the problem, mainly including the
slow convergence speed and low convergence accuracy of the
algorithm when solving the problem. Therefore, many scholars
have proposed a series of optimization variants based on the
traditional algorithm. For example, there are hybridizing SCA
with DE (SCADE) (Nenavath and Jatoth, 2018), chaotic BA
(CBA) (Adarsh et al., 2016), modified SCA (m_SCA) (Qu et al.,
2018), chaotic random spare ACO (RCACO) (Dorigo, 1992;
Dorigo and Caro, 1999; Zhao et al., 2021), ACO with Cauchy
and greedy levy mutations (CLACO) (Dorigo, 1992; Dorigo
and Caro, 1999; Liu L. et al., 2021), hybridizing SCA with PSO
(SCA_PSO) (Nenavath et al., 2018), double adaptive random
spare reinforced WOA (RDWOA) (Chen et al., 2019), boosted
GWO (OBLGWO) (Heidari et al., 2019a), fuzzy self-tuning PSO
(FSTPSO) (Nobile et al., 2018) and so on. Furthermore, they
have been well applied in many fields, such as resource allocation
(Deng et al., 2022a), feature selection (Hu et al., 2022a; Liu Y.
et al., 2022), complex optimization problem (Deng et al., 2022b),
robust optimization (He et al., 2019, 2020), fault diagnosis (Yu
et al., 2021), scheduling problems (Gao et al., 2020; Han et al.,
2021; Wang et al., 2022), medical diagnosis (Chen et al., 2016;
Wang et al., 2017), multi-objective problem (Hua et al., 2021;
Deng et al., 2022d), solar cell parameter Identification (Ye X.
et al., 2021), expensive optimization problems (Li J.-Y. et al.,
2020; Wu S.-H. et al., 2021), gate resource allocation (Deng et al.,
2020a, 2022b), and airport taxiway planning (Deng et al., 2022c).

Inspired by the foraging behavior of bird flocks, Kennedy
and Eberhart (1995) proposed PSO, which is a stochastic
search algorithm based on group collaboration developed
by simulating the foraging behavior of bird flocks in 1995.
Then, many famous scholars have researched and developed
various variants of PSO based on different problems. Zhou Q.
et al. (2021) propose a human-knowledge-integrated particle

swarm optimization (Hi-PSO) scheme to globally optimize
the design of the hydraulic-electromagnetic energy-harvesting
shock absorber (HESA) for road vehicles. Nagra et al. (2019)
put forward a mixed population algorithm (GSADMSPSO)
that combines dynamic multi-swarm PSO (DMSPSO) and a
gravitational search algorithm. Wang et al. (2021) proposed a
dynamic modified chaotic PSO algorithm (DMO). Tu et al.
(2020) proposed a novel quantum-inspired PSO (MQPSO)
algorithm for electromagnetic applications. Zhen et al. (2020)
proposed a hybrid optimization method (WPA-PSO) based on
the wolf pack algorithm (WPA) and PSO. They proved that it
has obvious advantages over a single algorithm in estimating and
predicting the parameters of the software reliability model. The
above improved PSO algorithms can have stronger capability
to solve problems in one or several specific fields. However,
there is no free lunch (Wolpert and Macready, 1997). In other
words, the above methods gain enhancements in some problems
while exposing drawbacks in other problems. Based on the
above studies, we can conclude that PSO is an excellent swarm
intelligence optimization algorithm, but there are many areas
for improvement. Therefore, in this paper, an improved version
(SRWPSO) is proposed for PSO and succeeds in making the
classifier obtain better experimental results in feature selection
experiments.

3. An overview of PSO

During the food search, PSO evaluates the fitness value of
each individual at a location by a special evaluation function and
uses this value to characterize the likelihood that the searching
individual will find food there. Theoretically, the lower the
evaluation value, the better the location. In addition, PSO
introduces a memory mechanism for each searching individual
to record that individual’s current optimal position. Then, the
best position of all the independent individuals in the whole
group of birds is used to determine the best foraging point for
the whole group of birds, which is the global optimal position
for the whole solution process. The PSO model is described in
the section below.

Before updating the particle population, the PSO initializes
a random population space X, as shown in Eq. 1.

Xn
m =



(X1,1,X1,2,,X1,3 · · ·X1,n)

(X2,1,X2,2,,X2,3 · · ·X2,n)
...

(Xm,1,Xm,2,Xm,3 · · ·Xm,n)

(1)

where Xn
m represents an initial population space, m represents

the number of individuals in the population, and n represents
the number of dimensions of each individual.

For each particle, the corresponding position is a potential
solution to the optimization problem, and each position’s fitness
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value is obtained by a special evaluation function. Then, it is
made to compare with the recorded fitness value of the current
individual, and if it is smaller than the previous fitness value, it
is replaced. The optimal position of that individual is updated
once. In each search process, the optimal position of each
particle is recorded by pB, as shown in Eq. 2.

pBi = (pBi,1, pBi,2, pBi,3 · · · pBi,dim) (2)

where pBi records the best foraging position found by the ith
particle in the current population, and dim indicates that each
individual has dim dimensions.

The updating method is shown in Eq. 3. In the equation,
Xi(t + 1) represents the position of the individual after the
current update process, pBi (t + 1) represents the best position
obtained by the current individual after the t + 1th update, and
f ( ) represents the evaluation method for calculating the fitness
value of each individual.

pBi (t + 1) =

{
Xi(t + 1), if f (Xi (t + 1)) < f (pBi (t))
pBi (t) , otherwise

(3)
For the whole particle population, the current search

position of all particles becomes one of the candidates for the
global optimal solution. The PSO will use the whole update
process of the population to find the only global optimal target
position and record it with Eq. 4, which is updated in the way
shown in Eq. 5.

gBest = (gBest1, gBest2, gBest3 · · · gBestdim) (4)

gBest =

{
Xi(t + 1), if f (Xi (t + 1)) < f (gBest)

gBest, otherwise
(5)

where gBest indicates the global optimal position.
Of course, the key role of the PSO in updating the population

of individuals is the movement vector of each particle, as shown
in Eq. 6. Based on this vector, PSO can control the update
direction and movement step of each particle, as represented by
Eq. 7.

Vi = (Vi,1,Vi,2,Vi,3 · · ·Vi,dim) (6)

Vi,j (t + 1) = Vi,j (t)+ c1 · rand ·
(
pBi,j (t)− Xi,j (t)

)
+c2 · rand · (gBestj − Xi,j (t)) (7)

where both c1 and c2 are learning factors representing the
movement of the particles toward pB and gBest, respectively.
To make the particles move under certain limits for better
merit search, the PSO constrains the displacement vector
Vε[−Vmax,Vmax]. To deal with the displacement vector
crossing problem, the researchers made the following settings,
as shown in Eq. 8.

Vi,j =

{
Vmax, Vi,j > Vmax

−Vmax, Vi,j < −Vmax
(8)

Finally, the update formula for individuals is shown
in Eq. 9.

Xi,j (t + 1) = Xi,j (t)+ Vi,j(t + 1) (9)

In summary, the workflow of the traditional PSO is shown
in Algorithm 1 and Figure 1.

Input: The fitness function F(x),

maximum evaluation number (MaxFEs),
population size (N), dimension (dim)

Output: the best location (gBest)
Initialize a random population X
Initialize the parameters: FEs, t,Vmax, c1, c2

Initializes the velocity vector:

V = zeros(N, dim)
Initializes the optimal position

and grade of the current individual:

pB = zeros
(
N, dim

)
, pB_score

Initialize position vector and score

for the best location: gBest, gBest_score
While (FEs < MaxFEs)
For i = 1: size(X,1)

Keep each particle in the search

space

Calculate the fitness value for

every search particle

FEs = FEs + 1
Update the locations and scores

of gBest and pBi
End for

For i = 1: size(X,1)

For j = 1: size(X,2)

Updates the velocity vector

Vi,j by Eq. 7 and Eq. 8

Update the location of

particles by Eq. 9

End for

End for

t = t + 1

End while

Return gBest

Algorithm 1 Pseudocode for the PSO

In summary, the time complexity of traditional PSO
can be easily found and is mainly affected by initialization,
population updating, and fitness value calculation. The
population initialization is the most important component
of the initialization phase and can be analyzed as
O
(
Initializing

)
= O(N × dim). The population updating

phase was analyzed as O
(
Updating

)
= O(N × dim),

and the fitness value calculation phase was analyzed
as O

(
Calculating

)
= O(N × dim). Thus,

Frontiers in Neuroinformatics 05 frontiersin.org

https://doi.org/10.3389/fninf.2022.1063048
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-16-1063048 January 10, 2023 Time: 15:5 # 6

Li et al. 10.3389/fninf.2022.1063048

FIGURE 1

The workflow diagram of the PSO.

O (PSO) = O
(
N × dim

)
+O

(
T =

(
N × dim

))
=

O((N × dim) = (T+1)). Here, N denotes the population
size, dim denotes that each particle has dim dimensions, and
T = MaxFEs/M denotes the number of iterations, which is
determined by having the total number of evaluations (MaxFEs)
and the number of evaluations (M) during each iteration.

4. The proposed SRWPSO

4.1. Sobol sequence

Based on studies related to metaheuristic algorithms, it can
be found that the distribution of initial population individuals
affects the convergence performance of metaheuristic
algorithms to some extent (Rahnamayan et al., 2007;
Kazimipour et al., 2014; Dokeroglu et al., 2019). Therefore, in
this study, a more uniformly distributed low-difference random
sequence (Sobol sequence) is adopted instead of the traditional
pseudo-random method in an attempt to improve the diversity
of the population and the algorithm’s traversal of the population
space through low-difference sample points, thus enhancing
the efficiency of the algorithm in finding the global optimal
solution.

In addition, many scholars have also conducted related
research on population initialization. For example, Yang X.
et al. (2022) used a sinusoidal initialization strategy (SS) to

initialize the population of the GWO algorithm and successfully
enhanced the search capability of traditional GWO. Qi et al.
(2022a) combined the Levy fight strategy and the traditional
initialization method and proposed a Levy fight initialization
method with better effect and successfully used to improve
WOA. Arora and Anand (2019) used the Circle chaos method
to initialize the population and improve the Grasshopper
optimization algorithm(GOA). The initialization steps in this
study are as follows.

Step 1: The initialized population space takes a range of
values Xε[lb, ub]. lb denotes the lower bound of the population’s
space, and ub denotes the upper bound of the population space.

Step 2: Sobol sequence generates random sample points with
low variance properties Sε[0, 1].

Step 3: The initialization method is defined as Eq. 10.

Xi = lb+ Si · (ub− lb) (10)

where Xi denotes the i-th particle in the population and iε[1,N].
Step 4: Repeating Step 3 N times based on population size N.

4.2. Random replacement strategy

To develop the population in a better direction, many
scholars have tried to enhance the ability of traditional swarm
intelligence algorithms for population updating by various
methods. For example, the random replacement strategy has
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been effectively used in the literature (Gupta and Deep, 2018;
Chen et al., 2019; Zhao et al., 2021). This strategy enriches
the diversity of the population of individuals by replacing the
position vector in the j-th dimension of the current individual
with the position vector in the same dimension of the current
swarm optimal individual. Thus, it improves the chance of
exploiting the optimal individual.

Inspired by the method, this paper introduces the random
replacement strategy into PSO, with the difference that this
study transforms the object being replaced. In this improvement
process, we combine the characteristic of PSO to record
the current best position of each particle and achieve the
improvement of the traditional PSO by replacing the position
vector on the j-th dimension of the current best position of each
particle with the position vector on the j-th dimension of the
best individual of the population, as shown in Eq. 11.

pBi,j = gBestj (11)

During the search process, when the current optimal
position of the population obtained by the algorithm approaches
the global best position, we cannot exclude the possibility
that it has excellent position vectors in some individual
dimensions. Therefore, a probability parameter is introduced in
the replacement strategy, as shown in Eq. 12.

pBi,j(t + 1) =

{
gBestj, a < C
pBi,j, otherwise

(12)

C = tan
(

π ·
(
rand − 0.5

) )
(13)

a = 1− FEs/MaxFEs (14)

where C denotes a Cauchy random number, and a is a decay
factor that decays linearly from 1 to 0 as the number of
evaluations increases.

4.3. Adaptive weight strategy

From the perspective of convergence speed and accuracy,
the traditional PSO is easily trapped in the local optimum and
lacks the ability to jump out of the local optimum in the middle
and early stages of the updating process. In this paper, to remedy
this deficiency, the adaptive weight ω is introduced into the
velocity vector of the traditional PSO. The purpose is to improve
the diversity of individuals in the population by increasing the
perturbation capacity of the velocity vector, which facilitates the
particles to explore and exploit the global optimum better, as
shown in Eq. 15.

ω =

(
1−

FEs
MaxFEs

)β

(15)

β = 1− C1 · S/MaxFEs (16)

where β stands for a perturbation parameter under the control
of C1 and S, giving the possibility of jumping out of the linearly
decreasing trajectory when ω decreases linearly from 1 to 0. C1,
like C, denotes a Cauchy random number. S denotes an adaptive
parameter with an initial value of 0.01, which is updated, as
shown in Eq. 17.

S =

{
S/2, if gBest updated
S+ 1, otherwise

(17)

Therefore, the update of the velocity vector after the
introduction of the adaptive weight ω can be expressed as Eq. 18.

Vi,j (t + 1) = ω · V i,j (t)+ c1 · rand ·
(
pBi,j (t)− Xi,j (t)

)
+c2 · rand · (gBesti,j − Xi,j (t)) (18)

4.4. Implementation of SRWPSO

In order to improve the overall performance of the PSO,
this paper makes PSO combined with the three optimization
strategies introduced above for the first time and proposes an
enhanced PSO named SRWPSO. First, this study introduces the
Sobol sequence in PSO for initializing the particle population
to enhance the algorithm for population space traversal by
improving the overall quality of the initial population. Next,
in order to improve the possibility of moving to the global
optimal position, this study introduces a random substitution
strategy based on the optimal position of the current particles.
Finally, an adaptive weight strategy is introduced to improve
the algorithm’s ability to jump out of the local trap during
the optimization search to increase the particle population’s
perturbation ability by enhancing the displacement vector’s
scalability. The specific framework of the enhanced SRWPSO is
shown in Algorithm 2 and Figure 2.

Input: The fitness function F(x),

maximum evaluation number (MaxFEs),
population size (N), dimension (dim)

Output: the best location (gBest)
Initialize a random population X by

Eq. 10

Initialize the parameters:

FEs, t,Vmax, c1, c2, S
Initialize the velocity vector:

V = zeros(N, dim)
Initialize the optimal position and

grade of the current individual:

pB = zeros
(
N, dim

)
, pB_score

Initialize position vector and score

for the best location: gBest, gBest_score
For i = 1: size(X,1)

Keep each particle in the search
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space

Calculate the fitness value for

every search particle

FEs = FEs + 1
Update the locations and scores

of gBest and pBi
End for

While (FEs = MaxFEs)
For i = 1: size(X,1)

Updates the position of particles

by Eq. 12

Keep each particle in the search

space

Calculate the fitness value for

every search particle

FEs = FEs+ 1
Update the locations and scores

of gBest and pBi
End for

Update the adaptive weight ω by Eq. 15

For i = 1: size(X,1)

For j = 1: size(X,2)

Update the velocity vector

Vi,j by Eq. 18

Update the location of

particles by Eq. 9

End for

End for

For i = 1: size(X,1)

Keep each particle in the search

space

Calculate the fitness value for

every search particle

FEs = FEs + 1
Update the locations and scores

of gBest and pBi
Update the adaptive factor S by

Eq. 17

End for

t = t + 1

End while

Return gBest

Algorithm 2 Pseudocode for the SRWPSO

Analyzing the above workflow, we can find that the
complexity of SRWPSO is mainly determined by the population
size (N), dimension size (dim), and the maximum number

FIGURE 2

The workflow diagram of the SRWPSO.

Frontiers in Neuroinformatics 08 frontiersin.org

https://doi.org/10.3389/fninf.2022.1063048
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-16-1063048 January 10, 2023 Time: 15:5 # 9

Li et al. 10.3389/fninf.2022.1063048

FIGURE 3

The basic workflow of the bSRWPSO-FKNNN.

of evaluations (MaxFEs). If the number of times the fitness
value is calculated in one iteration is M, the number of
iterations (T) can be calculated as T = MaxFEs/M, which
is determined by MaxFEs and the application time of the
evaluation function. Therefore, the overall time complexity
is O(SRWPSO) = O(Sobol initialization) + O(Assessment
and selection of initialization) + O(Random replacement
strategy) + O(Adaptive weight strategy). The complexity under
the Sobol initialization is O(N × dim). The complexity under
assessment and selection of initialization is O(N × dim).
The complexity under the random replacement strategy is
O(N × dim+ 2 × N × dim). The complexity under
the adaptive weight strategy is O(2 × 2 × N × dim).
In conclusion, O (SRWPSO) = O

(
2 × N × dim

)
+

T =
(
O
(
4 × N = dim

)
+ O

(
3 × N × dim

))
= O

(
N ×

dim+ T ×
(
7N × dim

) )
.

5. The proposed bSRWPSO-FKNN

5.1. Binary conversion method

It is well known that feature selection is a binary-
based discretization problem. However, the SRWPSO in
this paper is proposed based on a continuous problem.
Therefore, in order to make the SRWPSO applicable to
the feature selection experiments, this subsection provides
a binary conversion method suitable for the SRWPSO for
converting from the continuous problem to the feature
selection problem and finally proposes a novel discrete binary
version of the SRWPSO, named bSRWPSO. The following
is a partial description of the binary conversion process of
the SRWPSO.
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TABLE 1 Description of the 30 benchmark functions.

Class No. Functions F∗i = Fi(x∗)

Unimodal functions 1 Rotated high conditioned elliptic function 100

2 Rotated Bent Cigar function 200

3 Rotated discus function 300

Simple multimodal functions 4 Shifted and rotated Rosenbrock’s function 400

5 Shifted and rotated Ackley’s function 500

6 Shifted and rotated Weierstrass function 600

7 Shifted And rotated Griewank’s function 700

8 Shifted Rastrigin’s function 800

9 Shifted and rotated Rastrigin’s function 900

10 Shifted Schwefel’s function 1,000

11 Shifted and rotated Schwefel’s function 1,100

12 Shifted and rotated Katsuura function 1,200

13 Shifted and rotated HappyCat function 1,300

14 Shifted and rotated HGBat function 1,400

15 Shifted and rotated expanded Griewank’s plus Rosenbrock’s function 1,500

16 Shifted and rotated expanded Scaffer’s F6 function 1,600

Hybrid functions 17 Hybrid function 1 (N = 3) 1,700

18 Hybrid function 2 (N = 3) 1,800

19 Hybrid function 3 (N = 4) 1,900

20 Hybrid function 4 (N = 4) 2,000

21 Hybrid function 5 (N = 5) 2,100

22 Hybrid function 6 (N = 5) 2,200

Composition functions 23 Composition function 1 (N = 5) 2,300

24 Composition function 2 (N = 3) 2,400

25 Composition function 3 (N = 3) 2,500

26 Composition function 4 (N = 5) 2,600

27 Composition function 5 (N = 5) 2,700

28 Composition function 6 (N = 5) 2,800

29 Composition function 7 (N = 3) 2,900

30 Composition function 8 (N = 3) 3,000

(1) Initialize the problem domain as [0,1]. In the problem,
each dimension of each individual represents an attribute of the
problem, and each feature has a data marker between 0 and 1.

(2) Discrete the continuous problem. As shown in Eq. 19,
the obtained feature values are transformed into 0 or 1 by the
V-transformation equation, indicating whether the feature is
selected. Where 1 indicates that it is selected and 0 represents
the opposite meaning.

Xd (t + 1) =

{
Xd, V(Xd (t)) ≤ r
∼Xd, otherwise

(19)

where r is a random number from 0 to 1, Xd denotes
the binary transformed position of the search agent, and

V(·) is a V-shaped discretization equation, as shown in
Eq. 20.

V (x) = |tanh(x)| (20)

5.2. Fuzzy K-nearest neighbor

K-nearest neighbors (KNN) (Cover and Hart, 1967;
Jadhav et al., 2018; Tang et al., 2020) is a simple, efficient,
nonparametric classification method proposed by Cover
and Hart (1967) and one of the world-famous machine
learning algorithms since the 20th century. In KNN,
one of its classes is assigned according to the most
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TABLE 2 The parameters of the algorithms involved in this article.

Algorithms Parameters

SRWPSO Vmax = 6; c1 = 2; c2 = 2; s = 0.01;w = [1, 0]

PSO Vmax = 6; c1 = 2; c2 = 2;

ACOR k = 10; q = 0.5; ξ = 1

DE Scaling factor = 0.5; crossover probability = 0.5

SCA r1 = [2, 0]

HHO Rabbit Energy = [2, 0]

GWO a = [2, 0]

WOA a1 = [2, 0] ; a2 = [−2,−1] ; b = 1

BA Qmin = 0;Qmax = 2

MFO a = 2; b = 1

WDO –

SCADE βmin = 0.2; βmax = 0.8; Pcr = 0.8 or Pcr = 0.1

CBA Qmin = 0;Qmax = 2

RCACO ξ = 0.9; k = 10; q = 0.8; P1 ∈

0, 1 and P10.25, 0.5, 0.75, 1;µ = 4

m_SCA JR = 0.1; a = 2; r1 = [2, 0] ;

CLACO ξ = 1; k = 10; q = 0.5; β = 1.5

SCA_PSO M = 4;N = 9; c1 = 2; c2 = 2; a = 2

RDWOA a1 = [2, 0]; a2 = [−2,−1]; b = 1; s = 0

OBLGWO a1 = [2, 0] ; a2 = [−2,−1] ; b = 1; beta = [2, 0]

FSTPSO c1 = 2; c2 = 2;w = 0.9

EWOA wMax = 0.7;wMin = 0.2; a = [2, 0] ;

EESHHO Rabbit Energy = [2, 0]

XMACOR ξ = 1; k = 10; q = 0.5; β = 1.5

CAGWO type = 2; a = [2, 0]

SGLSCA a = 2; k = 1

IGWO r1 = r2 = rand (0, 1) ; β = ω = 10;C = 2 = r2

GCHHO Rabbit Energy = [2, 0]

TABLE 3 The parameter setting of the experiment.

Parameters Parameter meaning Value

N The population size 30

Fold Random tests number 30

Dim Objective function dimensions 30

Ub The upper boundary of the search space 100

Lb The lower boundary of the search space −100

MaxFEs Maximum evaluations number 300,000

common class in its K-nearest neighbors. Keller et al. (1985)
combined fuzzy set theory with the KNN and proposed
a fuzzy version of the KNN, named the FKNN (Keller
et al., 1985; Chen et al., 2011, 2013; Mailagaha Kumbure
et al., 2020). Unlike the individual classes of the KNN,

TABLE 4 Description of the experimental environment.

Equipment Parameters

System version Windows 11 Professional Edition

System type 64-bit operating systems, x64-based processors

Processor 11th Gen Intel(R) Core (TM) i7-11700 @ 2.50GHz 2.50
GHz

RAM 32.0 GB

Matlab version Matlab2021b

TABLE 5 The results of strategy combinations.

SOB RRS AWS

SRWPSO 1 1 1

SRPSO 1 1 0

SWPSO 1 0 1

RWPSO 0 1 1

SOBPSO 1 0 0

RRPSO 0 1 0

AWPSO 0 0 1

PSO – – –

TABLE 6 The results of Wilcoxon signed-rank test of
different versions.

Algorithms +/−/= Mean Rank

SRWPSO – 1.90 1

SRPSO 17/1/12 4.07 4

SWPSO 15/1/14 3.33 2

RWPSO 11/1/18 3.47 3

SOBPSO 21/0/9 5.37 6

RRPSO 25/1/4 5.37 6

AWPSO 23/2/5 4.70 5

PSO 26/1/3 6.40 8

Bold values represent the optimal data.

the fuzzy affiliations of the samples of the FKNN
are assigned to different classes according to Eq. 21.

µi (x) =

∑k
j = 1 µi,j(1/‖ x-xj ‖2/(m−1))∑k
j = 1 (1/‖ x-xj ‖2/(m−1))

(21)

In the above equation, i = 1, 2, 3, ...,C and
j = 1, 2, 3, ..., k. C denotes the number of classes and k
represents the number of the nearest neighbors. In calculating
the contribution of each neighbor to the affiliation value, the
FKNN method determines the weight of the distance in the
calculation process by using the fuzzy strength parameter m,
which is usually taken as m ∈ (1,∞). ‖ x-xj ‖ is calculated using
the Euclidean distance, which denotes the distance between x
and its j-th nearest neighbor xj. µi,j is the membership degree
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FIGURE 4

The results of the Friedman test of different versions.

FIGURE 5

The analysis results of SRWPSO and PSO from multiple perspectives. See section 6.3 for details.
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FIGURE 6

The balance analysis results of SRWPSO and PSO.

of the pattern xj from the training set to the class i, among the k
nearest neighbors of x.

5.3. Implementation of
bSRWPSO-FKNN

This section proposes a novel feature prediction model,
named bSRWPSO-FKNN, based on the binary SRWPSO and
the FKNN, which provides technical support for conducting
feature selection experiments. The principle is to optimize
the subset of data produced during the experiment by using
the ability of the bSRWPSO to find the global optimum in
order to obtain a better and more suitable optimization set
for feature selection experiments and then use the FKNN to
perform feature prediction on the obtained optimization set.

By the above method, we not only exploit the potential of
the FKNN but also improve the efficiency and accuracy of the
classification experiments.

In addition, to better achieve the classification performance
of the bSRWPSO-FKNN, this paper provides an evaluation
method based on error rate and feature subset for aiding feature
prediction, as shown in Eq. 22.

Fitness = α · Error + β ·
R
D

(22)

where Error denotes the error rate of classification results, and
the sum of classification accuracy is 1; D denotes the number of
features in the dataset involved in feature selection; R denotes
the number of features in the subset of data obtained by
the feature selection experiment; α and β are two important
weight parameters, and α+ β = 1, and α = 0.99 reflects the
importance of error rate.

In summary, the workflow of the bSRWPSO-FKNN
proposed in this paper is shown in Figure 3.

6. Benchmark function validation

In this section, this paper experiments to test the
performance of the SRWPSO based on 30 benchmark functions
from the CEC 2014. The convergence process of the SRWPSO
is analyzed from several aspects, and its ability to escape
the local optimum and search for the global optimum is
fully demonstrated.

6.1. Experimental setup

In order to verify the comprehensive ability of SRWPSO,
this section sets up performance verification experiments
for SRWPSO from four aspects, including mechanism

TABLE 7 The results of the Wilcoxon signed-rank test of SRWPSO
with traditional algorithms.

Algorithms +/−/= Mean Rank

SRWPSO – 1.53 1

ACOR 22/2/6 4.97 4

DE 20/6/4 3.20 2

SCA 30/0/0 8.70 10

HHO 22/0/8 4.47 3

GWO 26/3/1 5.73 5

WOA 28/0/2 6.83 8

BA 29/1/0 5.97 7

MFO 30/0/0 7.50 9

WDO 29/0/1 5.90 6

Bold values represent the optimal data.
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FIGURE 7

The results of Friedman test of SRWPSO with traditional algorithms.

FIGURE 8

The convergence curves of SRWPSO with traditional algorithms.
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FIGURE 9

The time complexity evaluation results of SRWPSO with traditional algorithms.

combination verification experiments, quality analysis
experiments, comparison experiments with traditional
algorithms, comparison experiments with famous variants,
and comparison experiments with new peer variants. At the
same time, combined with the experimental results, this section
analyzes the convergence process of SRWPSO and proves its
excellent performance. As shown in Table 1, this subsection
gives the specific details of the CEC 2014 benchmark function
set. The parameters of the algorithms involved in this paper are
shown in Table 2.

For the purpose of increasing the persuasion of test
outcomes, we utilized two representative statistical standards in
the analysis, namely average value (AVG) and variance (STD).
In the analysis part, the AVG is employed to represent the
comprehensive capability of the algorithm, and the smaller
its value is, the better the comprehensive performance of
the algorithm is; the STD reflects the performance state of
the algorithm, and the smaller its value is, the more stable
its comprehensive performance is. Then, to further discuss
the comparative experimental results, this section provides
two popular statistical methods for the experimental analysis

process: the Wilcoxon signed-rank test (García et al., 2010)
and the Friedman test (García et al., 2010). The “+,” “=,” and
“–” appearing in the Wilcoxon signed-rank test, respectively

TABLE 8 The results of the Wilcoxon signed-rank test of SRWPSO
with famous variants.

Algorithms +/−/= Mean Rank

SRWPSO – 1.87 1

SCADE 28/0/2 8.40 9

CBA 28/0/2 6.60 7

RCACO 19/8/3 3.50 3

m_SCA 28/1/1 6.70 8

CLACO 17/9/4 3.23 2

SCA_PSO 23/2/5 4.67 5

RDWOA 20/2/8 4.43 4

OBLGWO 25/0/5 5.63 6

FSTPSO 30/0/0 9.20 10

Bold values represent the optimal data.
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FIGURE 10

The results of Friedman test of SRWPSO with famous variants.

FIGURE 11

The convergence curves of SRWPSO with famous variants.
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FIGURE 12

The time complexity evaluation results of SRWPSO with famous variants.

mean that the performance of SRWPSO is superior to, equal
to and inferior to competitors. In the table, the optimal data
of the experimental results are highlighted in black. Eventually,
some of the convergence curves are drawn to visualize the
convergence effect of the algorithms.

In addition, in order to balance the influence of the
experimental process on the experimental outcomes, the
experimental environment was unified from the internal and
external aspects of the experiment. As displayed in Table 3,
the study sets the population size, test times, target dimension,
and other aspects of each algorithm during the experiment to
eliminate the influence of internal experimental parameters
on the performance of each algorithm. The difference is
that the maximum number of the evaluation is used in
this experiment instead of the number of iterations, which
can be calculated by using iteration times. As shown in
Table 4, the study uses the same experimental equipment
to avoid the interference of the external experimental
environment, thus further increasing the fairness and
scientific nature.

6.2. Impacts of components

In this part, the experimental process of SRWPSO
is presented. In this process, this paper explores the

TABLE 9 The results of the Wilcoxon signed-rank test of SRWPSO
with new peer variants.

Algorithms +/−/= Mean Rank

SRWPSO – 1.90 1

EWOA 26/3/1 5.50 6

EESHHO 18/3/9 3.50 3

XMACOR 23/6/1 4.33 4

CAGWO 27/1/2 6.33 8

SGLSCA 13/3/14 2.80 2

IGWO 26/1/3 5.87 7

GCHHO 22/0/8 4.73 5

Bold values represent the optimal data.
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FIGURE 13

The results of Friedman test of SRWPSO with new peer variants.

FIGURE 14

The convergence curves of SRWPSO and new peer variants.
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FIGURE 15

The time complexity evaluation results of SRWPSO with new peer variants.

impact of three improved strategies on the performance
of PSO based on the CEC 2014 benchmark function
set. Table 5 shows the different combinations in the
improvement process. In the table, the SOB represents the
Sobol initialization strategy, the RRS represents the random
replacement strategy, and the AWS represents the adaptive
weight strategy.

TABLE 10 A detailed description of the public dataset.

Datasets Samples Features Classes

Australian 690 15 2

Breast 569 31 2

Clean 476 167 2

Heart 270 14 2

JPNdata 152 11 2

SpectEW 267 23 2

Vote 101 17 2

wdbc 569 31 2

Wielaw 240 31 2

Supplementary Appendix Table 1 reflects the effects of
the different combinations of strategies on the comprehensive
performance of PSO through AVG and STD. By analyzing the

TABLE 11 Key parameters of the experiment.

Public
parameters

Methods Other parameters

Iteration = 50
N = 20
Fold = 10

bSRWPSO w = [1 0]

bSCGWO q = 2;walk = 1

bGWO a = [2 0]

bGSA wMax = 20;wMin = 1e− 10

bPSO Max = 0.9, Min = 0,4

bALO –

bBA a = 0.5; r = 0.5

bSSA c1 = random in [0, 1] ;
c2 = random in [0, 1] ; β = 1.5

bQGWO a = [4 0]

bHHO ωa = 0.7;ωb = 0.2; |E| = [2 0] ;
β = 1.5

bSMA a = [0,5]; b = [0,1]
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TABLE 12 Detailed description of the evaluation criteria.

Name Formula Remark

Accuracy Accuracy = TP+TN
TP+FP+FN+TN A higher accuracy rate indicates a larger proportion of correctly predicted samples

Sensitivity Sensitivity = TP
TP+FN The closer the sensitivity to 1, the better the performance of the binary classification method to

correctly identify instances

MCC MCC = TP × TN−FP × FN
√
(TP+FP) × (TP+FN) × (TN+FP) × (TN+FN) A closer MCC to 1 indicates a more perfect prediction of the subject

F-measure F −measure = TP
TP+ FN+FP

2
A higher F-measure indicates that the classification results are more following expectations

TABLE 13 The analysis results of accuracy.

Australian BreastEW Clean

AVG STD AVG STD AVG STD

bSRWPSO 9.24630E-01 2.53900E-02 9.94740E-01 8.47750E-03 9.97920E-01 6.58810E-03

bSCGWO 9.12930E-01 3.16970E-02 9.89380E-01 1.24270E-02 9.97870E-01 6.72830E-03

bGWO 9.13000E-01 2.18680E-02 9.91290E-01 1.22650E-02 9.95830E-01 8.78410E-03

bGSA 9.20340E-01 2.59130E-02 9.92980E-01 1.22670E-02 9.89450E-01 1.79090E-02

bPSO 9.13120E-01 2.22600E-02 9.89470E-01 1.22680E-02 9.74730E-01 2.16530E-02

bALO 9.10140E-01 3.11640E-02 9.93010E-01 1.22380E-02 9.76860E-01 1.54750E-02

bBA 7.94440E-01 7.52480E-02 9.31570E-01 5.91060E-02 8.88700E-01 3.82810E-02

bSSA 8.95500E-01 2.60130E-02 9.87780E-01 1.83780E-02 9.57890E-01 2.81520E-02

bQGWO 9.09940E-01 3.26520E-02 9.92950E-01 1.22970E-02 9.91580E-01 1.46520E-02

bHHO 9.10220E-01 2.21880E-02 9.87780E-01 1.43390E-02 9.62190E-01 1.67140E-02

bSMA 8.84130E-01 2.70560E-02 9.71930E-01 2.06020E-02 9.49600E-01 2.82530E-02

Heart JPNdata SpectEW

bSRWPSO 9.48150E-01 4.68490E-02 9.79460E-01 3.31550E-02 9.51260E-01 3.97050E-02

bSCGWO 9.37040E-01 5.53490E-02 9.60830E-01 4.61140E-02 9.32760E-01 3.80800E-02

bGWO 9.33330E-01 4.55290E-02 9.52800E-01 5.51620E-02 9.44020E-01 4.70830E-02

bGSA 9.40740E-01 3.98140E-02 9.67920E-01 3.38530E-02 9.36300E-01 3.56080E-02

bPSO 9.37040E-01 4.63580E-02 9.67920E-01 3.38530E-02 9.36020E-01 3.63400E-02

bALO 9.40740E-01 4.99960E-02 9.67500E-01 7.07600E-02 9.36580E-01 4.30230E-02

bBA 7.07410E-01 1.41250E-01 8.47800E-01 9.91200E-02 8.00980E-01 9.10470E-02

bSSA 9.29630E-01 4.07590E-02 9.48690E-01 5.78260E-02 9.21750E-01 3.09000E-02

bQGWO 9.25930E-01 4.61930E-02 9.67500E-01 3.42920E-02 9.06530E-01 4.38240E-02

bHHO 9.44440E-01 4.70110E-02 9.67080E-01 4.68300E-02 9.24780E-01 3.56210E-02

bSMA 9.00000E-01 4.29450E-02 9.54520E-01 5.22390E-02 8.87680E-01 4.61800E-02

Vote wdbc Wielaw

bSRWPSO 9.93330E-01 2.10820E-02 1.00000E+00 0.00000E+00 9.62300E-01 3.07900E-02

bSCGWO 9.90110E-01 1.59310E-02 9.96460E-01 7.46360E-03 9.41490E-01 5.26440E-02

bGWO 9.79990E-01 2.29900E-02 9.98210E-01 5.64690E-03 9.50490E-01 4.64460E-02

bGSA 9.86770E-01 2.28800E-02 9.98210E-01 5.64690E-03 9.49790E-01 3.33510E-02

bPSO 9.93330E-01 1.40800E-02 9.96460E-01 7.46360E-03 9.45640E-01 3.94720E-02

bALO 9.90000E-01 2.24980E-02 9.94700E-01 1.19830E-02 9.41800E-01 2.93180E-02

bBA 8.54490E-01 1.46740E-01 9.57980E-01 2.74730E-02 7.67570E-01 9.36110E-02

bSSA 9.83330E-01 2.35700E-02 9.91230E-01 1.24070E-02 9.21290E-01 6.29560E-02

bQGWO 9.76540E-01 2.78200E-02 9.98250E-01 5.54790E-03 9.54320E-01 5.33510E-02

bHHO 9.89770E-01 1.64750E-02 9.94670E-01 8.57580E-03 9.49990E-01 4.30380E-02

bSMA 9.69870E-01 3.39470E-02 9.85960E-01 1.09940E-02 9.03960E-01 3.50090E-02

Bold values represent the optimal data.
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TABLE 14 The results of Friedman ranking for accuracy.

Method Rank-AVG Rank

bSRWPSO 1.22 1

bSCGWO 5.33 7

bGWO 4.78 4

bGSA 4.22 2

bPSO 4.89 5

bALO 4.44 3

bBA 11.00 11

bSSA 8.44 9

bQGWO 5.22 6

bHHO 5.67 8

bSMA 9.89 10

Bold values represent the optimal data.

data in the table, it can be seen that the SRWPSO occupies the
largest share of the number of excellent performances among
the 30 test functions, especially in the unimodal functions and
composition functions. For AVG, the smaller value obtained
by the SRWPSO indicates that it performs better on the
problem. Of course, the more frequency of occurrences of the
minimum state of the AVG in the 30 test functions means
that the SRWPSO is more adaptable to different problems.
For STD, a smaller value obtained by the SRWPSO indicates
a more stable performance on the corresponding problem.
Similarly, the number of minimum states of the STD also reflects
the adaptability of the corresponding algorithm to different
problems in a certain extent. In addition, the performance of
the PSO under single-strategy action is not outstanding enough
compared to the traditional PSO, and even slightly worse than
the traditional PSO in some problems. In the dual-strategy role,
the PSO performs relatively well in terms of overall capability,
especially the SWPSO and the RWPSO. Of course, by observing
the table, it is easy to find that the SRWPSO shows the best-
combined ability in this comparison test under the role of three
strategies.

Supplementary Appendix Table 2 presents the p-values
acquired based on the Wilcoxon signed-rank test. In analyzing
the experiments, the article has bolded the experimental results
less than 0.05 in the table, indicating that the excellent ability of
the SRWPSO has statistical significance and higher confidence
relative to the algorithms participating in the comparison. The
table shows that the p-values less than 0.05 occupy a significant
proportion compared to those greater than 0.05, especially
relative to the performance of the traditional PSO on the 30
benchmark functions. It indicates that the SRWPSO proposed in
this paper outperforms the single-strategy improvement variant,
the two-strategy improvement variant, and the original PSO in
the comparison experiments.

To enhance the persuasiveness of the experimental results,
the experimental results based on the Wilcoxon signed-rank test

are given in Table 6. By analyzing the table, it is easy to find that
the SRWPSO shows the best comprehensive performance in this
experiment, and the average value of the Wilcoxon signed-rank
test obtained by it is much smaller than that of the second-
ranked SWPSO. In addition, the SRWPSO performs better than
the SWPSO on 15 of the 30 benchmark problems, and 14 have
similar optimization capabilities. Of course, compared to the
traditional PSO, the SRWPSO is more outstanding, with 26
benchmark functions performing well, and only one benchmark
function performing less well than the traditional PSO, except
for three with equal performance.

In order to advance to increase the authority of the
experimental results, the statistical results based on the
Friedman test are given in Figure 4. As seen from the figure,
the Friedman statistic value obtained by the SRWPSO is 2.59,
which is the smallest among the comparison results. In addition,
it is not only much smaller than the traditional PSO, which
ranks at the bottom, but also smaller than the SWPSO, which
ranks second. This again indicates that the comprehensive
performance of the SRWPSO performs relatively best in this
experiment and also provides the basis for the SRWPSO
proposed in this paper.

6.3. The qualitative analysis of SRWPSO

Figure 5 analyzes the performance of the SRWPSO from
several perspectives. Figure 5A provides a three-dimensional
view of the benchmark function. Figure 5B marks the two-
dimensional distribution of the historical search positions of
the SRWPSO during the search for superiority, where the
red markers indicate the best positions throughout the search
process and the black dots indicate the historical search
positions. Figure 5C shows the change of the first dimension of
each position during the iteration. Figure 5D gives the variation
of the average fitness of all individuals in the population during
the iteration. Figure 5E then provides the convergence curves
of the SRWPSO and the PSO. The three-dimensional and two-
dimensional distributions show that the SRWPSO is able to
obtain better global optimal solutions on benchmark functions
of different complexity. The variation of the first dimension
at each position shows that the amplitude of oscillation at the
beginning of the iteration is small. As the number of iterations
keeps increasing, the amplitude of oscillations increases and
stabilizes to a certain extent, indicating that individuals can
better traverse the search space and increase the diversity of
the population, thus enhancing the ability to escape the local
optimal position. Similarly, it can be seen from Figure 5D that
the average fitness values of the SRWPSO have a large oscillation
amplitude on F12, F16, F17, and F21, again indicating the
existence of population diversity during the search process. the
convergence curves of the SRWPSO and the PSO show that the
final convergence accuracy of the SRWPSO is better than that
of the PSO. The convergence curves in Figure 5E also shows
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TABLE 15 The analysis results of sensitivity.

Australian BreastEW Clean

AVG STD AVG STD AVG STD

bSRWPSO 9.34550E-01 2.26780E-02 1.00000E+00 0.00000E+00 1.00000E+00 0.00000E+00

bSCGWO 9.05800E-01 3.99670E-02 9.91590E-01 1.35470E-02 9.96300E-01 1.17120E-02

bGWO 9.19100E-01 4.16640E-02 9.91590E-01 1.35470E-02 9.92590E-01 1.56160E-02

bGSA 9.32320E-01 4.77900E-02 9.97220E-01 8.78410E-03 9.88750E-01 1.81240E-02

bPSO 9.21660E-01 4.79750E-02 9.94440E-01 1.17120E-02 9.66520E-01 2.73530E-02

bALO 9.18960E-01 6.13740E-02 9.94440E-01 1.17120E-02 9.70230E-01 2.92590E-02

bBA 8.30770E-01 6.74060E-02 9.18810E-01 7.24990E-02 8.62250E-01 6.60620E-02

bSSA 8.98180E-01 2.85010E-02 9.88890E-01 2.68360E-02 9.51710E-01 3.91930E-02

bQGWO 9.11070E-01 3.98880E-02 9.97140E-01 9.03510E-03 9.92590E-01 1.56160E-02

bHHO 9.26920E-01 2.38930E-02 9.88810E-01 1.44490E-02 9.44160E-01 2.64270E-02

bSMA 8.75240E-01 7.85390E-02 9.74760E-01 2.07760E-02 9.44300E-01 3.13850E-02

Heart JPNdata SpectEW

bSRWPSO 9.73330E-01 4.66140E-02 9.87500E-01 3.95280E-02 9.30000E-01 1.63640E-01

bSCGWO 9.53330E-01 5.48850E-02 9.48210E-01 8.92660E-02 7.96670E-01 2.09910E-01

bGWO 9.53330E-01 6.32460E-02 9.48210E-01 6.70540E-02 8.30000E-01 2.39060E-01

bGSA 9.46670E-01 6.12620E-02 9.75000E-01 5.27050E-02 8.43330E-01 2.06110E-01

bPSO 9.46670E-01 4.21640E-02 9.48210E-01 6.70540E-02 8.00000E-01 2.24430E-01

bALO 9.53330E-01 5.48850E-02 9.58930E-01 9.45100E-02 8.33330E-01 2.27170E-01

bBA 7.66670E-01 1.26690E-01 8.14290E-01 1.29100E-01 5.40000E-01 3.02990E-01

bSSA 9.26670E-01 4.91910E-02 9.35710E-01 6.79720E-02 8.53330E-01 1.45890E-01

bQGWO 9.33330E-01 6.28540E-02 9.60710E-01 6.34420E-02 7.93330E-01 2.22110E-01

bHHO 9.53330E-01 5.48850E-02 9.73210E-01 5.66260E-02 8.46670E-01 1.82710E-01

bSMA 9.00000E-01 7.20080E-02 9.60710E-01 6.34420E-02 6.90000E-01 2.61080E-01

Vote wdbc Wielaw

bSRWPSO 1.00000E+00 0.00000E+00 1.00000E+00 0.00000E+00 9.63640E-01 6.35640E-02

bSCGWO 1.00000E+00 0.00000E+00 9.90480E-01 2.00780E-02 9.37880E-01 7.22950E-02

bGWO 9.91670E-01 2.63520E-02 9.95240E-01 1.50580E-02 9.56060E-01 6.07950E-02

bGSA 9.90910E-01 2.87480E-02 9.95240E-01 1.50580E-02 9.37880E-01 6.06900E-02

bPSO 1.00000E+00 0.00000E+00 9.95240E-01 1.50580E-02 9.37120E-01 6.10310E-02

bALO 1.00000E+00 0.00000E+00 9.95240E-01 1.50580E-02 9.27270E-01 7.17100E-02

bBA 8.80300E-01 1.76580E-01 9.62550E-01 4.85930E-02 7.59090E-01 1.44130E-01

bSSA 9.91670E-01 2.63520E-02 9.81170E-01 3.30960E-02 9.20450E-01 6.46040E-02

bQGWO 9.90910E-01 2.87480E-02 9.95240E-01 1.50580E-02 9.46210E-01 7.62990E-02

bHHO 1.00000E+00 0.00000E+00 9.95240E-01 1.50580E-02 9.36360E-01 9.63050E-02

bSMA 9.82580E-01 3.67770E-02 9.71860E-01 3.23470E-02 8.92420E-01 3.92510E-02

Bold values represent the optimal data.

that the convergence ability of the SRWPSO is much larger than
that of the PSO; the convergence curves on F1, F2, and F16
show that the SRWPSO has a solid ability to escape from the
local optimum. Each inflection point on the convergence curve
represents a successful escape from the local optimum position.

The results of the equilibrium analysis of the corresponding
benchmark functions in Figure 5 are given in Figure 6. By
comparing the equilibrium images of the SRWPSO and the PSO,
it is easy to observe that there is a significant improvement
in the development capability of the SRWPSO relative to the
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TABLE 16 The results of Friedman ranking for sensitivity.

Method Rank-AVG Rank

bSRWPSO 1.00 1

bSCGWO 6.46 8

bGWO 4.69 5

bGSA 3.44 2

bPSO 4.56 7

bALO 4.91 4

bBA 10.81 11

bSSA 8.02 9

bQGWO 5.70 6

bHHO 2.87 3

bSMA 9.93 10

Bold values represent the optimal data.

PSO, which makes the SRWPSO based on the three optimization
strategies reach a better balance point in both exploration and
development stages, thus making the convergence speed and
final convergence accuracy of the SRWPSO better than the PSO.

6.4. Comparison with traditional
algorithms

This subsection discusses the experimental results of
comparing the SRWPSO with nine well-known traditional
algorithms to demonstrate the core advantages of the SRWPSO
further. In this comparison, the traditional algorithms
involved include ant colony optimization based on continuous
optimization (ACOR) (Dorigo, 1992; Dorigo and Caro, 1999;
Socha and Dorigo, 2008), different evolution (DE) (Storn and
Price, 1997), sine cosine algorithm (SCA) (Mirjalili, 2016),
HHO (Heidari et al., 2019b), grey wolf optimization (GWO)
(Mirjalili et al., 2014), whale optimization algorithm (WOA)
(Mirjalili and Lewis, 2016), bat-inspired algorithm (BA) (Yang,
2010), moth-flame optimization (MFO) (Mirjalili, 2015), and
wind-driven optimization (WDO)(Bayraktar et al., 2010).

Supplementary Appendix Table 3 gives the results of the
SRWPSO compared with nine traditional algorithms based on
AVG and STD. In terms of the number of the best solutions
obtained on the 30 benchmark functions, the SRWPSO ranks
first in this experiment. This indicates that the SRWPSO not
only has the best comprehensive performance relatively but
also its adaptability to different problems. In the same way, it’s
evident that the SRWPSO still has a tremendous advantage over
the other nine algorithms in finding the global optimum.

The analysis of the Wilcoxon signed-rank test in Table 7
shows that the SRWPSO ranks first in this comparison
experiment with an overall mean of 1.53. It is 1.67, smaller than
the average score of DE, which is ranked second overall and
outperforms DE on 20 functions. The results of the p-values

obtained during the Wilcoxon signed-rank test are presented in
Supplementary Appendix Table 4. The data bolded in black in
the table indicate less than 0.05, indicating that the experimental
results are credible. The table shows that the p-values are
essentially less than 0.05 in all the comparison results, indicating
that the optimal solutions obtained by SRWPSO are credible
when compared with the other nine conventional algorithms.

To further demonstrate the performance of SRWPSO,
Figure 7 analyzes the experimental results based on the
Friedman test. It is not obvious from the figure that the
SRWPSO ranks first, obtaining the Friedman test result of 2.02,
and DE ranks second with a score of 3.48 in the experiment.
Thus, this is another evidence that SRWPSO still has a clear
advantage compared to the basic algorithm. Figure 8 shows
the representative partial convergence curves of SRWPSO
compared with the other nine traditional algorithms. Among
them, SRWPSO has significantly better convergence accuracy
than the other algorithms. In addition, SRWPSO performs
significantly better in terms of convergence speed on F11, F16,
F29, and F30. On F1, F2, and F3, the convergence curves of
SRWPSO have obvious inflection points compared with other
algorithms, which indicates that SRWPSO has a more vital
ability to escape from the local optimum position on this type
of problem. Overall, SRWPSO is more competitive than the
other nine traditional algorithms in searching for the global
optimum. Therefore, when SRWPSO is compared with other
basic algorithms, its core advantages are also well demonstrated.

Figure 9 shows the time cost consumed by all algorithms in
this experiment when run on the 30 benchmark functions. Each
color in the figure represents an algorithm, and the experimental
results are calculated in seconds. It is easy to see that SRWPSO
has a higher consumption in the optimization task relative to
these original classical algorithms. It is also easy to understand
that this situation occurs due to the introduction of several
improvement strategies in SRWPSO. However, the difference
compared to ACOR and DE is not very large and even less
consuming than them for most functions. This indicates that
the computational cost of SRWPSO has an advantage over some
well-known original algorithms.

6.5. Comparison with famous variants

To further verify that the comprehensive performance
of SRWPSO has core advantages, this subsection compares
SRWPSO with nine well-known variants of algorithms proposed
in recent years, mainly hybridizing SCA with DE (SCADE)
(Nenavath and Jatoth, 2018), chaotic BA (CBA) (Adarsh
et al., 2016), chaotic random spare ACO (RCACO) (Dorigo,
1992; Dorigo and Caro, 1999; Zhao et al., 2021), modified
SCA (m_SCA) (Qu et al., 2018), ACO with Cauchy and
greedy levy mutations (CLACO) (Dorigo, 1992; Dorigo and
Caro, 1999; Liu L. et al., 2021), hybridizing SCA with PSO
(SCA_PSO) (Nenavath et al., 2018), double adaptive random
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TABLE 17 The analysis results of MCC.

Australian BreastEW Clean

AVG STD AVG STD AVG STD

bSRWPSO 8.48120E-01 5.17560E-02 9.88860E-01 1.79430E-02 9.95830E-01 1.31820E-02

bSCGWO 8.26100E-01 6.38890E-02 9.77540E-01 2.63920E-02 9.95770E-01 1.33900E-02

bGWO 8.26540E-01 4.32100E-02 9.81680E-01 2.59030E-02 9.91750E-01 1.73950E-02

bGSA 8.40760E-01 5.30100E-02 9.84980E-01 2.62980E-02 9.78690E-01 3.62540E-02

bPSO 8.26900E-01 4.58720E-02 9.77650E-01 2.61900E-02 9.49530E-01 4.34090E-02

bALO 8.21080E-01 5.80410E-02 9.85170E-01 2.61290E-02 9.54200E-01 3.04300E-02

bBA 5.84490E-01 1.55890E-01 8.61480E-01 1.15560E-01 7.82360E-01 7.37280E-02

bSSA 7.90540E-01 5.31720E-02 9.74960E-01 3.70790E-02 9.15870E-01 5.59080E-02

bQGWO 8.20150E-01 6.70390E-02 9.85200E-01 2.59010E-02 9.83010E-01 2.96510E-02

bHHO 8.18390E-01 4.49810E-02 9.74140E-01 3.05360E-02 9.25690E-01 3.36130E-02

bSMA 7.74640E-01 5.17100E-02 9.40850E-01 4.34340E-02 8.98900E-01 5.69620E-02

Heart JPNdata SpectEW

bSRWPSO 8.96910E-01 9.48510E-02 9.61400E-01 6.23070E-02 8.61440E-01 1.18250E-01

bSCGWO 8.74190E-01 1.12500E-01 9.27550E-01 8.36580E-02 7.91790E-01 1.28190E-01

bGWO 8.69650E-01 8.86570E-02 9.07830E-01 1.09730E-01 8.22250E-01 1.74430E-01

bGSA 8.85560E-01 7.72810E-02 9.39360E-01 6.39860E-02 8.05400E-01 1.28490E-01

bPSO 8.74600E-01 9.29970E-02 9.39360E-01 6.39860E-02 8.00390E-01 1.30890E-01

bALO 8.83820E-01 9.96680E-02 9.35010E-01 1.41490E-01 8.13990E-01 1.34470E-01

bBA 3.94240E-01 3.34160E-01 6.99310E-01 1.97110E-01 3.99080E-01 2.92430E-01

bSSA 8.61220E-01 8.26300E-02 9.01670E-01 1.13360E-01 7.81110E-01 8.44080E-02

bQGWO 8.52680E-01 9.28470E-02 9.38670E-01 6.47090E-02 7.31620E-01 1.17960E-01

bHHO 8.88830E-01 9.50870E-02 9.38570E-01 8.66450E-02 7.89040E-01 9.09150E-02

bSMA 8.03760E-01 8.66060E-02 9.13850E-01 9.93440E-02 6.52020E-01 1.74390E-01

Vote wdbc Wielaw

bSRWPSO 9.87290E-01 4.02020E-02 1.00000E+00 0.00000E+00 9.26930E-01 6.01290E-02

bSCGWO 9.80070E-01 3.20940E-02 9.92490E-01 1.58390E-02 8.84240E-01 1.05990E-01

bGWO 9.59230E-01 4.75310E-02 9.96230E-01 1.19370E-02 9.02450E-01 9.25300E-02

bGSA 9.73750E-01 4.48750E-02 9.96230E-01 1.19370E-02 9.02900E-01 6.46410E-02

bPSO 9.86560E-01 2.83560E-02 9.92560E-01 1.56880E-02 8.93380E-01 7.87510E-02

bALO 9.80480E-01 4.34470E-02 9.88810E-01 2.54420E-02 8.87420E-01 5.69730E-02

bBA 7.08580E-01 2.98890E-01 9.12290E-01 5.84740E-02 5.48000E-01 1.83860E-01

bSSA 9.66850E-01 4.60580E-02 9.81510E-01 2.61840E-02 8.47970E-01 1.19710E-01

bQGWO 9.52450E-01 5.66270E-02 9.96260E-01 1.18200E-02 9.10190E-01 1.06740E-01

bHHO 9.79460E-01 3.30840E-02 9.88850E-01 1.79480E-02 9.03540E-01 8.31280E-02

bSMA 9.39480E-01 6.88960E-02 9.70510E-01 2.30210E-02 8.08880E-01 7.00230E-02

Bold values represent the optimal data.

spare reinforced WOA (RDWOA) (Chen et al., 2019), boosted

GWO (OBLGWO) (Heidari et al., 2019a), and fuzzy self-tuning

PSO (FSTPSO) (Nobile et al., 2018).

Supplementary Appendix Table 5 analyzes the AVG and

STD obtained in the experiment after 30 independent runs.

It can be seen that SRWPSO obtains the largest number

of minimum AVG, which indicates that its convergence

performance and adaptability to the problem are more

advantageous than the other nine well-known variants in this

comparison experiment. Also, SRWPSO obtains the largest
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TABLE 18 The results of Friedman ranking for MCC.

Method Rank-AVG Rank

bSRWPSO 1.04 1

bSCGWO 6.11 7

bGWO 3.94 4

bGSA 3.85 2

bPSO 4.85 5

bALO 4.56 3

bBA 11.00 11

bSSA 8.39 9

bQGWO 5.74 6

bHHO 6.33 8

bSMA 9.98 10

Bold values represent the optimal data.

number of minimum STD, which indicates that it exhibits
performance with more stability.

The analytical results of the Wilcoxon signed-rank test are
given in Table 8. As seen from the table, SRWPSO achieves
relatively better global optimal solutions for most of the
functions and ranks first in this experiment with an overall
mean of 1.87. In addition, it is not difficult to observe the
second column of the table to find that SRWPSO outperforms
the second-ranked CLRCO by 17 out of 30 benchmark
functions, 19 outperforms the third-ranked RCACO, and even
30 outperforms the bottom-ranked FSTPSO. This indicates that
the comprehensive performance of SRWPSO has a powerful
core advantage among all the algorithms participating in this
experiment. To further demonstrate the core advantage of
SRWPSO, Supplementary Appendix Table 6 analyzes the
p-values obtained in the Wilcoxon signed-rank test. The bolded
and blackened data in the table indicate that the p-values
obtained are less than 0.05, again indicating that it is plausible
that SRWPSO excels over the other nine well-known variants
for the corresponding problem. Thus, it is credible that we
can easily see that SRWPSO has superior performance in most
comparisons through the table.

The results of the Friedman test given in Figure 10 show
that SRWPSO ranks first with 2.37 and CLACO ranks second
with 3.34, which proves that SRWPSO outperforms the other
nine methods. To further analyze the convergence capability
of SRWPSO, we give some of the convergence curves in this
comparison experiment in Figure 11. From the figure, it can
be observed that SRWPSO has the best convergence accuracy
on the listed benchmark functions. In terms of convergence
speed, SRWPSO is relatively more excellent on the F2, F3, F11,
F16, and F30, while it is well demonstrated to have the ability
to continuously find the global optimum on F1, F2, F17, and
F21. Thus, the above analysis strongly demonstrates that the

comprehensive performance of SRWPSO still has significant
advantages compared with other advanced variants.

Figure 12 shows the time cost consumed by SRWPSO with
9 other famous variants for 30 optimization tasks. Each color
in the figure represents an algorithm, and the experimental
results are in seconds. SRWPSO consumes less than m_SCA and
CLACO in all 30 optimization tasks, with the most prominent
advantage over CLACO in particular. In addition, it is not
difficult to find that SRWPSO consumes less than RCACO in
most optimization tasks upon closer inspection. The difference
compared to SCADE and CBA is also not very large. Of
course, SRWPSO also has some weaknesses against several
other variants, which are caused by introducing optimization
strategies with different complexity to algorithms with different
complexity. In conclusion, SRWPSO has good computational
efficiency in comparison with famous variants.

6.6. Comparison with new peer
variants

To highlight the core strengths of SRWPSO, we make a
comparison of SRWPSO with seven new peer variants in this
section. These variants are mainly enhanced WOA (EWOA) (Tu
et al., 2021a), elite evolutionary strategy-based HHO (EESHHO)
(Li C. et al., 2021), ACOR based on the directional crossover
(DX) and directional variant (DM) (XMACOR) (Qi et al.,
2022b), cellular grey wolf optimizer with a topological structure
(CAGWO) (Lu et al., 2018), multi-core SCA (SGLSCA) (Zhou
W. et al., 2021), improved GWO (IGWO) (Cai et al., 2019),
and HHO based on Gaussian mutation and cuckoo search
(GCHHO) (Song et al., 2021).

Supplementary Appendix Table 7 compares SRWPSO with
new peer variants. It is obvious that SRWPSO has the best
performance on unimodal functions (F1, F2, and F3) and
composition functions (F23–F30). In addition, the AVG and
STD of SRWPSO obtain the highest number of optimal in this
experiment, which indicates that the method is relatively the
most adaptable to different problems. In another way, it means
that SRWPSO has not only better optimization ability but also
better stability. Supplementary Appendix Table 8 shows the
p-value of the comparison result of SRWPSO with new peer
variants. The data marked in black in the table indicate that
the p value is greater than 0.05, which indicates that these data
lack statistical significance. On the contrary, other data have
statistical significance and can be powerful evidence to verify
SRWPSO. It is clear that most of the data is less than 0.05, which
indicates that SRWPSO is better than the other algorithms in
terms of the corresponding functions.

Table 9 shows the results of the Wilcoxon signed-rank test
of SRWPSO with new peer variants. It is clear that SRWPSO
ranks first in this test with a mean score of 1.90, which is 0.9,
smaller than the second-ranked SGLSCA. Specifically, SRWPSO
is stronger than SGLSCA on 13 functions, equal on 14 functions,
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and worse on only 3 functions. In addition, SRWPSO is superior

to EWOA, XMACOR, CAGWO, IGWO, and GCHHO on 22

or more functions. In conclusion, this test shows that SRWPSO

still has a significant advantage in comparison with the new peer

variants.

Figure 13 is the results of the Friedman test of SRWPSO

with new peer variants. It is not difficult to see from the figure

that SRWPSO obtains the best scores in the Friedman test,

which is 0.93 smaller than the second-ranked SGLSCA and

3.9 smaller than the last ranked CAGWO. Figure 14 shows

TABLE 19 The analysis results of F-measure.

Australian BreastEW Clean

AVG STD AVG STD AVG STD

bSRWPSO 9.32450E-01 2.23060E-02 9.95850E-01 6.68000E-03 9.98180E-01 5.74960E-03

bSCGWO 9.20180E-01 2.89040E-02 9.91550E-01 9.91450E-03 9.98110E-01 5.96660E-03

bGWO 9.21330E-01 2.00810E-02 9.92990E-01 9.87090E-03 9.96230E-01 7.95540E-03

bGSA 9.28150E-01 2.40040E-02 9.94480E-01 9.67520E-03 9.90560E-01 1.60430E-02

bPSO 9.21410E-01 2.09180E-02 9.91670E-01 9.71270E-03 9.77280E-01 1.95560E-02

bALO 9.18250E-01 3.22590E-02 9.94440E-01 9.71210E-03 9.79230E-01 1.40450E-02

bBA 8.18380E-01 6.31720E-02 9.42780E-01 5.19260E-02 8.96390E-01 3.87220E-02

bSSA 9.05390E-01 2.20070E-02 9.90130E-01 1.50700E-02 9.62240E-01 2.53790E-02

bQGWO 9.18410E-01 2.87380E-02 9.94440E-01 9.60140E-03 9.92590E-01 1.29500E-02

bHHO 9.19720E-01 1.97830E-02 9.90220E-01 1.14610E-02 9.65720E-01 1.47240E-02

bSMA 8.92330E-01 2.90680E-02 9.77610E-01 1.63650E-02 9.54980E-01 2.54200E-02

Heart JPNdata SpectEW

bSRWPSO 9.54390E-01 4.16280E-02 9.80000E-01 3.22030E-02 8.81050E-01 1.07180E-01

bSCGWO 9.44040E-01 4.85080E-02 9.58810E-01 4.91090E-02 8.16370E-01 1.24640E-01

bGWO 9.40680E-01 4.17140E-02 9.53970E-01 5.25700E-02 8.38000E-01 1.93070E-01

bGSA 9.46680E-01 3.50180E-02 9.69020E-01 3.27820E-02 8.30680E-01 1.26140E-01

bPSO 9.44010E-01 4.02680E-02 9.66430E-01 3.56500E-02 8.20660E-01 1.33040E-01

bALO 9.47410E-01 4.38540E-02 9.64420E-01 7.90370E-02 8.32400E-01 1.31910E-01

bBA 7.48270E-01 1.02980E-01 8.39690E-01 1.09160E-01 5.00180E-01 2.68920E-01

bSSA 9.36210E-01 3.61090E-02 9.48780E-01 5.53930E-02 8.17050E-01 6.73170E-02

bQGWO 9.32820E-01 4.34480E-02 9.66430E-01 3.56500E-02 7.66360E-01 1.23790E-01

bHHO 9.49860E-01 4.28710E-02 9.67860E-01 4.32360E-02 8.17920E-01 8.10720E-02

bSMA 9.08500E-01 3.99230E-02 9.55360E-01 5.03900E-02 6.91280E-01 1.82300E-01

Vote wdbc Wielaw

bSRWPSO 9.92310E-01 2.43250E-02 1.00000E+00 0.00000E+00 9.59100E-01 3.50840E-02

bSCGWO 9.87650E-01 1.99040E-02 9.95120E-01 1.02840E-02 9.37390E-01 5.52330E-02

bGWO 9.74970E-01 2.91750E-02 9.97560E-01 7.71290E-03 9.47360E-01 4.97040E-02

bGSA 9.83550E-01 2.80420E-02 9.97560E-01 7.71290E-03 9.45680E-01 3.63700E-02

bPSO 9.91650E-01 1.76180E-02 9.95240E-01 1.00480E-02 9.40980E-01 4.39230E-02

bALO 9.87960E-01 2.65790E-02 9.93020E-01 1.58940E-02 9.36250E-01 3.30590E-02

bBA 8.25720E-01 1.74520E-01 9.44640E-01 3.71620E-02 7.51270E-01 9.68510E-02

bSSA 9.79260E-01 2.84580E-02 9.87910E-01 1.73680E-02 9.18000E-01 6.26950E-02

bQGWO 9.70230E-01 3.56460E-02 9.97560E-01 7.71290E-03 9.50030E-01 5.87630E-02

bHHO 9.87300E-01 2.04640E-02 9.92910E-01 1.14200E-02 9.43360E-01 5.27690E-02

bSMA 9.62920E-01 4.19900E-02 9.80930E-01 1.50800E-02 8.97020E-01 3.72510E-02

Bold values represent the optimal data.
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TABLE 20 The results of Friedman ranking for F-measure.

Method Rank-AVG Rank

bSRWPSO 1.00 1

bSCGWO 5.89 7

bGWO 4.67 5

bGSA 4.00 2

bPSO 4.56 4

bALO 4.44 3

bBA 11.00 11

bSSA 8.44 9

bQGWO 5.56 6

bHHO 6.00 8

bSMA 10.00 10

Bold values represent the optimal data.

9 convergence images of SRWPSO and new peer variants. In
this figure, SRWPSO obtains the best convergence accuracy
in all 9 convergence images. Also, the convergence curves of
SRWPSO on F1, F2, F3, F5, and F16 have obvious inflection
points compared to the other variants, which indicates that the
algorithm has a stronger ability to escape from local optimal
on the corresponding functions. Moreover, it is obvious that
SRWPSO also has better convergence speed. In conclusion,
SRWPSO has a very significant core advantage in comparison
with the new peer variant.

Figure 15 is the time complexity evaluation results of
SRWPSO with new peer variants in this experiment. In this
figure, each color represents an algorithm, and the experimental
results are in seconds. SRWPSO consumes significantly less
than EWOA and XMACOR on all 30 functions. Except for
F1, F2, and F3, there is not much difference between them,
although SRWPSO is more time-consuming than GCHHO.
It is not promising that SRWPSO is more time-consuming
relative to EESHHO, SGLSCA, and IGWO. It is not difficult to
understand this situation, mainly caused by the introduction of
optimization strategies with different degrees of complexity in
algorithms with different degrees of complexity. In conclusion,
SRWPSO has better computational efficiency than the new
peer variants. The SRWPSO and the future improved PSO
can be applied in different fields, such as human activity
recognition (Qiu et al., 2022), dynamic module detection (Ma
et al., 2020; Li D. et al., 2021), recommender system (Li et al.,
2014, 2017), smart contract vulnerability detection (Zhang L.
et al., 2022), privacy protection of electronic medical records
(Wu et al., 2022), named entity recognition (Yang Z. et al.,
2022), structured sparsity optimization (Zhang X. et al., 2022),
microgrids planning (Cao et al., 2021c), location-based services
(Wu et al., 2020; Wu Z. et al., 2021), disease prediction (Su et al.,
2019; Li L. et al., 2021), medical data processing (Guo et al.,
2022), drug discovery (Zhu et al., 2018; Li Y. et al., 2020), and
object tracking (Zhang et al., 2015).

7. Feature selection experiments
and analysis

In this section, the performance of the bSRWPSO-FKNN is
first tested and validated on the basis of nine public datasets in
the UCI. Then, this section performs a secondary performance
validation of the suggested model based on a medical dataset
and successfully extracts the key features affecting the incidence
of AD through 10 times 10-fold cross-validation experiments
combined with clinical medical practice.

7.1. Experimental setup

For the purpose of verifying that the proposed bSRWPSO-
FKNN has better performance in feature selection, a series
of comparative tests are conducted in this paper between
bSRWPSO and some well-known algorithms in this field based
on nine public datasets and one medical dataset. The details
of the public datasets are described in Table 10. The main
binary swarm intelligence algorithms involved in the tests are
bSCGWO, bGWO, bGSA, bPSO, bALO, bBA, bSSA, bQGWO,
bHHO, and bSMA. In addition to converting the swarm
intelligence methods involved in the comparison to a binary
discrete version suitable for feature selection, the parameters
unique to the algorithms themselves remain unchanged, as
shown in Table 11.

To facilitate the verification of the core advantages of
the bSRWPSO-FKNN, four evaluation criteria, including
Accuracy, Sensitivity, MCC, and F-measure, are applied
in this paper to evaluate the methods involved in the
comparison experiments, and the average value (AVG)
and variance (STD) obtained during the experiments
were analyzed and compared. Here, unlike the benchmark
function validation part, a larger AVG indicates a more
robust average performance of the method. In addition, the
optimal data of the experimental results are highlighted in
black. The details of the evaluation criteria are described in
Table 12.

In the table above, true positive (TP) and true negative (TN)
are correct situations, which means that positive and negative
classes are correctly predicted, respectively. At the same time,
false positive (FP) and false negative (FN) are error cases. The
former means that negative class is wrongly predicted as positive
class, while the latter indicates that positive class is incorrectly
predicted as negative class.

In addition, this paper also evaluates the comparison
models that participated in the feature selection experiments
by the Friedman test and then gave the Friedman ranking
corresponding to the comparison models, thus demonstrating
more intuitively that the bSRWPSO-FKNN has relatively
better feature selection performance. We conducted all of
our experiments using fair aspects, which are recognized as
being common across a wide range of computer platforms,
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TABLE 21 The characteristics dataset of 181 patients with AD.

Classes No. Features Results

F1 Gender [male/female, n (%)] 75 (40.8)/106
(57.6)

F2 Age (months, x ± s) 275.27± 255.16

The blood routine examination F3 White blood cells (WBC) (× 109/L, x ± s) 7.32± 2.42

F4 The content of NE (× 109/L, x ± s) 3.95± 4.36

F5 The content of LY (× 109/L, x ± s) 2.93± 1.80

F6 The content of MO (× 109/L, x ± s) 0.44± 0.21

F7 The content of EO (× 109/L, x ± s) 0.29± 0.27

F8 The content of BASO (× 109/L, x ± s) 0.03± 0.03

F9 The percentage of neutrophils (NE) in WBC (%, x ± s) 50.97± 16.75

F10 The percentage of lymphocytes (LY) in WBC (%, x ± s) 38.94± 15.78

F11 The percentage of monocytes (MO) in WBC (%, x ± s) 6.43± 5.84

F12 The percentage of eosinophils (EO) in WBC (%, x ± s) 3.66± 2.91

F13 The percentage of basophils (BASO) in WBC (%, x ± s) 0.68± 0.09

F14 Hypersensitive c-reactive protein (hs-CRP) (mg/L, x ± s) 2.61± 5.78

The blood serum allergen test F15 Cat dander (IU/ml, x ± s) 0.13± 0.51

F16 Cockroach (IU/ml, x ± s) 0.15± 0.69

F17 Mildew (IU/ml, x ± s) 0.14± 0.93

F18 Pollen (IU/ml, x ± s) 0.12± 0.08

F19 Egg white (IU/ml, x ± s) 0.35± 0.93

F20 Milk (IU/ml, x ± s) 0.31± 0.95

F21 Shrimp (IU/ml, x ± s) 0.17± 1.07

F22 Dermatophagoides Pteronyssinus/Farinae (IU/ml, x ± s) 2.89± 11.22

F23 Dog dander (IU/ml, x ± s) 0.09± 0.08

F24 Crab (IU/ml, x ± s) 0.18± 1.13

F25 House dust (IU/ml, x ± s) 0.08± 0.09

F26 Beef (IU/mL, x ± s) 0.07± 0.09

F27 Ragweed (IU/ml, x ± s) 0.14± 0.11

F28 Peanut (IU/ml, x ± s) 0.14± 0.10

F29 Lobster/Scallop (IU/ml, x ± s) 0.24± 1.52

F30 Cod (IU/ml, x ± s) 0.15± 0.89

F31 Salmon (IU/ml, x ± s) 0.08± 0.08

F32 Mutton (IU/ml, x ± s) 0.06± 0.07

F33 Mugwort (IU/ml, x ± s) 0.08± 0.09

F34 Humulus (IU/ml, x ± s) 0.13± 0.10

F35 Soy (IU/ml, x ± s) 0.11± 0.09

F36 Total IgE (IU/ml, x ± s) 119.87± 216.28

while adhering to the guidelines for unbiased comparisons in
preceding AI-based work (Duan et al., 2022; Jin et al., 2022;
Yang B. et al., 2022). If the professional designed the
programming, it is assumed that these variables occur regardless
no matter how the approach is used (Li H. et al., 2021;

Zhang Z. et al., 2022; Lu et al., 2023). Finally, to ensure the
fairness of the experimental process, the internal environment of
all experiments is kept consistent, and the external experimental
environment is kept consistent with the experimental part of the
benchmark function.
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7.2. Public dataset experiments

The evaluation results of the classification accuracy of
bSRWPSO with the other ten binary algorithms are given in
Table 13. From the table, it can be seen that bSRWPSO has
the largest average classification accuracy on all nine public
datasets tested, indicating that the method ranks first on the
corresponding datasets. Secondly, it can also be seen that the
stability of bSRWPSO is also the strongest among the compared
methods. Table 14 shows the average ranking results of the 11
comparison methods based on nine public datasets obtained
by the Friedman test for this experiment. As shown in the
second column of the table, the mean value of the Friedman
test of bSRWPSO based on nine public datasets is 1.22, which

is the smallest among all comparison algorithms, indicating that
bSRWPSO is ranked first in this classification accuracy test.

Table 15 analyzes the AVG and STD of the sensitivities
of each method in this experiment. It can be seen that
bSRWPSO performs the best on nine public datasets. Except for
Australian, SpectEW, and Wielaw, the sensitivity of bSRWPSO
on the other six public datasets is above 97%. Of course,
bSRWPSO exhibits the highest number of smallest STD on the
public datasets, indicating that the method has the relatively
most stable adaptation to different classification problems. In
addition, by codifying and analyzing the Friedman test results
of each method on each public dataset, Table 16 compiles the
Friedman mean values of each algorithm on the nine public
datasets. According to the table, it can be seen that bSRWPSO
is ranked first, which indicates that the sensitivity of this

FIGURE 16

Evaluation results for different combinations.

FIGURE 17

The results of bSRWPSO with classical classifiers.
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FIGURE 18

Comparison results of bSRWPSO with other binary algorithms.

method is relatively the best among the methods involved in the
comparison.

Table 17 shows the AVG and STD of the MCC for
bSRWPSO and other comparison algorithms. Except for
Australian, heart, and SpectEW, the AVG of bSRWPSO on all
other public datasets are between 0.92 and 1. Also, combining
the STD obtained in the experiment, it is easy to find that
the overall performance of bSRWPSO ranks first. As shown in
Table 18, the Friedman average ranking of bSRWPSO based on
9 public datasets is also the first.

Table 19 analyzes the performance of bSRWPSO on nine
public datasets based on the F-measure and gives the AVG
reflecting its average capability and the STD reflecting its
stability. Looking at Table 19, it is easy to see that the minimum
mean of bSRWPSO occurs on the public dataset SpectEW, but
it is also above 0.88. Overall, it shows a general ability greater
than 0.95 and ranks first on each dataset. The comprehensive
Friedman ranking for the F-measure in this experiment is given
in Table 20. Among them, bSRWPSO ranks first among the 11
compared algorithms with an average ranking of 1 and is smaller

than the average ranking of the second-ranked bGSA by 3. While
bPSO ranks fourth with a score of 4.56. Therefore, it can be
concluded that the three improvement strategies introduced in
this paper improve the classification performance of bPSO in a
significant way.

In summary, this section verifies the comprehensive
performance of bSRWPSO in feature selection experiments
by analyzing classification accuracy, sensitivity, MCC, and
F-measure. Comparing ten other methods demonstrates that
the classification capability of bSRWPSO has a strong core
competitive advantage. Therefore, the bSRWPSO proposed
in this paper is a novel method with a more substantial
classification capability that can be used for feature selection.

7.3. AD dataset experiments

7.3.1. AD dataset
This medical dataset includes 181 patients enrolled at

the Department of Dermatology at the Affiliated Hospital of
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Medical School, Ningbo University, from May 2021 to March
2022 diagnosed with AD. The primary demographic data
such as sex and age are included, and the typical laboratory
characteristics comprising the blood routine examination, blood
serum allergen test, and Total IgE in serum are gathered. The
clinical and laboratory results of the patients with AD are
demonstrated in Table 21. Continuous data are expressed as
means ± standard deviation. Categorical data are described
as percentages. The Ethics Commission of the Affiliated
Hospital of Medical School approved this medical dataset (NO.
KY20191208).

7.3.2. Medical validation experiments
To further demonstrate the classification capability of

bSRWPSO, this section sets up four comparison experiments
on bSRWPSO based on a specific medical dataset. First, to
illustrate the core advantage of the combination of bSRWPSO
and FKNN in feature selection, this section sets up comparison
experiments by making bSRWPSO combined with FKNN,
kernel extreme learning machine (KELM), KNN, SVM, and
MLP, respectively. Then, to verify that the classification ability of
the bSRWPSO-FKNN is better than that of the classical classifier,
this section makes the comparison experiments and analysis
of bSRWPSO-FKNN with five classical classifiers based on a
specific medical dataset, mainly including BP, CART, RandomF,
AdaBoost, and ELMforFS. Next, this section makes bSRWPSO,
and ten other binary versions of the swarm intelligence
optimization algorithm combined with FKNN, respectively,
and the classification advantages of the bSRWPSO-FKNN
are verified by setting up feature classification comparison
experiments. Finally, this section uses the bSRWPSO-FKNN
to set up ten times 10-fold cross-validation experiments on
a medical dataset. As a result, it successfully extracts the key
features affecting the onset of AD.

Figure 16 shows the analysis of the results of the
comparative experiments combining the bSRWPSO with each
of the five machine learning algorithms. As seen from the
box plots, the bSRWPSO-FKNN obtains the most concentrated
experimental results among the four evaluation criteria,
indicating that the classification ability of the model is relatively
the most stable in this experiment. In the figure, the marker ×
represents the average value of each group of data. Therefore, it
is easy to observe that the average value of all four evaluation
methods for the combination of bSRWPSO and FKNN is 1 and
greater than the other four combinations, indicating that the
classification performance of the bSRWPSO-FKNN is the best
on this medical dataset.

Figure 17 shows the results of comparing the bSRWPSO-
FKNN with five classical classifiers. Combined with the
characteristics of the box plot, it can be noticed that the
bSRWPSO-FKNN has an undeniable competitive advantage
in this comparison. bSRWPSO-FKNN has a relatively more
stable classification performance and is the best in terms
of comprehensive classification ability. On the contrary, the
evaluation results of the other five classical classifiers in all
four evaluation criteria are relatively scattered, indicating that
the classification ability of these classical methods is unstable.
Therefore, the bSRWPSO-FKNN still has the core competitive
advantage in this experiment.

Figure 18 shows the experimental results comparing
bSRWPSO with ten other binary swarm intelligence algorithms.
The figure shows the analysis results based on six evaluation
criteria through six box plots, including Accuracy, Sensitivity,
MCC, F-measure, Error, and Time. The error indicates the
error rate of the classification method, and the sum of
classification accuracy is 1. Time reflects the time spent by the
classification method on feature experiments, and the larger
the value, the more time the classification method consumes

TABLE 22 The results of the Friedman test.

Accuracy Sensitivity MCC F-measure

AVG Rank AVG Rank AVG Rank AVG Rank

bSRWPSO 3.1 1 4.05 1 3.1 1 3.1 1

bSCGWO 4.5 4 5.65 6 4.45 4 4.7 5

bGWO 4 2 4.5 3 4 2 4.1 2

bGSA 7.9 10 7.3 10 8 10 7.9 10

bPSO 7 8 6.95 8 6.95 8 7.15 9

bALO 7.05 9 7.05 9 7.15 9 7.05 8

bBA 10.95 11 10.45 11 10.95 11 10.9 11

bSSA 6.55 7 5.25 5 6.5 7 6.2 6

bQGWO 4.6 5 4.6 4 4.6 5 4.55 4

bHHO 6.2 6 5.8 7 6.15 6 6.2 6

bSMA 4.15 3 4.4 2 4.15 3 4.15 3

Bold values represent the optimal data.
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FIGURE 19

Convergence curve of feature selection method.

FIGURE 20

The results of 10 times 10-fold crossover experiments.

to extract key features successfully. Comparing the Accuracy,
Sensitivity, MCC, and F-measure in the figure, we can see
that bSRWPSO has the largest experimental results, which
indicates that bSRWPSO has the most successful combination
with FKNN among all the swarm intelligence optimization
algorithms involved in the feature experiments. Its classification
performance is not only the best but also the most stable.
Comparing the Error in the figure, it is easy to find that
bSRWPSO has the slightest possibility of an error during
the experiments. However, by comparing the time of the 11
methods, it can be found that bSRWPSO has some shortcomings
in time complexity; although it is much lower than the two
methods, bSCGWO and bQGWO, in terms of time cost, it is
higher than the other eight compared methods.

To further demonstrate the core advantages of the
bSRWPSO-FKNN, Table 22 gives the average (AVG) and
ranking results (Rank) of the Friedman test based on Accuracy,
Sensitivity, MCC, and F-measure. According to the table, it is
not difficult to conclude that bSRWPSO obtained the minimum
average in all four evaluation criteria, indicating its first ranking
in each criterion.

As shown in Figure 19, the convergence curve of bSRWPSO
is lower than other methods’ convergence curves after reaching
the maximum number of iterations, which means that
bSRWPSO has the relatively best optimization accuracy among
the methods involved in the experiments. Therefore, bSRWPSO
is the most effective in optimizing the classification ability of
FKNN.
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Figure 20 shows the experimental results of bSRWPSO for
ten times 10-fold cross-validation on the AD dataset. In the
figure, the vertical axis indicates the number of times each
attribute was selected and the horizontal axis indicates the
different attributes in AD. From the figure, it is easy to find
that features F5, F15, F20, F22, F27, F30, and F36 were selected
by bSRWPSO-FKNN, denoting the content of LY, Cat dander,
Milk, Dermatophagoides Pteronyssinus/Farinae, Ragweed, Cod,
and Total IgE, respectively. Combined with clinical medicine,
it was concluded that these features have medical reference
value. Therefore, this experiment proves that bSRWPSO-FKNN
is scientific and practical for predicting AD development.

8. Conclusion and future works

This study puts forward an improved algorithm according to
SOB, RRS, AWS, and PSO, called SRWPSO. Next, we propose
a binary version of the SRWPSO, called bSRWPSO. Then, we
make bSRWPSO combined with FKNN to offer a novel feature
prediction model called bSRWPSO-FKNN. In SRWPSO, the
SOB improves the quality of the initial swarm and improves
the algorithm’s traversal of the initial population space. The
RRS boosts the capability of the original PSO to get rid of the
local optimum, which enhances the original PSO’s convergence
accuracy. The AWS perturbs the algorithm according to its
optimization search process and enhances the exploration ability
of the algorithm by controlling the displacement vector. The
RRS, in conjunction with the AWS, improves the diversity of
the particle swarm, which in turn enhances the exploration and
exploitation capability of the original PSO. In addition, based
on the performance analysis experiments of SRWPSO and the
original PSO, it can be concluded that the combination of the
three improved strategies not only increases the population
diversity of the original PSO but also balances the exploration
and exploitation of the original PSO, which in turn leads
to a stronger convergence capability of the original PSO. By
analyzing the comparison results of SRWPSO, the original PSO,
the nine original algorithms, and the nine improved algorithms
on 30 benchmark functions, it is easy to conclude that the
SRWPSO’s core advantages are faster convergence speed, higher
convergence accuracy, and greater ability to escape local optimal
solutions. For bSRWPSO, this paper introduces a V-shaped
binary transformation method in SRWPSO to successfully
discretize SRWPSO. In bSRWPSO-FKNN, when doing feature
selection experiments, the model first optimizes the datasets
participating in the experiments by bSRWPSO to obtain the
optimization subsets. Then, the model performs classification
prediction on the optimized subsets by FKNN. In order to
verify the classification capability of bSRWPSO-FKNN, a series
of performance validation experiments are conducted on the
model in this paper, which successfully demonstrates that the
performance of the model is relatively the best among the

methods involved in the experiments. In addition, we conducted
ten times 10-fold cross-validation experiments on bSRWPSO-
FKNN based on a specific medical dataset in this paper and
successfully extracted the key features affecting the onset of AD,
mainly including the content of lymphocytes (LY), Cat dander,
Milk, Dermatophagoides Pteronyssinus/Farinae, Ragweed, Cod
and Total IgE. Finally, we enabled the selected key features to
be discussed and analyzed in conjunction with clinical practice,
demonstrating that the bSRWPSO-FKNN possesses practical
medical significance.

However, the approach proposed in this paper is flawed.
While the three improvement strategies greatly enhance the
performance of the original PSO, they increase the time
complexity of the original PSO, which means that the SRWPSO
will solve the problem at a higher cost than the original PSO.
Since bSRWPSO-FKNN is proposed based on SRWPSO, the
increase in time complexity of the model is inevitable, which can
be seen in Figure 18. Therefore, reducing the time complexity
of this study will be one of the essential works in the future.
In addition, we can use more effective strategies to improve the
original PSO in future work.

Data availability statement

The original contributions presented in this study are
included in the article/Supplementary material, further
inquiries can be directed to the corresponding authors.

Author contributions

YL, ZX, AH, XJ, ZL, MW, and QZ: writing—original
draft, writing—review and editing, software, visualization, and
investigation. DZ, HC, and SX: conceptualization, methodology,
formal analysis, investigation, writing—review and editing,
funding acquisition, and supervision. All authors contributed to
the article and approved the submitted version.

Funding

This work was supported by grants from Major Science
and Technology Program for Medicine and Health in
Zhejiang Province (No. WKJ-ZJ-2012), Funded by the
Project of NINGBO Leading Medical & Health Discipline,
Project Number: 2022-F23, Natural Science Foundation of
Jilin Province (YDZJ202201ZYTS567), “Thirteenth Five-
Year” Science and Technology Project of Jilin Provincial
Department of Education (JJKH20200829KJ), Changchun
Normal University Ph.D., Research Startup Funding Project
(BS [2020]), Natural Science Foundation of Zhejiang Province
(LZ22F020005), and National Natural Science Foundation of
China (62076185 and U1809209).

Frontiers in Neuroinformatics 33 frontiersin.org

https://doi.org/10.3389/fninf.2022.1063048
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-16-1063048 January 10, 2023 Time: 15:5 # 34

Li et al. 10.3389/fninf.2022.1063048

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be
found online at: https://www.frontiersin.org/articles/10.3389/
fninf.2022.1063048/full#supplementary-material

References

Adarsh, B. R., Raghunathan, T., Jayabarathi, T., and Yang, X. S. (2016).
Economic dispatch using chaotic bat algorithm. Energy 96, 666–675. doi: 10.1016/
j.energy.2015.12.096

Ahmadianfar, I., Heidari, A., Gandomi, A., Chu, X., and Chen, H. (2021). RUN
beyond the metaphor: An Efficient Optimization Algorithm Based on Runge Kutta
Method. Expert Syst. Applic. 181:115079. doi: 10.1016/j.eswa.2021.115079

Ahmadianfar, I., Heidari, A., Noshadian, S., Chen, H., and Gandomi, A. (2022).
INFO: An efficient optimization algorithm based on weighted mean of vectors.
Expert Syst. Applic. 195:116516. doi: 10.1016/j.eswa.2022.116516

Arora, S., and Anand, P. (2019). Chaotic grasshopper optimization algorithm for
global optimization. Neural Comput. Applic. 31, 4385–4405. doi: 10.1007/s00521-
018-3343-2

Asano, K., Tamari, M., Zuberbier, T., Yasudo, H., Morita, H., Fujieda, S., et al.
(2022). Diversities of allergic pathologies and their modifiers: Report from the
second DGAKI-JSA meeting. Allergol. Int. 71, 310–317. doi: 10.1016/j.alit.2022.
05.003

Bayraktar, Z., Komurcu, M., and Werner, D. H. (2010). “Wind Driven
Optimization (WDO): A novel nature-inspired optimization algorithm and its
application to electromagnetics,” in Proceedings of the 2010 IEEE Antennas and
Propagation Society International Symposium, Toronto. doi: 10.1109/APS.2010.
5562213

Berna, R., Mitra, N., Hoffstad, O., Wubbenhorst, B., Nathanson, K., Margolis, D.,
et al. (2021). Using a machine learning approach to identify low-frequency and rare
FLG alleles associated with remission of atopic dermatitis. JID Innov. 1:100046.
doi: 10.1016/j.xjidi.2021.100046

Cai, Z., Gu, J., Jie, L., and Zhang, Q. (2019). Evolving an optimal kernel extreme
learning machine by using an enhanced grey wolf optimization strategy. Expert
Syst. Applic. 138:112814. doi: 10.1016/j.eswa.2019.07.031

Cao, B., Fan, S., Zhao, J., Tian, S., Zheng, Z., Yan, Y., et al. (2021a). Large-
scale many-objective deployment optimization of edge servers. IEEE Trans. Intell.
Transp. Syst. 22, 3841–3849. doi: 10.1109/TITS.2021.3059455

Cao, B., Li, M., Liu, X., Zhao, J., Cao, W., and Lv, Z. (2021b). Many-objective
deployment optimization for a drone-assisted camera network. IEEE Trans. Netw.
Sci. Eng. 8, 2756–2764. doi: 10.1109/TNSE.2021.3057915

Cao, X., Sun, X., Xu, Z., Zeng, B., and Guan, X. (2021c). Hydrogen-based
networked microgrids planning through two-stage stochastic programming with
mixed-integer conic recourse. IEEE Trans. Automat. Sci. Eng. 19, 3672–3685.
doi: 10.1109/TASE.2021.3130179

Cao, B., Zhao, J., and Lv, Z. (2020b). Diversified personalized recommendation
optimization based on mobile data. IEEE Trans. Intell. Transp. Syst. 22, 2133–2139.
doi: 10.1109/TITS.2020.3040909

Cao, B., Gu, Y., Lv, Z., Yang, S., Zhao, J., and Li, Y. (2020a). RFID reader
anticollision based on distributed parallel particle swarm optimization. IEEE
Internet Things J. 8, 3099–3107. doi: 10.1109/JIOT.2020.3033473

Chen, H., Yang, C., Heidari, A. A., and Zhao, X. (2019). An efficient double
adaptive random spare reinforced whale optimization algorithm. Expert Syst.
Applic. 154:113018. doi: 10.1016/j.eswa.2019.113018

Chen, H.-L., Huang, C., Yu, X., Xu, X., Sun, X., Wang, G., et al. (2013). An
efficient diagnosis system for detection of Parkinson’s disease using fuzzy k-nearest

neighbor approach. Expert Syst. Applic. 40, 263–271. doi: 10.1016/j.eswa.2012.07.
014

Chen, H.-L., Wang, G., Ma, C., Cai, Z.-N., Liu, W.-B., and Wang, S.-J. (2016). An
efficient hybrid kernel extreme learning machine approach for early diagnosis of
Parkinson×s disease. Neurocomputing 184, 131–144. doi: 10.1016/j.neucom.2015.
07.138

Chen, H.-L., Yang, B., Wang, G., Liu, J., Xu, X., Wang, S., et al. (2011). A
novel bankruptcy prediction model based on an adaptive fuzzy k-nearest neighbor
method. Knowledge-Based Syst. 24, 1348–1359. doi: 10.1016/j.knosys.2011.06.008

Clayton, K., Vallejo, A., Sirvent, S., Davies, J., Porter, G., Reading, I., et al. (2021).
Machine learning applied to atopic dermatitis transcriptome reveals distinct
therapy-dependent modification of the keratinocyte immunophenotype. Br. J.
Dermatol. 184, 913–922. doi: 10.1111/bjd.19431

Cover, T., and Hart, P. (1967). Nearest neighbor pattern classification. IEEE
Trans. Inf. Theory 13, 21–27. doi: 10.1109/TIT.1967.1053964

Deng, W., Ni, H., Liu, Y., Chen, H., and Zhao, H. (2022a). An adaptive
differential evolution algorithm based on belief space and generalized opposition-
based learning for resource allocation. Appl. Soft Comput. 127:109419. doi: 10.
1016/j.asoc.2022.109419

Deng, W., Xu, J., Gao, X. Z., and Zhao, H. (2022b). An enhanced MSIQDE
algorithm with novel multiple strategies for global optimization problems. IEEE
Trans. Syst. Man Cybern. Syst. 52, 1578–1587. doi: 10.1109/TSMC.2020.3030792

Deng, W., Zhang, X., Zhou, Y., Liu, Y., Zhou, X., and Chen, H. (2022d).
An enhanced fast non-dominated solution sorting genetic algorithm for multi-
objective problems. Inf. Sci. 585, 441–453. doi: 10.1016/j.ins.2021.11.052

Deng, W., Zhang, L., Zhou, X., Sun, Y., Zhu, W., Chen, H., et al. (2022c). Multi-
strategy particle swarm and ant colony hybrid optimization for airport taxiway
planning problem. Inf. Sci. 612, 576–593. doi: 10.1016/j.ins.2022.08.115

Deng, W., Xu, J., Zhao, H., and Song, Y. (2020a). “A Novel Gate Resource
Allocation Method Using Improved PSO-Based QEA,” in Proceedings of the IEEE
Transactions on Intelligent Transportation Systems, Piscataway, NJ.

Deng, W., Xu, J. J., Song, Y. J., and Zhao, H. M. (2020b). An effective improved
co-evolution ant colony optimization algorithm with multi-strategies and its
application. Int. J. Bio-Inspir. Comput. 16, 158–170. doi: 10.1504/IJBIC.2020.
10033314

Dokeroglu, T., Sevinc, E., Kucukyilmaz, T., and Cosar, A. (2019). A survey
on new generation metaheuristic algorithms. Comput. Ind. Eng. 137:106040. doi:
10.1016/j.cie.2019.106040

Dorigo, M. (1992). Optimization, Learning and Natural Algorithms. Ph.D. thesis.
Milan: University in Milan.

Dorigo, M., and Caro, G. D. (1999). “The ant colony optimization meta-
heuristic,” in New ideas in optimization, eds D. Corne, M. Dorigo, and F. Glover
(Noida, IN: McGraw-Hill Ltd).

Duan, C., Deng, H., Xiao, S., Xie, J., Li, H., Zhao, X., et al. (2022). Accelerate gas
diffusion-weighted MRI for lung morphometry with deep learning. Eur. Radiol.
32, 702–713. doi: 10.1007/s00330-021-08126-y

El-Kenawy, E. S. M., Ibrahim, A., Mirjalili, S., Eid, M., and Hussein, S.
(2020). Novel feature selection and voting classifier algorithms for COVID-19

Frontiers in Neuroinformatics 34 frontiersin.org

https://doi.org/10.3389/fninf.2022.1063048
https://www.frontiersin.org/articles/10.3389/fninf.2022.1063048/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fninf.2022.1063048/full#supplementary-material
https://doi.org/10.1016/j.energy.2015.12.096
https://doi.org/10.1016/j.energy.2015.12.096
https://doi.org/10.1016/j.eswa.2021.115079
https://doi.org/10.1016/j.eswa.2022.116516
https://doi.org/10.1007/s00521-018-3343-2
https://doi.org/10.1007/s00521-018-3343-2
https://doi.org/10.1016/j.alit.2022.05.003
https://doi.org/10.1016/j.alit.2022.05.003
https://doi.org/10.1109/APS.2010.5562213
https://doi.org/10.1109/APS.2010.5562213
https://doi.org/10.1016/j.xjidi.2021.100046
https://doi.org/10.1016/j.eswa.2019.07.031
https://doi.org/10.1109/TITS.2021.3059455
https://doi.org/10.1109/TNSE.2021.3057915
https://doi.org/10.1109/TASE.2021.3130179
https://doi.org/10.1109/TITS.2020.3040909
https://doi.org/10.1109/JIOT.2020.3033473
https://doi.org/10.1016/j.eswa.2019.113018
https://doi.org/10.1016/j.eswa.2012.07.014
https://doi.org/10.1016/j.eswa.2012.07.014
https://doi.org/10.1016/j.neucom.2015.07.138
https://doi.org/10.1016/j.neucom.2015.07.138
https://doi.org/10.1016/j.knosys.2011.06.008
https://doi.org/10.1111/bjd.19431
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1016/j.asoc.2022.109419
https://doi.org/10.1016/j.asoc.2022.109419
https://doi.org/10.1109/TSMC.2020.3030792
https://doi.org/10.1016/j.ins.2021.11.052
https://doi.org/10.1016/j.ins.2022.08.115
https://doi.org/10.1504/IJBIC.2020.10033314
https://doi.org/10.1504/IJBIC.2020.10033314
https://doi.org/10.1016/j.cie.2019.106040
https://doi.org/10.1016/j.cie.2019.106040
https://doi.org/10.1007/s00330-021-08126-y
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-16-1063048 January 10, 2023 Time: 15:5 # 35

Li et al. 10.3389/fninf.2022.1063048

classification in CT images. IEEE Access 8, 179317–179335. doi: 10.1109/ACCESS.
2020.3028012

Gao, D., Wang, G.-G., and Pedrycz, W. (2020). Solving fuzzy job-shop
scheduling problem using DE algorithm improved by a selection mechanism. IEEE
Trans. Fuzzy Syst. 28, 3265–3275. doi: 10.1109/TFUZZ.2020.3003506

García, S., Fernandez, A., Luengo, J., and Herrera, F. (2010). Advanced
nonparametric tests for multiple comparisons in the design of experiments in
computational intelligence and data mining: Experimental analysis of power. Inf.
Sci. 180, 2044–2064. doi: 10.1016/j.ins.2009.12.010

Guimarães, P., Batista, A., Zieger, M., Kaatz, M., and Koenig, K. (2020). Artificial
intelligence in multiphoton tomography: atopic dermatitis diagnosis. Sci. Rep.
10:7968. doi: 10.1038/s41598-020-64937-x

Guo, K., Chen, T., Ren, S., Li, N., Hu, M., and Kang, J. (2022). Federated learning
empowered real-time medical data processing method for smart healthcare.
IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2022.3185395
[Epub ahead of print].

Gupta, S., and Deep, K. (2018). A novel random walk grey wolf optimizer.
Swarm Evol. Comput. 44, 101–112. doi: 10.1016/j.swevo.2018.01.001

Gustafson, E., Pacheco, J., Wehbe, F., Silverberg, J., and Thompson, W. A.
(2017). Machine learning algorithm for identifying atopic dermatitis in adults
from electronic health records. IEEE Int. Conf. Healthc. Inform. 2017, 83–90.
doi: 10.1109/ICHI.2017.31

Han, X., Han, Y., Chen, Q., Li, J., Sang, H., Liu, Y., et al. (2021). Distributed
flow shop scheduling with sequence-dependent setup times using an improved
iterated greedy algorithm. Compl. Syst. Model. Simul. 1, 198–217. doi: 10.23919/
CSMS.2021.0018

He, Z., Yen, G. G., and Ding, J. (2020). Knee-based decision making and
visualization in many-objective optimization. IEEE Trans. Evol. Comput. 25,
292–306. doi: 10.1109/TEVC.2020.3027620

He, Z., Yen, G. G., and Lv, J. (2019). Evolutionary multiobjective optimization
with robustness enhancement. IEEE Trans. Evol. Comput. 24, 494–507. doi: 10.
1109/TEVC.2019.2933444

Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., and Chen, H.
(2019b). Harris hawks optimization: Algorithm and applications. Fut. Gener.
Comput. Syst. 97, 849–872. doi: 10.1016/j.future.2019.02.028

Heidari, A. A., Ali Abbaspour, R., and Chen, H. (2019a). Efficient boosted grey
wolf optimizers for global search and kernel extreme learning machine training.
Appl. Soft Comput. 81:105521. doi: 10.1016/j.asoc.2019.105521

Holm, J. G., Hurault, G., Agner, T., Clausen, M., Kezic, S., Tanaka, R., et al.
(2021). Immunoinflammatory biomarkers in serum are associated with disease
severity in atopic dermatitis. Dermatology 237, 513–520. doi: 10.1159/000514503

Houssein, E. H., Abdelminaam, D. S., Hassan, H. N., Al-Sayed, M. M., and Nabil,
E. (2021). A hybrid barnacles mating optimizer algorithm with support vector
machines for gene selection of microarray cancer classification. IEEE Access 9,
64895–64905. doi: 10.1109/ACCESS.2021.3075942

Hu, J., Gui, W. Y., Heidari, A. A., Cai, Z. N., Liang, G. X., Chen, H. L.,
et al. (2022a). Dispersed foraging slime mould algorithm: Continuous and binary
variants for global optimization and wrapper-based feature selection. Knowledge-
Based Syst. 237:107761. doi: 10.1016/j.knosys.2021.107761

Hu, J., Han, Z., Heidari, A., Shou, Y., Ye, H., Wang, L., et al. (2022b). Detection
of COVID-19 severity using blood gas analysis parameters and Harris hawks
optimized extreme learning machine. Comput. Biol. Med. 142:105166. doi: 10.
1016/j.compbiomed.2021.105166

Hu, J., Liu, Y., Heidari, A., Bano, Y., Ibrohimov, A., Liang, G., et al. (2022c).
An effective model for predicting serum albumin level in hemodialysis patients.
Comput. Biol. Med. 140:105054. doi: 10.1016/j.compbiomed.2021.105054

Hua, Y., Liu, Q., Hao, K., and Jin, Y. (2021). A survey of evolutionary algorithms
for multi-objective optimization problems with irregular pareto fronts. IEEE/CAA
J. Automat. Sin. 8, 303–318. doi: 10.1109/JAS.2021.1003817

Jadhav, S., He, H., and Jenkins, K. (2018). Information gain directed genetic
algorithm wrapper feature selection for credit rating. Appl. Soft Comput. 69,
541–553. doi: 10.1016/j.asoc.2018.04.033

Jiang, Z., Li, J., Kong, N., Kim, J., Kim, B., Lee, M., et al. (2022). Accurate
diagnosis of atopic dermatitis by combining transcriptome and microbiota data
with supervised machine learning. Sci. Rep. 12:290. doi: 10.1038/s41598-021-
04373-7

Jin, K., Yan, Y., Chen, M., Wang, J., Pan, X., Liu, X., et al. (2022).
Multimodal deep learning with feature level fusion for identification of choroidal
neovascularization activity in age-related macular degeneration. Acta Ophthalmol.
100, e512–e520. doi: 10.1111/aos.14928

Johansson, E. K., Bergström, A., Kull, I., Melén, E., Jonsson, M., Lundin, S.,
et al. (2022). Prevalence and characteristics of atopic dermatitis among young

adult females and males-report from the Swedish population-based study BAMSE.
J. Eur. Acad. Dermatol. Venereol. 36, 698–704. doi: 10.1111/jdv.17929

Kazimipour, B., Li, X., and Qin, A. K. (2014). “A review of population
initialization techniques for evolutionary algorithms,” in Proceedings of the 2014
IEEE Congress on Evolutionary Computation (CEC), Piscataway, NJ. doi: 10.1109/
CEC.2014.6900618

Keller, J. M., Gray, M. R., and Givens, J. A. (1985). A fuzzy K-nearest neighbor
algorithm. IEEE Trans. Syst. Man Cybern. 15, 580–585. doi: 10.1109/TSMC.1985.
6313426

Kennedy, J., and Eberhart, R. (1995). “Particle swarm optimization,” in
Proceedings of the ICNN’95 – International Conference on Neural Networks,
Houston, TX.

Li, C., Dong, M., Li, J., Xu, G., Chen, X., Liu, W., et al. (2022). Efficient medical
big data management with keyword-searchable encryption in healthchain. IEEE
Syst. J. 1:12. doi: 10.1109/JSYST.2022.3173538

Li, Y., Zhao, D., Liu, G., Liu, Y., Bano, Y., Ibrohimov, A., et al. (2022).
Intradialytic hypotension prediction using covariance matrix-driven whale
optimizer with orthogonal structure-assisted extreme learning machine. Front.
Neuroinform. 16:956423. doi: 10.3389/fninf.2022.956423

Li, C., Li, J., Chen, H., and Heidari, A. A. (2021). Memetic harris hawks
optimization: Developments and perspectives on project scheduling and QoS-
aware web service composition. Expert Syst. Applic. 171:114529. doi: 10.1016/j.
eswa.2020.114529

Li, D., Zhang, S., and Ma, X. (2021). Dynamic module detection in temporal
attributed networks of cancers. IEEE/ACM Trans. Comput. Biol. Bioinform. doi:
10.1109/TCBB.2021.3069441 [Epub ahead of print].

Li, H., Zhao, X., Wang, Y., Lou, X., Chen, S., Deng, H., et al. (2021).
Damaged lung gas exchange function of discharged COVID-19 patients detected
by hyperpolarized 129Xe MRI. Sci. Adv. 7:eabc8180. doi: 10.1126/sciadv.abc8180

Li, L., Gao, Z., Wang, Y., Zhang, M., Ni, J., Zheng, C., et al. (2021). SCMFMDA:
Predicting microRNA-disease associations based on similarity constrained matrix
factorization. PLoS Comput. Biol. 17:e1009165. doi: 10.1371/journal.pcbi.1009165

Li, X., Park, S., Paknezhad, M., Dinish, U. S., Binte Ebrahim Attia, A., Weng,
Y., et al. (2021). “Atopic Dermatitis Classification Models of 3D Optoacoustic
Mesoscopic Images,” in Proceedings of the European Conferences on Biomedical
Optics 2021 (ECBO), Munich. doi: 10.1117/12.2615991

Li, J., Chen, C., Chen, H., and Tong, C. (2017). Towards context-aware social
recommendation via individual trust. Knowledge-Based Syst. 127, 58–66. doi: 10.
1016/j.knosys.2017.02.032

Li, J., Zheng, X., Chen, S., Song, W., and Chen, D. (2014). An efficient and
reliable approach for quality-of-service-aware service composition. Inf. Sci. 269,
238–254. doi: 10.1016/j.ins.2013.12.015

Li, J.-Y., Zhan, Z., Wang, C., Jin, H., and Zhang, J. (2020). Boosting data-driven
evolutionary algorithm with localized data generation. IEEE Trans. Evol. Comput.
24, 923–937. doi: 10.1109/TEVC.2020.2979740

Li, S., Chen, H., Wang, M., Heidari, A., and Mirjalili, S. (2020). Slime mould
algorithm: A new method for stochastic optimization. Fut. Gener. Comput. Syst.
111, 300–323. doi: 10.1016/j.future.2020.03.055

Li, Y., Li, X., Hong, J., Wang, Y., Fu, J., Yang, H., et al. (2020). Clinical trials,
progression-speed differentiating features and swiftness rule of the innovative
targets of first-in-class drugs. Brief. Bioinform. 21, 649–662. doi: 10.1093/bib/
bby130

Liu, G., Jia, W., Wang, M., Heidari, A. A., Chen, H., Luo, Y., et al. (2020).
Predicting cervical hyperextension injury: A covariance guided sine cosine support
vector machine. IEEE Access 8, 46895–46908. doi: 10.1109/ACCESS.2020.297
8102

Liu, L., Zhao, D., Yu, F., Heidari, A., Li, C., Ouyang, J., et al. (2021). Ant colony
optimization with Cauchy and greedy Levy mutations for multilevel COVID
19 X-ray image segmentation. Comp. Biol. Med. 136:104609. doi: 10.1016/j.
compbiomed.2021.104609

Liu, S., An, J., Zhao, J., Zhao, S., Lv, H., and Wang, S. (2021). Drug-
target interaction prediction based on multisource information weighted fusion.
Contrast Media Mol. Imaging 2021:6044256. doi: 10.1155/2021/6044256

Liu, S., Yang, B., Wang, Y., Tian, J., Yin, L., and Zheng, W. (2022). 2D/3D
multimode medical image registration based on normalized cross-correlation.
Appl. Sci. 12:2828. doi: 10.3390/app12062828

Liu, Y., Heidari, A. A., Cai, Z., Liang, G., Chen, H., Pan, Z., et al. (2022).
Simulated annealing-based dynamic step shuffled frog leaping algorithm: Optimal
performance design and feature selection. Neurocomputing 503, 325–362. doi:
10.1016/j.neucom.2022.06.075

Lu, C., Gao, L., and Yi, J. (2018). Grey wolf optimizer with cellular topological
structure. Expert Syst. Applic. 107, 89–114. doi: 10.1016/j.eswa.2018.04.012

Frontiers in Neuroinformatics 35 frontiersin.org

https://doi.org/10.3389/fninf.2022.1063048
https://doi.org/10.1109/ACCESS.2020.3028012
https://doi.org/10.1109/ACCESS.2020.3028012
https://doi.org/10.1109/TFUZZ.2020.3003506
https://doi.org/10.1016/j.ins.2009.12.010
https://doi.org/10.1038/s41598-020-64937-x
https://doi.org/10.1109/TCBB.2022.3185395
https://doi.org/10.1016/j.swevo.2018.01.001
https://doi.org/10.1109/ICHI.2017.31
https://doi.org/10.23919/CSMS.2021.0018
https://doi.org/10.23919/CSMS.2021.0018
https://doi.org/10.1109/TEVC.2020.3027620
https://doi.org/10.1109/TEVC.2019.2933444
https://doi.org/10.1109/TEVC.2019.2933444
https://doi.org/10.1016/j.future.2019.02.028
https://doi.org/10.1016/j.asoc.2019.105521
https://doi.org/10.1159/000514503
https://doi.org/10.1109/ACCESS.2021.3075942
https://doi.org/10.1016/j.knosys.2021.107761
https://doi.org/10.1016/j.compbiomed.2021.105166
https://doi.org/10.1016/j.compbiomed.2021.105166
https://doi.org/10.1016/j.compbiomed.2021.105054
https://doi.org/10.1109/JAS.2021.1003817
https://doi.org/10.1016/j.asoc.2018.04.033
https://doi.org/10.1038/s41598-021-04373-7
https://doi.org/10.1038/s41598-021-04373-7
https://doi.org/10.1111/aos.14928
https://doi.org/10.1111/jdv.17929
https://doi.org/10.1109/CEC.2014.6900618
https://doi.org/10.1109/CEC.2014.6900618
https://doi.org/10.1109/TSMC.1985.6313426
https://doi.org/10.1109/TSMC.1985.6313426
https://doi.org/10.1109/JSYST.2022.3173538
https://doi.org/10.3389/fninf.2022.956423
https://doi.org/10.1016/j.eswa.2020.114529
https://doi.org/10.1016/j.eswa.2020.114529
https://doi.org/10.1109/TCBB.2021.3069441
https://doi.org/10.1109/TCBB.2021.3069441
https://doi.org/10.1126/sciadv.abc8180
https://doi.org/10.1371/journal.pcbi.1009165
https://doi.org/10.1117/12.2615991
https://doi.org/10.1016/j.knosys.2017.02.032
https://doi.org/10.1016/j.knosys.2017.02.032
https://doi.org/10.1016/j.ins.2013.12.015
https://doi.org/10.1109/TEVC.2020.2979740
https://doi.org/10.1016/j.future.2020.03.055
https://doi.org/10.1093/bib/bby130
https://doi.org/10.1093/bib/bby130
https://doi.org/10.1109/ACCESS.2020.2978102
https://doi.org/10.1109/ACCESS.2020.2978102
https://doi.org/10.1016/j.compbiomed.2021.104609
https://doi.org/10.1016/j.compbiomed.2021.104609
https://doi.org/10.1155/2021/6044256
https://doi.org/10.3390/app12062828
https://doi.org/10.1016/j.neucom.2022.06.075
https://doi.org/10.1016/j.neucom.2022.06.075
https://doi.org/10.1016/j.eswa.2018.04.012
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-16-1063048 January 10, 2023 Time: 15:5 # 36

Li et al. 10.3389/fninf.2022.1063048

Lu, S., Yang, B., Xiao, Y., and Liu, S. (2023). Iterative reconstruction of low-
dose CT based on differential sparse. Biomed. Signal Process. Control 79:104204.
doi: 10.1016/j.bspc.2022.104204

Ma, X., Sun, P. G., and Gong, M. (2020). An integrative framework of
heterogeneous genomic data for cancer dynamic modules based on matrix
decomposition. IEEE/ACM Trans. Comput. Biol. Bioinform. 19, 305–316. doi:
10.1109/TCBB.2020.3004808

Mailagaha Kumbure, M., Luukka, P., and Collan, M. (2020). A new fuzzy
k-nearest neighbor classifier based on the Bonferroni mean. Pattern Recogn. Lett.
140, 172–178. doi: 10.1016/j.patrec.2020.10.005

Maintz, L., Welchowski, T., Herrmann, N., Brauer, J., Kläschen, A., Fimmers,
R., et al. (2021). Machine learning–based deep phenotyping of atopic dermatitis:
Severity-associated factors in adolescent and adult patients. JAMA Dermatol. 157,
1414–1424. doi: 10.1001/jamadermatol.2021.3668

Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel nature-
inspired heuristic paradigm. Knowledge-Based Syst. 89, 228–249. doi: 10.1016/j.
knosys.2015.07.006

Mirjalili, S. (2016). SCA: A sine cosine algorithm for solving optimization
problems. Knowledge-Based Syst. 96, 120–133. doi: 10.1016/j.knosys.2015.12.022

Mirjalili, S., and Lewis, A. (2016). The whale optimization algorithm. Adv. Eng.
Softw. 95, 51–67. doi: 10.1016/j.advengsoft.2016.01.008

Mirjalili, S., Mirjalili, S. M., and Lewis, A. (2014). Grey wolf optimizer. Adv. Eng.
Softw. 69, 46–61. doi: 10.1016/j.advengsoft.2013.12.007

Nagra, A. A., Han, F., Ling, Q., and Mehta, S. (2019). An improved hybrid
method combining gravitational search algorithm with dynamic multi swarm
particle swarm optimization. IEEE Access 7, 50388–50399. doi: 10.1109/ACCESS.
2019.2903137

Nenavath, H., and Jatoth, R. K. (2018). Hybridizing sine cosine algorithm
with differential evolution for global optimization and object tracking. Appl. Soft
Comput. 62, 1019–1043. doi: 10.1016/j.asoc.2017.09.039

Nenavath, H., Kumar Jatoth, D. R., and Das, D. S. (2018). A synergy of the sine-
cosine algorithm and particle swarm optimizer for improved global optimization
and object tracking. Swarm Evol. Comput. 43, 1–30. doi: 10.1016/j.swevo.2018.02.
011

Nobile, M. S., Cazzaniga, P., Besozzi, D., Colombo, R., Mauri, G., and Pasi, G.
(2018). Fuzzy Self-Tuning PSO: A settings-free algorithm for global optimization.
Swarm Evol. Comput. 39, 70–85. doi: 10.1016/j.swevo.2017.09.001

Poto, R., Quinti, I., Marone, G., Taglialatela, M., de Paulis, A., Casolaro, V., et al.
(2022). IgG Autoantibodies Against IgE from Atopic Dermatitis Can Induce the
Release of Cytokines and Proinflammatory Mediators from Basophils and Mast
Cells. Front. Immunol. 13:880412. doi: 10.3389/fimmu.2022.880412

Qi, A., Zhao, D., Yu, F., Heidari, A., Chen, H., and Xiao, L. (2022a). Directional
mutation and crossover for immature performance of whale algorithm with
application to engineering optimization. J. Comput. Design Eng. 9, 519–563. doi:
10.1093/jcde/qwac014

Qi, A., Zhao, D., Yu, F., Heidari, A., Wu, Z., Cai, Z., et al. (2022b). Directional
mutation and crossover boosted ant colony optimization with application to
COVID-19 X-ray image segmentation. Comput. Biol. Med. 148:105810. doi: 10.
1016/j.compbiomed.2022.105810

Qiu, S., Zhao, H., Jiang, N., Wang, Z., Liu, L., An, Y., et al. (2022). Multi-sensor
information fusion based on machine learning for real applications in human
activity recognition: State-of-the-art and research challenges. Inf. Fus. 80, 241–265.
doi: 10.1016/j.inffus.2021.11.006

Qu, C., Zeng, Z., Dai, J., Yi, Z., and He, W. A. (2018). Modified sine-cosine
algorithm based on neighborhood search and greedy levy mutation. Comput.
Intell. Neurosci. 2018:4231647. doi: 10.1155/2018/4231647

Rahnamayan, S., Tizhoosh, H. R., and Salama, M. M. A. (2007). A
novel population initialization method for accelerating evolutionary algorithms.
Comput. Math. Applic. 53, 1605–1614. doi: 10.1016/j.camwa.2006.07.013

Rehbinder, E. M., Advocaat Endre, K., Lødrup Carlsen, K., Asarnoj, A., Stensby
Bains, K., Berents, T., et al. (2020). Predicting skin barrier dysfunction and atopic
dermatitis in early infancy. J. Allergy Clin. Immunol. 8, 664–673. doi: 10.1016/j.
jaip.2019.09.014

Socha, K., and Dorigo, M. (2008). Ant colony optimization for continuous
domains. Eur. J. Oper. Res. 185, 1155–1173. doi: 10.1016/j.ejor.2006.06.046

Song, S., Wang, P., Heidari, A. A., Wang, M., Zhao, X., Chen, H., et al. (2021).
Dimension decided Harris hawks optimization with Gaussian mutation: Balance
analysis and diversity patterns. Knowledge-Based Syst. 215:106425. doi: 10.1016/j.
knosys.2020.106425

Spergel, J. M. (2021). The atopic march: Where we are going? Can we change it?
Ann. Allergy Asthma Immunol. 127, 283–284. doi: 10.1016/j.anai.2021.06.022

Storn, R., and Price, K. (1997). Differential Evolution – A Simple and efficient
heuristic for global optimization over continuous spaces. J. Glob. Optimiz. 11,
341–359. doi: 10.1023/A:1008202821328

Su, Y., Li, S., Zheng, C., and Zhang, X. (2019). A heuristic algorithm for
identifying molecular signatures in cancer. IEEE Trans. NanoBiosci. 19, 132–141.
doi: 10.1109/TNB.2019.2930647

Suhendra, R., Arnia, F., Idroes, R., Earlia, N., and Suhartono, E. (2019). “A
Novel Approach to Multi-class Atopic Dermatitis Disease Severity Scoring using
Multi-class SVM,” in Proceedings of the 2019 IEEE International Conference on
Cybernetics and Computational Intelligence (CyberneticsCom), Banda Aceh. doi:
10.1109/CYBERNETICSCOM.2019.8875693

Tang, H., Xu, Y., Lin, A., Heidari, A. A., Wang, M., Chen, H., et al. (2020).
Predicting green consumption behaviors of students using efficient firefly grey
wolf-assisted K-nearest neighbor classifiers. IEEE Access 8, 35546–35562. doi: 10.
1109/ACCESS.2020.2973763

Tu, J., Chen, H., Wang, M., and Gandomi, A. (2021b). The colony predation
algorithm. J. Bionic Eng. 18, 674–710. doi: 10.1007/s42235-021-0050-y

Tu, J., Chen, H., Liu, J., Heidar, A., Zhang, X., Wang, M., et al.
(2021a). Evolutionary biogeography-based whale optimization methods with
communication structure: Towards measuring the balance. Knowledge-Based Syst.
212:106642. doi: 10.1016/j.knosys.2020.106642

Tu, S., Rehman, O., Rehman, S., Ullah, S., Waqas, M., and Zhu, R.
(2020). A Novel Quantum Inspired Particle Swarm Optimization Algorithm for
Electromagnetic Applications. IEEE Access 8, 21909–21916. doi: 10.1109/ACCESS.
2020.2968980

Wang, G.-G., Gao, D., and Pedrycz, W. (2022). Solving multi-objective
fuzzy job-shop scheduling problem by a hybrid adaptive differential evolution
algorithm. IEEE Trans. Ind. Inform. 18, 8519–8528. doi: 10.1109/TII.2022.3165636

Wang, M., Chen, H., Yang, B., Zhao, X., Hu, L., Cai, Z., et al. (2017). Toward an
optimal kernel extreme learning machine using a chaotic moth-flame optimization
strategy with applications in medical diagnoses. Neurocomputing 267, 69–84. doi:
10.1016/j.neucom.2017.04.060

Wang, X., Fu, X., Dong, J., and Jiang, J. (2021). Dynamic modified chaotic
particle swarm optimization for radar signal sorting. IEEE Access 9, 88452–88466.
doi: 10.1109/ACCESS.2021.3091005

Williams, H. C. (1996). Diagnostic criteria for atopic dermatitis. Lancet 348,
1391–1392. doi: 10.1016/S0140-6736(05)65466-9

Williams, H. C., Burney, P., Pembroke, A., and Hay, R. (1994). The U.K.
Working Party’s Diagnostic Criteria for Atopic Dermatitis. I. Derivation of a
minimum set of discriminators for atopic dermatitis. Br. J. Dermatol. 131, 383–
396. doi: 10.1111/j.1365-2133.1994.tb08530.x

Williams, H. C., Burney, P., Pembroke, A., and Hay, R. (1996). Validation of
the U.K. diagnostic criteria for atopic dermatitis in a population setting. U.K.
Diagnostic Criteria for Atopic Dermatitis Working Party. Br. J. Dermatol. 135,
12–17. doi: 10.1111/j.1365-2133.1996.tb03599.x

Wolpert, D. H., and Macready, W. G. (1997). No free lunch theorems for
optimization. IEEE Trans. Evol. Comput. 1, 67–82. doi: 10.1109/4235.585893

Wu, S., Mao, P., Li, R., Cai, Z., Heidari, A., Xia, J., et al. (2021). Evolving
fuzzy k-nearest neighbors using an enhanced sine cosine algorithm: Case study
of lupus nephritis. Comput. Biol. Med. 135:104582. doi: 10.1016/j.compbiomed.
2021.104582

Wu, S.-H., Zhan, Z.-H., and Zhang, J. (2021). SAFE Scale-adaptive fitness
evaluation method for expensive optimization problems. IEEE Trans. Evol.
Comput. 25, 478–491. doi: 10.1109/TEVC.2021.3051608

Wu, Z., Li, G., Shen, S., Lian, X., Chen, E., and Xu, G. (2021). Constructing
dummy query sequences to protect location privacy and query privacy in location-
based services. World Wide Web 24, 25–49. doi: 10.1007/s11280-020-00830-x

Wu, Z., Wang, R., Li, Q., Lian, X., Xu, G., Chen, E., et al. (2020). A location
privacy-preserving system based on query range cover-up for location-based
services. IEEE Trans. Vehic. Technol. 69, 5244–5254. doi: 10.1109/TVT.2020.
2981633

Wu, Z., Xuan, S., Xie, J., Lin, C., and Lu, C. (2022). How to ensure the
confidentiality of electronic medical records on the cloud: A technical perspective.
Comput. Biol. Med. 147:105726. doi: 10.1016/j.compbiomed.2022.105726

Xia, J., Yang, D., Zhou, H., Chen, Y., Zhang, H., Liu, T., et al. (2022). Evolving
kernel extreme learning machine for medical diagnosis via a disperse foraging sine
cosine algorithm. Comput. Biol. Med. 141:105137. doi: 10.1016/j.compbiomed.
2021.105137

Yang, B., Xu, S., Chen, H., Zheng, W., and Liu, C. (2022). Reconstruct dynamic
soft-tissue with stereo endoscope based on a single-layer network. IEEE Trans.
Image Process. 31, 5828–5840. doi: 10.1109/TIP.2022.3202367

Frontiers in Neuroinformatics 36 frontiersin.org

https://doi.org/10.3389/fninf.2022.1063048
https://doi.org/10.1016/j.bspc.2022.104204
https://doi.org/10.1109/TCBB.2020.3004808
https://doi.org/10.1109/TCBB.2020.3004808
https://doi.org/10.1016/j.patrec.2020.10.005
https://doi.org/10.1001/jamadermatol.2021.3668
https://doi.org/10.1016/j.knosys.2015.07.006
https://doi.org/10.1016/j.knosys.2015.07.006
https://doi.org/10.1016/j.knosys.2015.12.022
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1109/ACCESS.2019.2903137
https://doi.org/10.1109/ACCESS.2019.2903137
https://doi.org/10.1016/j.asoc.2017.09.039
https://doi.org/10.1016/j.swevo.2018.02.011
https://doi.org/10.1016/j.swevo.2018.02.011
https://doi.org/10.1016/j.swevo.2017.09.001
https://doi.org/10.3389/fimmu.2022.880412
https://doi.org/10.1093/jcde/qwac014
https://doi.org/10.1093/jcde/qwac014
https://doi.org/10.1016/j.compbiomed.2022.105810
https://doi.org/10.1016/j.compbiomed.2022.105810
https://doi.org/10.1016/j.inffus.2021.11.006
https://doi.org/10.1155/2018/4231647
https://doi.org/10.1016/j.camwa.2006.07.013
https://doi.org/10.1016/j.jaip.2019.09.014
https://doi.org/10.1016/j.jaip.2019.09.014
https://doi.org/10.1016/j.ejor.2006.06.046
https://doi.org/10.1016/j.knosys.2020.106425
https://doi.org/10.1016/j.knosys.2020.106425
https://doi.org/10.1016/j.anai.2021.06.022
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1109/TNB.2019.2930647
https://doi.org/10.1109/CYBERNETICSCOM.2019.8875693
https://doi.org/10.1109/CYBERNETICSCOM.2019.8875693
https://doi.org/10.1109/ACCESS.2020.2973763
https://doi.org/10.1109/ACCESS.2020.2973763
https://doi.org/10.1007/s42235-021-0050-y
https://doi.org/10.1016/j.knosys.2020.106642
https://doi.org/10.1109/ACCESS.2020.2968980
https://doi.org/10.1109/ACCESS.2020.2968980
https://doi.org/10.1109/TII.2022.3165636
https://doi.org/10.1016/j.neucom.2017.04.060
https://doi.org/10.1016/j.neucom.2017.04.060
https://doi.org/10.1109/ACCESS.2021.3091005
https://doi.org/10.1016/S0140-6736(05)65466-9
https://doi.org/10.1111/j.1365-2133.1994.tb08530.x
https://doi.org/10.1111/j.1365-2133.1996.tb03599.x
https://doi.org/10.1109/4235.585893
https://doi.org/10.1016/j.compbiomed.2021.104582
https://doi.org/10.1016/j.compbiomed.2021.104582
https://doi.org/10.1109/TEVC.2021.3051608
https://doi.org/10.1007/s11280-020-00830-x
https://doi.org/10.1109/TVT.2020.2981633
https://doi.org/10.1109/TVT.2020.2981633
https://doi.org/10.1016/j.compbiomed.2022.105726
https://doi.org/10.1016/j.compbiomed.2021.105137
https://doi.org/10.1016/j.compbiomed.2021.105137
https://doi.org/10.1109/TIP.2022.3202367
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-16-1063048 January 10, 2023 Time: 15:5 # 37

Li et al. 10.3389/fninf.2022.1063048

Yang, X., Zhao, D., Yu, F., Heidari, A. A., Bano, Y., Ibrohimov, A., et al.
(2022). An optimized machine learning framework for predicting intradialytic
hypotension using indexes of chronic kidney disease-mineral and bone disorders.
Comput. Biol. Med. 145:105510. doi: 10.1016/j.compbiomed.2022.105510

Yang, X.-S. (2010). “A New Metaheuristic Bat-Inspired Algorithm,” in Nature
Inspired Cooperative Strategies for Optimization (NICSO 2010), eds J. R. González,
D. A. Pelta, C. Cruz, G. Terrazas, and N. Krasnogor (Berlin: Springer Berlin
Heidelberg). doi: 10.1007/978-3-642-12538-6_6

Yang, Y., Chen, H., Heidari, A., and Gandomi, A. H. (2021). Hunger games
search: Visions, conception, implementation, deep analysis, perspectives, and
towards performance shifts. Expert Syst. Appl. 177:114864. doi: 10.1016/j.eswa.
2021.114864

Yang, Z., Ma, J., Chen, H., Zhang, J., and Chang, Y. (2022). Context-aware
Attentive Multi-level Feature Fusion for Named Entity Recognition. IEEE Trans.
Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2022.3178522 [Epub ahead of
print].

Ye, H., Wu, P., Zhu, T., Xiao, Z., Zhang, X., Zheng, L., et al. (2021). Diagnosing
Coronavirus Disease 2019 (COVID-19): Efficient Harris Hawks-Inspired Fuzzy
K-Nearest Neighbor Prediction Methods. IEEE Access 9, 17787–17802. doi: 10.
1109/ACCESS.2021.3052835

Ye, X., Liu, W., Li, H., Wang, M., Chi, C., Liang, G., et al. (2021). Modified whale
optimization algorithm for solar cell and PV module parameter identification.
Complexity 2021:8878686. doi: 10.1155/2021/8878686

Yu, H., Yuan, K., Li, W., Zhao, N., Chen, W., Huang, C., et al. (2021). Improved
butterfly optimizer-configured extreme learning machine for fault diagnosis.
Complexity 2021:6315010. doi: 10.1155/2021/6315010

Zhang, L., Wang, J., Wang, W., Jin, Z., Su, Y., and Chen, H. (2022).
Smart contract vulnerability detection combined with multi-objective detection.
Comput. Netw. 217:109289. doi: 10.1016/j.comnet.2022.109289

Zhang, X., Zheng, J., Wang, D., Tang, G., Zhou, Z., and Lin, Z. (2022). Structured
Sparsity Optimization with Non-Convex Surrogates of l2,0-Norm: A Unified
Algorithmic Framework. IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/
TPAMI.2022.3213716 [Epub ahead of print].

Zhang, X. Q., Hu, W., Xie, N., Bao, H., and Maybank, S. A. (2015). Robust
tracking system for low frame rate video. Int. J. Comput. Vis. 115, 279–304. doi:
10.1007/s11263-015-0819-8

Zhang, Z., Wang, L., Zheng, W., Yin, L., Hu, R., Yang, B., et al. (2022). Endoscope
image mosaic based on pyramid ORB. Biomed. Signal Process. Control 71:103261.
doi: 10.1016/j.bspc.2021.103261

Zhao, D., Liu, L., Yu, F., Heidari, A. A., Wang, M., Liang, G., et al.
(2021). Chaotic random spare ant colony optimization for multi-threshold image
segmentation of 2D Kapur entropy. Knowledge-Based Syst. 216:106510. doi: 10.
1016/j.knosys.2020.106510

Zhen, L., Liu, Y., Dongsheng, W., and Wei, Z. (2020). Parameter Estimation of
Software Reliability Model and Prediction Based on Hybrid Wolf Pack Algorithm
and Particle Swarm Optimization. IEEE Access 8, 29354–29369. doi: 10.1109/
ACCESS.2020.2972826

Zhou, Q., Guo, S., Xu, L., Guo, X., Williams, H., Xu, H., et al. (2021).
Global Optimization of the Hydraulic-Electromagnetic Energy-Harvesting Shock
Absorber for Road Vehicles With Human-Knowledge-Integrated Particle Swarm
Optimization Scheme. IEEE/ASME Trans. Mechatron. 26, 1225–1235. doi: 10.
1109/TMECH.2021.3055815

Zhou, W., Wang, P., Heidari, A., Wang, M., and Chen, H. (2021). Multi-core
sine cosine optimization: Methods and inclusive analysis. Expert Syst. Applic.
164:113974. doi: 10.1016/j.eswa.2020.113974

Zhu, F., Li, X., Yang, S., and Chen, Y. (2018). Clinical success of drug targets
prospectively predicted by in silico study. Trends Pharmacol. Sci. 39, 229–231.
doi: 10.1016/j.tips.2017.12.002

Zhuang, Y., Jiang, N., and Xu, Y. (2022). Progressive distributed and
parallel similarity retrieval of large CT image sequences in mobile telemedicine
networks. Wireless Commun. Mob. Comput. 2022, 1–13. doi: 10.1155/2022/645
8350

Zuo, W.-L., Wang, Z.-Y., Liu, T., and Chen, H.-L. (2013). Effective
detection of Parkinson’s disease using an adaptive fuzzy K-nearest neighbor
approach. Biomed. Signal Process. Control 8, 364–373. doi: 10.1016/j.bspc.2013.0
2.006

Frontiers in Neuroinformatics 37 frontiersin.org

https://doi.org/10.3389/fninf.2022.1063048
https://doi.org/10.1016/j.compbiomed.2022.105510
https://doi.org/10.1007/978-3-642-12538-6_6
https://doi.org/10.1016/j.eswa.2021.114864
https://doi.org/10.1016/j.eswa.2021.114864
https://doi.org/10.1109/TNNLS.2022.3178522
https://doi.org/10.1109/ACCESS.2021.3052835
https://doi.org/10.1109/ACCESS.2021.3052835
https://doi.org/10.1155/2021/8878686
https://doi.org/10.1155/2021/6315010
https://doi.org/10.1016/j.comnet.2022.109289
https://doi.org/10.1109/TPAMI.2022.3213716
https://doi.org/10.1109/TPAMI.2022.3213716
https://doi.org/10.1007/s11263-015-0819-8
https://doi.org/10.1007/s11263-015-0819-8
https://doi.org/10.1016/j.bspc.2021.103261
https://doi.org/10.1016/j.knosys.2020.106510
https://doi.org/10.1016/j.knosys.2020.106510
https://doi.org/10.1109/ACCESS.2020.2972826
https://doi.org/10.1109/ACCESS.2020.2972826
https://doi.org/10.1109/TMECH.2021.3055815
https://doi.org/10.1109/TMECH.2021.3055815
https://doi.org/10.1016/j.eswa.2020.113974
https://doi.org/10.1016/j.tips.2017.12.002
https://doi.org/10.1155/2022/6458350
https://doi.org/10.1155/2022/6458350
https://doi.org/10.1016/j.bspc.2013.02.006
https://doi.org/10.1016/j.bspc.2013.02.006
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/

	bSRWPSO-FKNN: A boosted PSO with fuzzy K-nearest neighbor classifier for predicting atopic dermatitis disease
	1. Introduction
	2. Related works
	3. An overview of PSO
	4. The proposed SRWPSO
	4.1. Sobol sequence
	4.2. Random replacement strategy
	4.3. Adaptive weight strategy
	4.4. Implementation of SRWPSO

	5. The proposed bSRWPSO-FKNN
	5.1. Binary conversion method
	5.2. Fuzzy K-nearest neighbor
	5.3. Implementation of bSRWPSO-FKNN

	6. Benchmark function validation
	6.1. Experimental setup
	6.2. Impacts of components
	6.3. The qualitative analysis of SRWPSO
	6.4. Comparison with traditional algorithms
	6.5. Comparison with famous variants
	6.6. Comparison with new peer variants

	7. Feature selection experiments and analysis
	7.1. Experimental setup
	7.2. Public dataset experiments
	7.3. AD dataset experiments
	7.3.1. AD dataset
	7.3.2. Medical validation experiments


	8. Conclusion and future works
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


