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Sudden unexpected death of epilepsy (SUDEP) is a catastrophic and fatal

complication of epilepsy and is the primary cause of mortality in those who

have uncontrolled seizures. While several multifactorial processes have been

implicated including cardiac, respiratory, autonomic dysfunction leading to

arrhythmia, hypoxia, and cessation of cerebral and brainstem function, the

mechanisms underlying SUDEP are not completely understood. Postictal

generalized electroencephalogram (EEG) suppression (PGES) is a potential risk

marker for SUDEP, as studies have shown that prolonged PGESwas significantly

associated with a higher risk of SUDEP. Automated PGES detection techniques

have been developed to e�ciently obtain PGES durations for SUDEP risk

assessment. However, real-world data recorded in epilepsy monitoring units

(EMUs) may contain high-amplitude signals due to physiological artifacts,

such as breathing, muscle, and movement artifacts, making it di�cult to

determine the end of PGES. In this paper, we present a hybrid approach

that combines the benefits of unsupervised and supervised learning for

PGES detection using multi-channel EEG recordings. A K-means clustering

model is leveraged to group EEG recordings with similar artifact features. We

introduce a new learning strategy for training a set of random forest (RF)

models based on clustering results to improve PGES detection performance.

Our approach achieved a 5-second tolerance-based detection accuracy of

64.92%, a 10-second tolerance-based detection accuracy of 79.85%, and an

average predicted time distance of 8.26 seconds with 286 EEG recordings

using leave-one-out (LOO) cross-validation. The results demonstrated that

our hybrid approach provided better performance compared to other existing

approaches.
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epilepsy, generalized tonic-clonic seizure, postictal generalized EEG suppression,
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1. Introduction

The disease of epilepsy is characterized by unpredictable

seizures that occur recurrently and spontaneously (Fisher et al.,

2014). Epilepsy affects approximately one in every 26 adults

in the United States (Hesdorffer et al., 2011). In an epileptic

seizure, large numbers of brain neurons are involved in an

excessive, synchronized, and inappropriate electrical discharge

that triggers signs and symptoms (Goldenberg, 2010). An

individual experiencing seizures may experience temporary

confusion, uncontrolled jerking motions of arms and legs, an

inability to speak, or loss of consciousness (Clark and Kruse,

1990). Approximately one-third of epilepsy patients are unable

to become seizure-free with currently available treatments,

increasing their risk of sudden unexpected death in epilepsy

(SUDEP) (Petrucci et al., 2020).

Sudden unexpected death in epilepsy is a catastrophic and

fatal complication of epilepsy and is the primary cause of

mortality in those who have uncontrolled seizures (Devinsky

et al., 2016). It ranks second only to stroke in terms of years

of potential life lost due to neurological disease (Thurman

et al., 2014). For epilepsy patients who die from SUDEP, no

anatomical or toxicological causes of death can be identified at

autopsy (Okanari et al., 2020). In epilepsy clinic populations,

the incidence of SUDEP ranges between 1.1 and 5.9 per

1,000 patient-years, whereas it is between 6.3 and 9.3 per

1,000 patient-years for those with intractable epilepsy, raising

a significant public health concern (Zhao et al., 2021).

While several multifactorial processes have been involved

including cardiac, respiratory, autonomic dysfunction leading

to arrhythmia, hypoxia, and cessation of cerebral and brainstem

function, themechanisms underlying SUDEP are not completely

understood (Okanari et al., 2020; Petrucci et al., 2020).

Electrophysiological signals obtained in epilepsy monitoring

units (EMUs), such as electroencephalogram (EEG),

electrocardiogram (ECG), and electromyography (EMG),

are usually used to analyze epileptic seizures (Bertram,

2014). To locate seizures and monitor brain activity between

seizures, non-invasive scalp EEG, and invasive intracranial

EEG are commonly used (Worrell and Gotman, 2011). For the

diagnosis of epilepsy, scalp EEG provides critical information

regarding whether the seizure disorder is focal or generalized,

idiopathic, or symptomatic, or part of a specific epilepsy

syndrome (Smith, 2005), and intracranial EEG is one of the

techniques used to localize the seizure onset zone in preparation

for surgery (Bertram, 2014). Therefore, EEG is an invaluable tool

for diagnosing epilepsy and guiding clinical treatment (Rosenow

et al., 2015). It has been widely used to identify biomarkers that

can help prevent the development of epilepsy, identify specific

regions of the brain that cause epilepsy, and ultimately cure

epilepsy through surgery (Staba et al., 2014).

A potential risk marker for SUDEP is the

postictal generalized EEG suppression (PGES)

(Lhatoo et al., 2010; Wu et al., 2016; Vilella et al., 2019),

during which electrical activity is suppressed at the end of a

seizure (Grigorovsky et al., 2020). Postictal generalized EEG

suppression is defined as diffuse EEG background attenuation

(less than 10 µV) in the postictal period (Asadollahi et al.,

2018). According to a case-control study by Lhatoo et al. (2010),

duration of PGES more than 50 seconds (known as prolonged

PGES) was significantly associated with a higher risk of SUDEP.

Based on the definition of PGES, it seems straightforward

to identify a period of low-amplitude EEG signals (< 10µV).

However, real-world data recorded in EMUs may contain

high-amplitude signals due to physiological artifacts such as

respiration, muscle, and movement-related artifacts (Li et al.,

2020). Therefore, in practice the duration of PGES is determined

manually with visual inspection of EEG signal readings by

clinical experts, who can leverage additional video recordings

along with signals to identify high-amplitude artifacts that are

not real EEG activities (Theeranaew et al., 2017). However, such

a manual task is time-consuming and labor-intensive, and the

judging criteria of PGES with artifacts by each clinical expert are

not standardized, which may be subjective and unreliable (Zhao

et al., 2021). Automatic PGES detection tools are highly desirable

to help clinical experts review and annotate PGES in EEG

recordings (Li et al., 2020).

Automated techniques have been studied for PGES

detection, including a logistic regression approach based

on frequency-domain features (Theeranaew et al., 2017), an

eXtreme Gradient Boosting (XGBoost) classifier with time-

domain and entropy-based features (Mier et al., 2020), and deep

learning models based on convolutional neural network (Kim

et al., 2020; Vance et al., 2020). However, these studies utilized

segment-based evaluation (i.e., the predictions for each

segment determine the performance metrics), which has been

demonstrated to be ineffective in measuring the performance

of PGES detection in real clinical settings (Li et al., 2020). In

a previous study, we introduced a more practically relevant

manner (known as recording-based evaluation) to evaluate

automated PGES detection methods based on the time distance,

which is the time difference between the detected PGES end

time and the actual expert-annotated end time (Li et al., 2020).

With such time distance-based evaluation metrics, we developed

and evaluated a feature-based random forest (RF) approach for

automatic PGES detection with multi-channel EEG recordings.

However, the performance of our previous approach declined

when being applied to a larger dataset for PGES detection,

indicating the need of further improvement of our approach.

In addition, in our previous work, the categorization of artifact

levels (e.g., artifact-free, mild artifact, moderate artifact, and

severe artifact) were based on manual review. It is highly

desirable to develop automated approaches to group signals

with similar levels of artifacts.

In this paper, we present a hybrid approach for PGES

detection by combining different learning strategies of
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FIGURE 1

An example of PGES EEG recordings after a generalized tonic-clonic seizure.

unsupervised and supervised learning. We introduce empirical

mode decomposition (EMD)-based features and incorporate

K-means clustering model to group EEG recordings with similar

artifact features. Then we train different RF classifiers (sample-

weighted RF) based on the clustering results. To the best of our

knowledge, this is the first work combining unsupervised and

supervised learning for automatic PGES detection. We apply

this approach to a larger dataset and compare its performance

with our previous approach as well as support vector machines

(SVM) and XGBoost-based approaches.

2. Background

2.1. Postictal generalized EEG
suppression (PGES)

The PGES is a postictal generalized attenuation of EEG

activity, formerly referred to as a sudden EEG “flattening,”

“an abruptly attenuated termination pattern,” or “an electrical

shutdown,” and the most commonly used definition now is

the one proposed by Lhatoo et al. (Lhatoo et al., 2010;

Bruno et al., 2020). Later studies have enhanced this definition

by adding additional minimum duration criteria (Surges

et al., 2011; Seyal et al., 2012), making it more useful in

practice. Postictal generalized EEG suppression mostly occurs

following generalized tonic-clonic seizures (GTCS), especially

those occurring during sleep, and is associated with postictal

immobility, lack of early oxygen administration, duration of

oxygen desaturation, and decreased peripheral capillary oxygen

saturation nadir values (Alexandre et al., 2015; Kuo et al.,

2016; Esmaeili et al., 2018). One example of PGES after a

GTCS is shown in Figure 1, and intermittent slow waves (ISW)

are the sign of the end of PGES. The Mortality in Epilepsy

Monitoring Unit Study (MORTEMUS), which aims to retrieve

data from all cardiorespiratory arrests in SUDEP patients to

massive brainstem dysfunction, evaluated PGES as a predictor

of cardiorespiratory collapse in patients with SUDEP (Yang

et al., 2022). Since its discovery, PGES has been of interest

in clinical studies investigating other potential markers of

SUDEP (Bruno et al., 2020). Therefore, understanding the

underlying mechanisms of SUDEP through PGES clinical risk

factors is essential for improving risk assessment in epilepsy

patients (Yang et al., 2022).

2.2. EEG feature extraction

For feature extraction of EEG recordings, we consider the

following established features: (1) time-domain features, (2)

frequency-domain features, (3) wavelet-based features, (4) inter-

channel correlations, and (5) EMD-based features.

Time-domain features. Time-domain features include

statistical measures (e.g., mean, kurtosis, and skewness) (Jobson,

2012) and Hjorth parameters (Hjorth, 1970). The mean feature

measures a probability distribution’s central tendency. The

kurtosis and skewness features measure the tailedness and

the asymmetry of a probability distribution, respectively (Li

et al., 2020). Hjorth parameters are generally used in feature

extraction for EEG signal analysis (Charbonnier et al., 2011)

including activity, mobility, and complexity (Redmond and

Heneghan, 2006). The activity measures the variance of a time

function. The mobility infers an approximation of the standard

deviation of the power spectrum along the frequency axis. The

complexity measures the change in frequency, which describes

the changes in an EEG recording and how unpredictable those

changes can be (Mier et al., 2020).

Frequency-domain features. Electroencephalogram

recordings have various behaviors in different frequency

bands, such as slow-oscillations (0.5–1 Hz), delta bands (1–4

Hz), theta bands (4–8 Hz), alpha bands (8–12 Hz), beta bands

(14–30 Hz), and gamma bands (30–80 Hz) (Li et al., 2020). For

example, the characteristics of disparate sleep stages in different

frequency bands were reported in our previous work (Li et al.,

2017). Previous studies demonstrated that spectral power is an

important feature for automatic sleep stage scoring and seizure

detection (Fraiwan et al., 2012; Li et al., 2019). Therefore, we

also regard spectral power in different frequency bands as a

feature for PGES detection.
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Wavelet-based features. The wavelet transform decomposes

a signal into a family of wavelets, which are localized in both

the time and frequency domains (Mier et al., 2020). It is a

relatively recent technique for signal processing compared to the

Fourier transform, and the main advantage is that wavelets allow

multiresolution analysis in time and frequency simultaneously,

which can provide us with the frequency of the signals and

the time associated to those frequencies, making it one of the

widely used tools for signal analysis and processing (Mallat,

1999; El-Gindy et al., 2021; Omidvar et al., 2021).

Inter-channel correlations. Correlation represents the degree

of synchrony between two comparing channels and in many

aspects presents similar information as cross-coherence analysis

of EEG signals (Díaz et al., 2015). There have been studies toward

finding movement-related information in the patterns of inter-

channel connectivity between different brain regions (Gysels

and Celka, 2004; Gouy-Pailler et al., 2007; Wei et al., 2007;

Grosse-Wentrup, 2008; Chung et al., 2011).

Empirical mode decomposition. Empirical mode

decomposition is a technique for decomposing a signal

without leaving the time domain (Huang et al., 1998). Based

on the empirical knowledge of oscillations inherent in a time

series, EMD represents these oscillations as a superposition of

components having well-defined instantaneous frequencies (Al-

Subari et al., 2015). During the EMD process, a given signal is

broken down into functions with a mean value of zero and only

one extreme between zero crossings, known as intrinsic mode

functions (IMFs), which form a complete and nearly orthogonal

basis for the original signal (Al-Subari et al., 2015). Furthermore,

EMD can reconstruct the original signal by superimposing

all extracted IMFs and the remaining slowly changing trends

without information loss or distortion (Zeiler et al., 2010).

Hilbert-Huang transform. The Hilbert-Huang transform

(HHT) uses the EMD method to decompose a signal into

IMFs with a trend, and applies the Hilbert spectral analysis

(HSA) method to the IMFs to obtain instantaneous frequency

data (Oweis and Abdulhay, 2011). Since the IMFs into which a

signal is decomposed have the same time domain and length as

the original signal, varying frequency over time can be preserved

in HHT (Huang et al., 2008). This is an important advantage of

HHT since real-world signals often have multiple causes, each

of which may happen at specific time intervals (Pachori, 2008).

The HHT provides a new method of analyzing non-stationary

and non-linear time series data (Aslan and ALçin, 2021).

All features were commonly used for feature extraction of

EEG signals for detection and prediction of various clinical

events, such as sleep scoring, seizure detection, and seizure

prediction. Time-domain features, frequency-domain features,

wavelet-based features, and inter-channel correlations were also

used in previous studies (Kim et al., 2020; Li et al., 2020) for

PGES detection. Empirical mode decomposition and wavelet

transform both decompose signals into different time-scales.

The main difference is that the EMD performs the signal

decomposition adaptively and in a data-driven way, whereas the

wavelet transform defines a set of pre-fixed filters based on the

choice of the mother wavelet (Labate et al., 2013). In EMD, the

frequency is obtained by differentiation rather than convolution,

which allows to overcome the limitations of the uncertainty

principle (Labate et al., 2013). The main advantage of EMD over

wavelet transform is the ability to estimate subtle changes in

frequency, and EMD-based features have been tested and shown

better seizure detection performance compared to wavelet-based

features (Kaleem et al., 2021). Empirical mode decomposition’s

importance in the design of automated detection systems with

EEG data is based on the fact that the clinic event gives rise

to changes in certain frequency bands. The spectral features

obtained from IMF can provide rich clues about the physiology

of the EEG signal (Riaz et al., 2015). Therefore, we include

EMD-based features in this study, and this is the first time that

EMD-based features are used for PGES detection.

2.3. K-means clustering and random
forest classifier

K-means is one of the simplest and most popular

unsupervised machine learning algorithms for

clustering (Orhan et al., 2011). By determining K centroids,

the K-means algorithm allocates each data point to the nearest

cluster, while keeping the within-cluster variances as small

as possible.

The RF classifier is an ensemble learning approach, which

constructs a number of decision trees to perform classification.

The overall output is determined by applying an object to each

tree and choosing the classification with the highest voting

weight. Misclassification and out-of-bag metrics are used to

adjust the weight of each tree (Li et al., 2017). Random forest

has been leveraged for detecting various clinic events from EEG

recordings (Wei et al., 2020; Abou-Abbas et al., 2021; Dimitriadis

et al., 2021; Messaoud and Chavez, 2021).

2.4. Evaluation metrics

Validating the performance of a machine learning model

is the most important step of the entire workflow, which

directly reflects the problem-solving capability of the proposed

algorithm and gives quantitative analysis results to determine

whether it can be used in real-world scenarios (Li et al.,

2021). Evaluation metrics are used to assess the performance

of machine learning models. For classification problems,

commonly used evaluation metrics including accuracy,

precision, sensitivity (as known as recall), specificity, F-score,

receiver operating characteristic (ROC), and area under the

curve (AUC) (Dalianis, 2018). However, these evaluation

metrics in PGES detection can not adequately reflect the actual
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TABLE 1 Dataset summary.

Number of patients 171

Age 3–81 years

Gender Male (76), Female (94), Unknown (1)

Epilepsy classification Generalized tonic-clonic seizure

Epileptogenic zone Generalized

Number of SUDEP cases 4

EEG type Scalp EEG

Number of EEG recordings 268

Number of EEG recordings with PGES 185

Number of EEG recordings without PGES 83

Number of channels 18

Sampling frequency 200 Hz

performance of the model in the clinical practice, i.e., a model

with high accuracy, sensitivity, specificity, and F-score (over

90%) may not necessarily achieve completely satisfactory results

when deployed in the real clinical scenarios (Li et al., 2020).

Therefore, to leverage machine learning-based approaches

in PGES detection, we developed a set of time distance and

recording-based evaluation metrics in a more clinically relevant

way, which were acceptable to clinical experts (Li et al., 2020).

3. Methods

3.1. Dataset

The EEG data used in this study are obtained from the

Center for SUDEP Research (CSR) data repository. Center

for SUDEP Research is a Center Without Walls initiative

for collaborative epilepsy research supported by the National

Institute of Neurological Disorders and Stroke (NINDS).

Researchers from 14 universities in the United States and

Europe have taken part in the project, bringing extensive and

diverse experiences to help better understand SUDEP (Lhatoo

et al., 2015, 2016). Center for SUDEP Research aims to better

understand cortical, subcortical, and brainstem mechanisms

involved in SUDEP through a data-driven, systems biology

approach that focuses on cortical influences in SUDEP. The

CSR’s Informatics and Data Analytics Core (IDAC; NIH

U01NS090408) has developed an infrastructure for integrating

and analyzing prospectively collected data related to SUDEP

from different domains, such as clinical, electrophysiological,

biochemical, genetic, and neuropathological fields (Li et al.,

2022). The CSR data repository contains multimodal data from

over 2,500 epilepsy patients (a broad spectrum of ages as well

as social, racial, and ethnic groups), including thousands of

24-hour electrophysiological recordings in the European Data

Format (Li et al., 2020).

The dataset used for this study consists of 268 EEG

recordings from 171 patients (3–81 years old; 76 males, 94

females, and 1 unknown gender; and 4 SUDEP cases) with

GTCS in the CSR data repository, with PGES annotated by

domain experts. A summary of the dataset, including patient

demographics, clinical data, and EEG recording information,

can be found in Table 1. The distributions of seizure onset

duration and PGES are shown in the Figure 2. We extract five

minutes of postictal (i.e, after the end of GTCS) EEG signals for

automated PGES detection. A total of 18 EEG channels, which

are available to all patients, with a sampling frequency of 200

Hz are utilized: Fp1-F7, F7-T7, T7-P7, P7-O1, Fp2-F8, F8-T8,

T8-P8, P8-O2, Fp1-F3, F3-C3, C3-P3, P3-O1, Fp2-F4, F4-C4,

C4-P4, P4-O2, Fz-Cz, and Cz-Pz.

3.2. Hybrid architecture

As shown in Figure 3, the generic architecture for our hybrid

approach for PGES detection consists of three steps. The pre-

processing and feature extraction of EEG signals start the entire

approach (step 1). After feature extraction, K-means clustering

are performed to based on the artifact features (step 2). Based on

the clustering results, a sample-weighted RF classifier is trained

and tested for PGES detection using the extracted features (step

3). Finally, the performance of our approach is evaluated.

3.3. Pre-processing and feature
extraction

The common electrophysiological artifacts present in EEG

recordings includemuscle artifacts, breathing, and body and bed

movements (Koley and Dey, 2012). To minimize the presence of

residual artifacts, the signals are filtered with a band-pass filter

with different cutoff frequencies for extracting different types of

features: 0.5–30 Hz was used for EMD-based features, and 0.5–5

Hz was used for other features (e.g., time-domain, frequency-

domain, wavelet-based features, and inter-channel correlations).

The use of filter from 0.5 to 5 Hz was to focus on extracting

features in the low-frequency band, where the intermittent slows

are located. Each postictal EEG recording is split into signal

segments with a length of 1 second (i.e., 1-second signal epoch)

from the beginning to the end without any overlap.

For each signal epoch of the 18 EEG channels, we extract

all the features utilized in our previous study (Li et al., 2020),

including time-domain, frequency-domain, wavelet-domain

features, and inter-channel correlations. In addition, we apply

EMD and HHT analysis to obtain features that may be hidden in

the Fourier domain or in the wavelet coefficients, especially for

dynamic or non-sinusoidal signals (Al-Subari et al., 2015). The

EMD algorithm decomposes, via an iterative sifting process, a
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FIGURE 2

Distributions of seizure onset and PGES: (A) distribution of seizure onset duration and (B) distribution of PGES duration.

FIGURE 3

A hybrid architecture for PGES detection.

signal x(t) into N-empirical modes IMFi(t)(i = 1, . . . ,N) and a

residual rN (t):

x(t) =

N
∑

i=1

IMFi(t)+ rN (t). (1)

Here, an IMF is defined to be a function with the following

requirements: (1) the number of local extrema (i.e., the total

number of local minima and local maxima) and the number of

zero-crossings must either be equal or differ at most by one; and

(2) the mean value of the upper and lower envelopes constructed

from the local extrema is zero. The procedure of extracting

an IMF is called sifting. The sifting process of the signal x(t)

contains the following steps:

1. Find the local minima and maxima of x(t);
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FIGURE 4

Empirical mode decomposition components of an EEG signal. The first time series is the original EEG recording from F8–T8 channel. The

decomposition yields eight IMFs. The IMF are the time frequency constituents or components of the EEG signal. Frequency content is ordered in

a descending order (IMF-1 has the highest frequency content).

2. Use the local extrema to construct lower and upper envelopes

s−(t) and s+(t) of x(t), and the mean of the envelopes as

m(t) = (s−(t)+ s+(t))/2;

3. Subtract the mean from x(t) to obtain the residual: y(t) =

x(t)−m(t);

4. Decide whether y(t) is an IMF or not by checking the two

requirements as described above; and

5. If not, repeat step 1 to step 4 using y(t) as new x(t) and end

when an IMF is obtained.

After calculating the first IMF, IMF1(t), the rest of the signal

r1(t) = x(t) − IMF1(t), which still contains longer period

variations in the signal, is treated as the new signal x(t) and

subjected to the same sifting process as described above. The

sifting process finally stops when the residue rN (t) becomes a

monotonic function from which no more IMF can be extracted.

Figure 4 illustrates an example of decomposition performed by

EMD of an EEG recording from F8–T8 channel. Figure 4 shows

that the first mode has a higher frequency than the secondmode,

and the modes are arranged from the highest frequency to the

lowest frequency.

Having obtained the IMF components, the instantaneous

frequency can be computed using the Hilbert transform.

The final result is a frequency-time distribution of signal
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amplitude, designated as the Hilbert spectrum, which permits

the identification of localized features (Huang et al., 2008).

We use the sum of the amplitude of Hilbert spectrum as the

feature of each 1-second epoch of the different channels in

classification (Step 3 in Figure 3). The main challenge for PGES

detection is to discriminate between low frequency artifacts

and ISW. The incorrect identification of low frequency artifact

as ISW is the main factor causing false positives in PGES

detection (Li et al., 2020). Therefore, we extract the amplitudes

of the low-frequency portion (0.5–5 Hz) of the Hilbert spectrum

of entire 5-minute signal as the artifact features, and apply a

clustering approach based on these features (Step 2 in Figure 3)

to group EEG recordings with similar low-frequency patterns for

reinforcement in later model learning phase.

3.4. K-means clustering based on artifact
features

Artifacts in EEG recordings are the major challenge for

PGES detection because they may lead to false detection of ISW.

In our previous study (Li et al., 2020), we manually grouped

EEG recordings into different artifact levels, such as artifact-

free, mild, moderate, and severe; however, such manual work

was time-consuming, labor-intensive, and not scalable. In this

work, we use unsupervised learning to perform a clustering

analysis to group EEG recordings before feeding the features into

the classification model. Through clustering, EEG recordings

with similar artifact features are grouped together to reduce

the probability of obtaining false positives when performing

supervised learning later, thereby improving the performance of

PGES detection.

We utilize K-means clustering algorithm, which is

an iterative algorithm that attempts to partition the EEG

recordings into K pre-defined distinct non-overlapping

subgroups (clusters), where each EEG recording belongs to only

one group. K-means clustering tries to make the features within

the clusters as similar as possible while also keeping the clusters

as different as possible. It assigns EEG recordings to a cluster

such that the sum of the squared distance between the features

and the cluster’s centroid (arithmetic mean of all the features

of signals that belong to that cluster) is at the minimum. The

less variation we have within clusters, the more similar the EEG

recordings are within the same cluster.

3.5. Sample-weighted random forest
(SWRF)

Random forest consists of a large number of individual

decision trees that operate as an ensemble. Each individual

tree in the RF spits out a class prediction and the class with

the most votes becomes the model’s prediction. The intuition

behind the RF model is that a large number of relatively

uncorrelated models (i.e., individual decision trees) operating as

a committee will outperform any of the individual constituent

model (Breiman, 2001). Five steps to build the RF with the

technique of bootstrap aggregating (bagging) has been detailed

described in previous study (Li et al., 2017).

In this work, based on the K-means clustering results, we

further train the SWRF models by applying disparate training

strategies with different clusters. For example, as shown in Step

3 of Figure 3, when training model 1, the sample weights of

the signal features from cluster 1 will be increased, while the

signal features in other clusters remain the same. In the SWRF

model, the sample weights increase the probability estimates

in the probability array, thus affecting the impurity measure

in each node and how the feature space is sliced and diced

for classification. In this way, it changes the way the nodes

are divided and the tree is constructed so that the trained

model is more inclined to higher weighted samples, i.e., the

trained model pays more attention to higher weighted samples

during the learning process. Therefore, the trained model 1

has a higher discrimination ability to make correct decisions

on EEG recordings with similar artifact features to cluster 1.

Thus, we train and obtain n cluster-oriented SWRF models

focusing on different clusters. When new data are encountered,

we first determine which cluster the new data belonged to, and

then applied the corresponding SWRF model for PGES/ISW

classification. After the classification step, we apply confidence-

based correction rules introduced in our previous study (Li et al.,

2020) to correct potential misclassifications caused by sudden

PGES/ISW state changes that are unlikely to happen.

3.6. Evaluation method

For the PGES detection in practical settings, the predication

result of the onset of the first ISW in a given EEG recording

(i.e., recording-based) is more important since it indicates the

end of PGES, and thus the traditional way of perform segment-

based evaluation may not reflect the real performance of the

PGES detection methods (Li et al., 2020). Therefore, we leverage

the time distance and recording-based evaluation metrics for

PGES detection proposed in our previous work (Li et al., 2020),

including predicted time distance TDr , 5-second tolerance-

based detection accuracy Acc5s, and 10-second tolerance-

based detection accuracy rate Acc10s. Given a collection R =

{r1, . . . , rn} of n EEG recordings, these metrics are defined as

follows:

TDri =
∣

∣Pendi − Tendi

∣

∣ (i = 1, . . . , n) (2)

TDavg =
1

n

n
∑

i=1

TDri (3)
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FIGURE 5

Cluster centers obtained by the K-means clustering algorithm. The x-axis indicates the time after the end of the seizure (in seconds; only shows

the first 100 seconds) and y-axis represents the channels (1–18 represent Fp1-F7, F7-T7, T7-P7, P7-O1, Fp2-F8, F8-T8, T8-P8, P8-O2, Fp1-F3,

F3-C3, C3-P3, P3-O1, Fp2-F4, F4-C4, C4-P4, P4-O2, Fz-Cz, and Cz-Pz). Colors indicate the value of the artifact features. The table lists the

number of EEG recordings in each cluster.

Acc5s =

∣

∣ri ∈ R | TDri ≤ 5s
∣

∣

n
(4)

Acc10s =

∣

∣ri ∈ R | TDri ≤ 10s
∣

∣

n
(5)

where, given an EEG recording ri, Pendi is the predicted end

time of PGES (or the predicted time of the first ISW) obtained

by the detection method and Tendi is the actual end time of

PGES (or the actual time of the first ISW) according to the expert

annotations. TDavg is the average predicted time distance for all

EEG recordings. Acc5s is the number of EEG recordings whose

predicted time distances are within 5 seconds divided by the

total number of EEG recordings. Acc10s is the number of EEG

recordings whose predicted time distances are within 10 seconds

divided by the total number of EEG recordings.

4. Results

4.1. Clustering of artifact features

Figure 5 shows the centers of seven clusters obtained by

the K-means clustering algorithm with the values of artifact

features color-coded, as well as the number of EEG recordings

in each cluster. The x-axis indicates the time after the end

of the seizure (in seconds; only shows the first 100 seconds)

and y-axis represents the channels. Colors indicate the value of

the artifact features. The different clusters shown in Figure 5

illustrate varying distributions of artifacts over time periods,

with bright yellow indicating more artifacts while dark blue

indicating fewer artifacts. For example, for EEG recordings in

cluster 3, artifacts were more concentrated between 10 and 20

seconds after the end of the seizure; and for those in cluster 6,

artifacts mainly occurred after 50 seconds. It also shows the

distribution of artifacts in 18 different channels. For example,

in cluster 1, most of artifacts occurred in Fp1-F7, F7-T7, T7-

P7, P7-O1, Fp2-F8, F8-T8, T8-P8, and P8-O2; while in cluster 7,

artifacts were observed in all 18 channels.

4.2. Leave-one-out cross-validation

For the performance evaluation of our hybrid PGES

detection method, we used leave-one-out (LOO) cross-

validation, which was a special case of cross-validation where

the number of folds equals the number of instances in the

dataset. Thus, the PGES detection method was applied once

for each EEG recording, using all other EEG recordings as a

training set and using the given EEG recording as a single-item

testing set. For the given EEG recording, we first checked which

cluster it belongs to, trained the SWRF model with different

sample weights, and then obtained the detection result for this

EEG recording. Ultimately, the average predicted time distance

(TDavg), 5-second tolerance-based detection accuracy (Acc5s),

and 10-second tolerance-based detection accuracy rate (Acc10s)
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TABLE 2 The evaluation results of PGES detection with di�erent

approaches.

Approach Acc5s

(%)

Acc10s

(%)

TDavg

(seconds)

Baseline-features + RF (as baseline) 56.92 70.38 9.47

Baseline-features + EMD-based features + RF 63.05 77.61 8.85

Baseline-features + EMD-based features +

K-means (7) + SWRF

64.18 79.10 8.47

Baseline-features + EMD-based features +

K-means (20) + SWRF

64.55 79.85 8.46

Baseline-features + EMD-based features +

K-means (50) + SWRF

64.92 79.85 8.26

Baseline-features + EMD-based features +

K-means (100) + SWRF

63.43 77.61 8.48

Baseline-features + EMD-based features +

K-means (7) + SVM

39.18 50.00 19.12

Baseline-features + EMD-based features +

K-means (7) + XGBoost

62.31 71.64 10.58

The best performance of each evaluation metric is highlighted in bold.

were calculated as the final performance metrics using the

detection results of all 268 EEG recordings.

In addition, we experimented with different approaches and

compared their performance. These approaches included:

• Our previous PGES detection method (Li et al., 2020),

which only used features (referred to as baseline-features)

including time-domain features, frequency-domain

features, wavelet-domain features, and inter-channel

correlations and used RF as the classifier. We considered

this method as the baseline for the overall comparison.

• Empirical mode decomposition feature based approach,

which utilized baseline-features and EMD-based features

and applied RF as the classifier.

• Our hybrid approach, which included baseline-features and

EMD-based features, and used K-means clustering and

SWRF classifiers. We tested different number of clusters

(i.e., the value of K): 7, 20, 50, and 100.

• Two additional supervised learning classifiers: support

vector machines (SVM) (Kotsiantis, 2007) and

XGBoost (Chen et al., 2015).

Table 2 shows the performance evaluation results of different

approaches. Compared to the baseline approach, adding EMD-

based features improved the PGES detection performance:Acc5s

increased from 56.92% to 63.05%, Acc10s increased from 70.38%

to 77.61%, and TDavg decreased from 9.47 to 8.85 seconds. With

unsupervised learning, the performance was also improved:

Acc5s from 63.05% to 64.92%, Acc10s from 77.61% to 79.85%,

and TDavg from 8.85 to 8.26 seconds. The results of different

number of clusters indicated that the selection of K has a

limited impact on overall performance. The results fluctuated

considerably when alternative classifiers were applied, and RF

classifiers had better performance than both SVM and XGBoost.

In general, our hybrid approach provided the best PGES

detection performance, which was significantly better than the

baseline model: Acc5s increased from 56.92% to 64.92%, Acc10s

increased from 70.38% to 79.85%, and TDavg decreased from

9.47 to 8.26 seconds.

5. Discussion

In this work, we developed a hybrid approach for automated

PGES detection based on multi-channel EEG recordings.

This hybrid approach combined an unsupervised learning

method (K-means clustering) and a supervised learning method

(sample-weighted RF). The main idea of our approach is to

leverage different learning strategies to improve the PGES

detection performance by assigning different weights to each

cluster consisting of similar EEG recordings. We evaluated the

performance of our approach using the LOO cross-validation

method with 268 EEG recordings.

This work has several major distinctions compared with our

previous study (Li et al., 2020):

• The new dataset used in this work is larger and more

diverse, with the number of EEG recordings increased from

116 to 268 and the number of patients increased from

84 to 171 compared to the previous dataset. Therefore,

our hybrid approach in this work has higher levels of

generalizability and reliability.

• Previously, we only used 8 EEG channels (i.e., Fp1-F7,

F7-T7, T7-P7, Fp2-F8, F8-T8, T8-P8, Fz-Cz, and Cz-Pz)

for PGES detection. In this work, we have incorporated

10 more channels, including P7-O1, P8-O2, Fp1-F3, F3-

C3, C3-P3, P3-O1, Fp2-F4, F4-C4, C4-P4, and P4-O2. The

additional channels provide more information/features on

brain activities.

• In this work, we leveraged new EMD-based features,

which were not considered in the previous study. The

EMD analysis can obtain the signal patterns hidden in

the Fourier and wavelet transforms and thus extract the

signal features that are different from the other transforms.

The evaluation results indicated a significant improvement

in PGES detection performance by combining baseline

features and EMD-based features.

• Distinct from the previous manual process of

differentiating artifact levels of EEG recordings, in

this work we automatically extracted artifact features using

EMD-based analysis and used unsupervised learning to

cluster EEG recordings based on the extracted artifact

features. Thus, EEG recordings with similar artifact features
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FIGURE 6

Examples of EEG recordings with false positives: (A) with a time distance of 6 seconds and (B) with a time distance of 23 seconds.

were grouped into the same cluster, then different weights

were assigned based on the clustering results during the

RF classifier learning process. The intuition behind our

new approach is to train and predict with similar EEG

recordings, avoiding the time-consuming and labor-

intensive work of manual artifact level differentiation. The

evaluation results demonstrated that the new approach had

improved the overall performance.

• In this work, we tested and compared different

classification algorithms for performing PGES detection

(see Table 2). The results demonstrated that the SWRF

model achieved the best performance. Moreover, SWRF

had a significant advantage in terms of execution time

compared with XGBoost and SVM. Leave-one-out cross-

validation is a very time-consuming process when the

dataset is large. In terms of execution time, XGBoost

took two times longer than SWRF, while SVM spent

more (seven times longer than SWRF), which verified the

scalability of SWRF.

Automatic detection of PGES is a newly proposed research

topic since 2017, and there have been a limited number

of published studies on this topic using machine learning

methods (Kim et al., 2020; Lamichhane et al., 2020; Zhu

et al., 2020). Compared to existing studies, this study used a

larger dataset including more patients and EEG recordings,

more EEG channels, a hybrid supervised and unsupervised

model, as well as an evaluation strategy that is more consistent

with clinical practice. In this evaluation strategy, the model

is applied and tested on continuous EEG recordings instead

of individual signal segments, and the evaluation metrics

are more acceptable to clinical experts (Li et al., 2020).

Leveraging such clinically relevant evaluation approach, the

results can more realistically reflect the performance of the

model and provide an accurate reference for applications in

practical scenarios.

6. Limitations

Although our hybrid approach in this work has shown

performance improvement compared with our previous work

and other approaches, artifacts, including movement, muscle,

unknown, mixed artifacts (combining different kinds of

artifacts), remain a major challenge causing false positives

in the PGES detection process. Figure 6 shows two examples

of EEG recordings with false positives. The signal segments

marked in red are misclassified by the algorithm, which resulted

in a time distance of 6 seconds (Figure 6A) and 23 seconds

(Figure 6B). The misclassified part in Figure 6A was verified

by domain experts and confirmed as breath artifacts and the

one in Figure 6B was mixed artifacts. In certain scenarios,

even for clinicians, it can be difficult to distinguish between

artifacts and true brain activities. In future work, we plan

to investigate additional artifact-related features to identify

artifacts and reduce false positives.
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Another challenge is the inter-patient variability, which may

affect the performance of the classification algorithm. As the

amount of data grows, we plan to develop individual-specific

PGES detection methods based on historical patient EEG data.

To take full advantage of the increasing amount of data, we

also plan to develop deep learning-based methods and compare

their PGES detection performances with our hybrid approach in

this work.

7. Conclusion

In this paper, we presented a hybrid approach combining

the benefits of unsupervised and supervised learning for

PGES detection based on multi-channel EEG recordings. We

incorporated new EMD-based features, which provided valuable

information to characterize PGES and ISW. K-means clustering

model was leveraged to group EEG recordings with similar

artifact characteristics. We introduced a new learning strategy

for training a set of RF models according to clustering results

to improve the PGES detection performance. The LOO cross-

validation results with a total of 286 EEG recordings showed

that our method achieved a 5-second tolerance-based detection

accuracy of 64.92%, a 10-second tolerance-based detection

accuracy of 79.85%, and an average predicted time distance of

8.26 seconds. Comparison of different approaches applied to

this dataset of EEG recordings demonstrated that our hybrid

approach outperformed others. However, further work toward

better handling of artifacts is needed for better performance of

automated detection of PGES.
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