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Microglia are the immune cell in the central nervous system (CNS) and exist

in a surveillant state characterized by a ramified form in the healthy brain. In

response to brain injury or disease including neurodegenerative diseases, they

become activated and change their morphology. Due to known correlation

between this activation and neuroinflammation, there is great interest in

improved approaches for studying microglial activation in the context of

CNS disease mechanisms. One classic approach has utilized Microglia’s

morphology as one of the key indicators of its activation and correlated with

its functional state. More recently microglial activation has been shown to

have intrinsic NADH metabolic signatures that are detectable via fluorescence

lifetime imaging (FLIM). Despite the promise ofmorphology andmetabolism as

key fingerprints ofmicroglial function, they has not been analyzed together due

to lack of an appropriate computational framework. Here we present a deep

neural network to study the e�ect of both morphology and FLIM metabolic

signatures toward identifying its activation status. Our model is tested on

1, 000+ cells (ground truth generated using LPS treatment) and provides a

state-of-the-art framework to identify microglial activation and its role in

neurodegenerative diseases.
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1. Introduction

Microglia are Central Nervous System (CNS) resident macrophages that play

important roles in many neuropathologies (Watters et al., 2005; Garden and Möller,

2006; Tambuyzer et al., 2009; Charles et al., 2011). They are involved in brain

development, response to injury and infection as well as maintenance of the healthy
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FIGURE 1

Image of microglia in activated (left) and surveillant/resting

(right) state from mid brain section of mouse brain tissue

samples.

neural microenvironment. Due to their central role in so many

CNS processes and neurodegenerative diseases, it is important

to understand the function of microglia in a number of

scenarios includingmicroglia activation. In this respect, accurate

quantitative imaging and computational tools are needed to

identify morphological signatures specific to microglia and

understand how they correlate with their activation status.

Microglia react quickly to changes in their environment

by exhibiting morphological changes. For example, the change

in microglia’s activation status is reflected in its gradual

morphological transformation from highly ramified into

less ramified often amoeboid state (see Figure 1). Table 1

summarizes the recent literature of morphological classification

of microglia. These morphological changes are often closely

related to their functional states, and for this reason, microglial

morphology is often utilized to infer their activation status, and

to study their involvement in virtually all brain diseases (Heindl

et al., 2018). Until recently, available microscopic methods

have been unable to capture the extent of these changes in

an automated manner, relying mostly on manual assessments

which can be prone to error. In the last few years, studies such as

(Zanier et al., 2015; Leyh et al., 2021) have performed microglia

morphology classification using machine learning methods by

using carefully chosen shape features. However, because the

commonly used feature set is typically limited to a few, manually

chosen shape parameters, there may be selection bias which can

compromise the resulting classifications.

Furthermore, given the important role of microglia plays

in all neural diseases, accurate tools for detecting their

function beyond morphological alterations are also necessary.

In this respect, it has been shown by Sagar et al. (2020b)

that microglia metabolic state have unique metabolic fluxes

which can be detected by changes in reduced nicotinamide

adenine dinucleotide (NADH) via fluorescence lifetime imaging

microscopy (FLIM) (Lakowicz et al., 1992a, 1992b). See

Mechawar et al. (2022) for a survey of proinflammatory, anti-

inflammatory and metabolic pathways in microglia as well as

TABLE 1 Table summarizing a few methods related to classification of

microglia phenotypes from literature.

Torres-Platas et al.

(2014)

Identified four main phenotypes based on

morphology: ramified, primed, reactive and

amoeboid in humans

Reemst et al. (2022) Identified two morphological subtypes in

PBS-injected mice, a small cell soma and long

branched ramifications or a larger cell soma and

thicker, branched ramifications

Leyh et al. (2021) Identified four microglial morphologies, ramified,

rod-like, activated and amoeboid microglia using a

mouse model of ischemic stroke using machine

learning

Verdonk et al.

(2016)

Using the knock-in mouse model, found that in

resting state, microglial cells were distributed in

four microglial sub-populations with a regional

pattern and specific behavior.

Additional review can be found in Schwabenland et al. (2021).

Rahimian et al. (2021) to understand the diversity of microglial

phenotype and function in psychiatric diseases. FLIM can

probe the cellular microenvironment of the fluorescent NADH

in a label-free manner which does not change the metabolic

signature. Furthermore, recent machine learning methods have

shown that FLIM based lifetime data capturing the metabolic

alterations, can be used to both differentiate microglia from

other CNS cell-types using deep learning approaches (Sagar

et al., 2020a; Mukherjee et al., 2021) as well as identify their

activation status (Sagar et al., 2020b). These studies show

promise in the use of computational tools for analyzing FLIM

data to understand the functional role of microglia in the CNS.

It has been recently shown that different microglia

functional phenotypes are associated with both distinct

metabolic pathways as well as specific morphological changes.

Voloboueva et al. (2013) and Orihuela et al. (2016). However

a complete computational study investigating both the role of

morphology as well as metabolism toward identifying activation

state of microglia has not been performed until now. In this

paper, we propose an unified deep neural network method to

study the effect of both morphology as well as lifetime toward

identifying the activation status of microglia. The framework

of the model is shown in Figure 2. First, we extract a number

of shape features from segmented images of microglia to

characterize their morphological properties. This along with

the lifetime data from the same images is inputted to a neural

network, consisting of Long Short Term Memory (LSTM) (Yu

et al., 2019) and convolutional sub-networks, which process

each type of data, which are subsequently combined to yield

a joint classification framework that can distinguish between

activated and resting microglial cells. Experimental evaluations

show that this leads to a highly accurate network compared to
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morphology or lifetime considered standalone and can classify

the activation state correctly across a number of samples.

This combined morphology-FLIM metabolism deep learning

framework provides a computationally efficient approach to

identify the activation state of microglia automatically, which

can be useful to analyze its role in neurodegenerative diseases.

2. Methods

The proposed model combines CNN for learning features

from the morphology data with LSTM for learning temporal

dependencies in the lifetime data, to derive the classification of

activated microglia from resting. We describe the details of each

approach next.

2.1. Morphological features and network

The morphology of microglia is one of their more

outstanding characteristics. Microglia remain in a resting or

surveillant state in the normal brain, but upon the detection

of any brain lesion or injury, they obtain an “activated” state

which displays more inflammatory features. This change in state

also manifests in a change of morphological characteristics-

from a more ramified structure in resting state to a more

ameboid shape in the activated state. Quantifying such changes

can be the key to identifying the activation state of microglia.

Here, we aim to capture the changes in morphological

characteristics of microglia, by obtaining a number of shape

features, which are then concatenated and passed as input to

a convolutional neural network (CNN). The CNN transforms

the input features to a different feature space, which is more

conducive for learning the classes. To obtain the input shape

features, we segmented the microglia from background using

the WEKA segmentation toolbox in Fiji (Arganda-Carreras

et al., 2017). We used a diverse set of features from moment

based features to contour and transform based features as

well as shape signature based 1D features. We describe these

features next.

2.1.1. Zernike invariant moment features

The Zernike moment (Khotanzad and Hong, 1990; Hwang

and Kim, 2006) is a type of the orthogonal invariant (to

translation, rotation and scale) moment on the unit sphere and

is the most commonly used in image shape feature extraction

and description. These are designed to capture both global and

geometric information about objects of interest in the image.

To compute the Zernike moments of an image, the range of

the image is first mapped to the unit sphere with its origin at

the image’s center. The pixels falling outside the unit sphere

are not used in the computation process. Let f (r, θ) be the two

dimensional image intensity function using polar coordinates,

then Zmn, the Zernike moment of order m and repetition n is

denoted by

Zmn = m

π

∑

r

∑

θ

f (r, θ)V∗(r, θ) (1)

Where V∗
mn(r, θ) is the complex conjugate of Zernike

polynomial Vmn(r, θ), defined as follows Liu et al. (2007):

Vmn(r, θ) = Rmn(θ) exp(
√
−1rθ) (2)

Where m and n are nonnegative integers with n ≥ m ≥ 0

and the orthogonal radial polynomial Rmn(θ) is given as

Rnm(θ) =

n−m
2

∑

k=0

(−1)k (n− k)!

k!
(n+m

2 − k
)

!
(n−m

2 − k
)

!
θn−2k (3)

Note that the different order of the Zernike moments can be

computed via (Equation 1) by varying the order or keeping the

order fixed and varying the repetition. It has been shown that the

lower-order Zernike moments are useful to represent the whole

shape of the image whereas the high-order Zernike moments

can describe the details. In our approach, we compute the top

10 Zernike moments.

2.1.2. Chord length histogram

Chord length histogram analysis (Agimelen et al., 2016)

corresponds to finding the distribution of all chord lengths in

different directions in a given shape. The chords are defined

by the parts of lines within the contour of a binary shape. For

each boundary point p, its chord length function is the shortest

distance between p and another boundary point p̂ such that line

pp̂ is perpendicular to the tangent vector at p. The chord length

function is invariant to translation and its centroid is not biased

by boundary noise. A shape can be represented by a discrete set

of chords sampled from its contour. The number and length of

chords obtained in different directions is generally not the same.

Therefore, one way to capture this information more effectively

is to calculate the distribution of chord lengths in the same

direction in a spatial histogram. See Figure 3 for an illustration.

2.1.3. Elliptical fourier features

This method is based on computing Fourier coefficients to

describe a closed contour by a function. First the boundary is

extracted from the segmented image of the object. Then the

contour edge is encoded using Freeman encoding of closed

contour, which yields a chain code, where each integer represents

an oriented vector in a specific direction. The length of each

of these vectors and their projections on the x and the y axes

are computed, which is then used in the calculation of the

elliptic harmonics. Elliptical Fourier analysis then approximate
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FIGURE 2

Block diagram of our network architecture: The top subnetwork inputs the intensity image from each sample and converts it to a feature vector

using a Feature Convolutional Network. The bottom subnetwork input the lifetime data for each sample, converts it to 3D time-series tensor of

average lifetimes across all pixels in the preprocessing step, which is then passed through a bidirectional LSTM. These two feature sets are

eventually concatenated to produce the final classification.

FIGURE 3

Figure illustrating chord length histograms.

a closed contour as a sum of elliptic harmonics. Let x(t) be the x

projection of the complete contour. Then,

x(t) = x0 +
N

∑

n=1

xn(t)

x0 = 1

T

∫ T

0
x(t)dt

xn(t) = αn cos(
2nπ t

T
)+ βn sin(

2nπ t

T
)

αn = 2

T

∫ T

0
x(t) cos(

2nπ t

T
)dt

βn = 2

T

∫ T

0
x(t) sin(

2nπ t

T
)dt

Here T is the period of x(t). We followed the strategy of

Kuhl and Giardina (1982) who used four Fourier coefficients for

each of N harmonics. Then an inverse process is employed to

identify the closed contour as k elements, which can be found

as a function of the N harmonics. In addition, phase shift is

employed so that the representation does not depend on starting

point. See Kuhl and Giardina (1982) and Ballaro et al. (2002) for

details regarding specific computations.
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FIGURE 4

Figure illustrating the Shape Features extraction pipeline.

Illustrative picture of Zernike Moments obtained from https://

github.com/sgabriela/Zernike-Moments.

2.1.4. General shape features

In addition to the above, we also computed a number of 1D

general shape features, which describe the high-level geometric

properties of the objects. These include area, perimeter,

eccentricity, major and minor axis length, bounding box and

equivalent diameter. Such features can be used as filters to

eliminate false positives and are generally combined with other

shape descriptors (as in our case) to discriminate shapes.

2.1.5. Network for learning shape features

Shape features are concatenated to generate a 67

dimensional feature vector, see Figure 4, the features are

then mean centered and passed through a feature convolutional

neural network. The first layer in this network is a feature input

layer. This is followed by a Feature Convolution Network as

described by Hu (2021) which extends the idea of convolution

to tabular feature data. Normally the convolution process is

applied to the spatial region of an image using a kernel. To

extend this to tabular features, we use the method proposed by

Hu (2021) for combining pairs of features to create new features.

φij(x) = αixi + βjxj (4)

Where xi (and xj) are the ith (and jth) dimensional feature

and αi and βj are the weights of the kernel. There is one

kernel parameter (α and β) for each feature in the convolution

operation. Therefore, if the number of features are n, this

produces a feature map of size C(n, 2). The network outputs

φ as the output of feature convolution layer, which is then

added with x, the original features, making it a function of

both original and convolved features. In our network, this is

followed by a Fully Connected (FC) layer (with 50 hidden units),

a batch normalization layer, and Rectified Linear activation

(ReLU) layer. The output of the ReLU layer is concatenated with

the output of the LSTM to form a joint network.

2.2. Lifetime data and LSTM subnetwork

Fluorescence Lifetime image microscopy (FLIM) (Lakowicz

et al., 1992a, 1992b) is an imaging technique which is used to

visualize physiological properties in living cells by measuring the

time a molecule (excited by a photon) remains in its excited state

on an average before returning to its ground state and emitting

a photon. This lifetime of the molecule is then calculated

using an exponential decay function and is used to localize

specific fluorophores. Also, FLIM can use intrinsic fluorescence

of NADH to probe cellular micro-environment in a label-free

manner which does not alter the cellular signature. FLIM related

monitoring of microglial metabolic alterations can be used to

both differentiate microglia from other CNS cell-types (Sagar

et al., 2020a; Mukherjee et al., 2021) as well as identify their

functional state (Sagar et al., 2020b).

We first describe the mathematical representation of the

fluorescent decay curve obtained by FLIM, followed the

architecture of the LSTM subnetwork used to process this data.

Assume a single image is under consideration of size m × m.

The measured fluorescence intensity decay data (Yt) for a given

lifetime component t is given by the convolution of the tissue

fluorescence response signal (It) with the excitation light pulse

[part of the instrument response (Ft)] along with some additive

noise (ǫt). This relationship can be written as

Yt = It ⊗ Ft + ǫt (5)

Where ⊗ represents convolution of the two signals and

Yt (as well as It and ǫt) are of size m × m. The function It

can be approximated as a multi-exponential decay function,

with multiple components. Here we use bi-exponential decay

function to represent the signal, because in practice, it is enough

to closely approximate the signal and can be written as

It ∼ a1 exp

(−t

τ1

)

+ a2 exp

(−t

τ2

)

(6)

Where a1, a2 and τ1, τ2 represent the amplitude and

the lifetimes for each exponential sub-function in this bi-

exponential function. We now extend this data to multiple

images by using the superscript i to denote the image number.

The lifetime data {Yt}i (without the noise) is collected for the

same lifetime component t ∈ t1, . . . tp for all images i ∈ 1 . . . n
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in our dataset. {Yt}i is then vectorized and binned into h bins

to generate a vector {Xt}i in Rh, which forms the input to the

following Long Short Term Memory or LSTM network. The

same number of bins are used across all images, making it

feasible to compare them as multiple time-series data. The target

class label y is of size n. An intuitive way to understand this data

is that there are h dimensional features for each image which

evolve over lifetime components and can be used to understand

group differences between the two classes under consideration.

We now discuss the network architecture to process this

data. First the 3D tensor X is passed through a sequence input

layer. The next layer in the network is a bidirectional Long

Short Term Memory (LSTM) (Yu et al., 2019) network. LSTM

networks can capture long term dependencies in temporal

data and has been successfully used for a number of time

series classification problems. LSTM (similar to Recurrent

Neural Networks, RNN; Sherstinsky, 2020) contains loops

in its architecture which allows it to memorize previous

states such that the network can effectively process temporal

data. A typical LSTM layer consists of a set of recurrently

connected blocks, known as memory blocks. Figure 5 shows

the design of a typical LSTM unit or memory block. Each

block contains one or more recurrently connected memory

cell (ct) and three multiplicative units — the input (it),

output (ot), and forget gates (f t) which regulate the extent

to which data is propagated through the LSTM unit. The

operations inside an LSTM block can be formulated by

the following:

ft = ρ(Wf xt + Uf ht−1 + bf )

it = ρ(Wixt + Uiht−1 + bi)

ot = ρ(Woxt + Uoht−1 + bo) (7)

ĉt = φ(Wcxt + Ucht−1 + bf )

ct = ft ◦ ct−1 + it ◦ ĉt
ht = ot ◦ φ(ct)

Here ρ and φ are activation functions, ◦ denote the element

wise product operation, xt is the input vector, W and U are

weights and ht is hidden state vector also known as output vector

of the LSTM unit. Since the values of histogram for a certain

lifetime component can be dependent of both past and future

lifetime components, we use a Bidirectional LSTM(BLSTM),

which includes both a forward and backward layer of LSTMs.

Both the forward and backward layer outputs are calculated by

using the standard LSTM update (Equation 7). Then BLSTM

connects the two hidden layers to the same output layer.

More details about BLSTMs can be found in Graves and

Schmidhuber (2005) and Cui et al. (2020). The final layer of this

subnetwork is a dropout layer, which randomly sets 50% of the

input to 0.

FIGURE 5

Schematic diagram of LSTM unit.

2.3. Joint feature-LSTM network

The outputs of the morphological features subnetwork

(RELU(BN((Wcφ)), where Wc is the activation weights for

the fully connected layer in that subnetwork) and the LSTM

subnetwork (δ(ht) where ht is the output of the final LSTM unit

and the function δ(.) implements the dropout) is concatenated

to produce a joint feature map. This is followed by a fully

connected layer with 2 hidden unit (activation function Wf )

corresponding to each of the classes, a batch normalization

layer(denoted by BN(x) = x−E(x)√
(Var(x))

) and finally a Softmax layer

with cross entropy loss(σ (y, ŷ) = − 1

n

n
∑

i=1

ŷi log(yi) where ŷ is

the ground truth).

z = concatenate(ReLU(BN((Wcφ))+ δ(ht)) (8)

y = argmin(σ (BN(Wf z), ŷ)) (9)

3. Materials

We conducted our experiments on two datasets of microglial

cells containing both intensity images and corresponding

lifetimes. The first data collected from mouse brain tissue

samples consisting of 826 different cells, and the lifetime data

collected across 256 time bins for each. We will refer to this

as Dataset1. The second dataset is a collection of 506 samples

from frontal cortex and hippocampus of mice, here the lifetime

data is collected across 64 time bins. We refer to this dataset as

Dataset2. For each dataset, we utilized the Becker&Hickl TCSPC

(Time correlated single photon counting) software (Becker,
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2021) to produce various parameters that includes the lifetime

parameters and intensity images. We briefly elaborate on the

acquisition details of the dataset in next section.

3.1. Tissue preparation and imaging

All animals were maintained in an AAALAC-accredited

animal care facility with a 12-h light/dark cycle regime and had

free access to food and water. All experiments were approved by

the University of Wisconsin-Madison Institutional Animal Care

and Use Committee (protocol V005173; exp. 5/16/2024).

3.1.1. Dataset1 preparation and
immunohistochemistry

One hundred micrometer thick coronal slices were

generated from the fixed brains of 6–8 weeks old young

adult male C57BL/6J and CX3CR1-GFP mice (Jackson Labs),

to obtain the FLIM images. The mice were euthanized by

isoflurane overdose and transcardially perfused with 30 ml of

ice-cold PBS. This was followed by a second perfusion with an

ice-cold solution of 4% PFA in PBS. After this, the brains were

dissected and acutely post-fixed in 4% PFA prior to putting

them into 30% sucrose in PBS overnight at 4◦C until they sank.

Brains were then stored in 15% sucrose/HBSS at −20◦C prior

to sectioning.

Immunohistochemistry: 100 µm thick coronal sections from

the midbrain region of each brain was prepared using a Leica

Vibratome. For immunohistochemical staining, two slices from

each animal were used. These were washed with 0.3% TritonX-

100 in PBS at room temperature, before incubating in blocking

buffer (1% BSA, 0.3% 2 h also at room temperature). The

slices were incubated with anti-Iba1 antibodies (1 : 1, 000; Wako

Catalog No. 019-19741) in blocking buffer at 4◦C overnight

without light. This was followed by washing the slices at room

temperature with 0.3% TritonX-100 in PBS. After this, the

slices were incubated in the dark for 2 h with AlexaFlour594

anti-rabbit IgG antibodies (1 : 200) in blocking buffer, at room

temperature. Slices were then washed with 0.3% TritonX-100 in

PBS and mounted on 1mm slides using Cytoseal60 mounting

medium. Finally the mounted sections were stored at room

temperature and protected from light until imaging was done.

3.1.2. Dataset2 preparation and
immunohistochemistry

Dataset2, our second dataset, comprises CX3CR1-GFP mice

(stock no 005582) ordered from Jackson laboratories (Bar

Harbor, ME, USA). Mice were divided into two treatment

groups and injected intraperitoneally with either 1 mg/kg

lipopolysaccharide (LPS; Sigma-Aldrich) diluted in sterile Hanks

Buffered Salt Solution (HBSS; Corning) or with vehicle (sterile

1xHBSS). There were 5 mice in each of the LPS treated, and

vehicle treated groups. Animals were euthanized 16 h following

vehicle or LPS injections and intracardially perfused with ice

cold 1X Phosphate Buffered Saline (PBS) solution (30 mL

per mouse). Mice were then perfused again with ice-cold 4%

paraformaldehyde (PFA) in 1xPBS, pH 7.4. Brains were dissected

intact, post-fixed for 24 h in a solution of 4% PFA in 1xPBS,

then moved to 15% sucrose/1xHBSS (all performed at 4◦C and

protected from light).

Each brain was then cut into 100m thick coronal sections

using a Leica vibratome. Slices were collected from regions

of the brain containing frontal cortex and hippocampus for

imaging (4 slices from each region). Slices were then mounted

on 1-mm slides using Cytoseal604 (Richard-Allan Scientific,

Kalamazoo, Michigan) mounting medium and 1.5 coverslips.

The Cytoseal60 was allowed to cure for 24 h before sealing the

edge of the slides with clear nail polish. Mounted sections were

stored at room temperature, protected from light until imaging.

3.1.3. Multiphoton lifetime imaging

The fluorescence lifetime (Lakowicz et al., 1992a) and

multiphoton imaging (Denk et al., 1990) was performed on

a custom multiphoton laser scanning system (built around

an inverted Nikon Eclipse TE2000U) at the Laboratory

for Optical and Computational Instrumentation (LOCI) in

Madison, Wisconsin (Yan et al., 2006). A 20x air objective

(Nikon Plan Apo VC, 0.75 NA) (Melville, NY, USA) was used

for all imaging. The data was collected using an excitation

wavelength of 740 nm for NAD(P)H, and the emission was

filtered at 457/50 nm (Semrock, Rochester, NY) for the spectral

peak. To identify the microglia, Iba1 (Ito et al., 1998) was used

as the primary binding protein, whereas AlexaFluor594 was used

as secondary protein. For generating the intensity images from

FLIM, excitation was set at 810 nm, and a 615/20 (Semrock,

Rochester, NY) bandpass emission filter was used for emission.

For processing, we used Becker and Hickl time domain FLIM

imaging software where decays curves are built with TCSPC

(Time Correlated Single Photon Counting) electronics. FLIM

images of 256 × 256 pixels (or 64 × 64 pixels) were collected

with 120 s collection (for Dataset1) and 90 s (for Dataset2)

using SPC-150 Photon Counting Electronics (Becker and Hickl

GmbH, Berlin, Germany) and Hamamatsu H7422P-40 GaAsP

photomultiplier tube (Hamamatsu Photonics, Bridgewater, NJ).

To determine the Instrumentation Response Function (IRF),

we used urea crystals with a 370/10 bandpass emission filter

(Semrock, Rochester. NY) and was measured during each

imaging session. In Dataset1, about 20 neighboring FOVs were

chosen randomly, and the average lifetime value and free

NADH ratio was calculated based onmasking. For Dataset2, our

second dataset, the entire region was imaged (Frontal Cortex or

Hippocampus) and we selected the FOVs which that contained

sufficiently bright microglia.
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4. Experiments

We describe our evaluations in the following way: (1)

First we obtain classification accuracy and other metrics using

five-fold cross validation to quantitatively measure how well

our model performs for the task of distinguishing activated

microglia from resting in both datasets. (2) Secondly, we study

the contribution of lifetime data in the joint model by comparing

it against the performance of the network which uses only

the shape features. (3) Third, we evaluate the performance of

our model as a classifier by comparing it to other well-known

classification schemes such as SVM, KNN and random forest.

(4) Next, we evaluate the utility of each individual shape features

that constitute our feature set and their combinations toward

classification by comparing the classification results on a number

of different subset of shape features. (5) We then study how the

data is correlated across the two feature sets (shape and lifetime)

by the observing their projection on canonical components

found by CCA. (6) Finally, we evaluate the effect of training set

size and model parameters toward the accuracy and efficacy of

learning. Our models were implemented using Matlab’s deep

learning toolbox and Stochastic Gradient Descent (SGD) was

employed to do the optimization. We discuss these issues next.

4.1. Evaluation of e�cacy of joint
morphology-lifetime based model

Here, we train out model using 5 fold cross validation (this

was performed by dividing the data into 5 equal parts and using

4 parts for training and one part for evaluation/validation of

the model’s performance. To choose the model parameters, such

cross validation experiments were repeated for various settings

of parameter values such as epoch and the setting with best

accuracy was chosen). We use 6 different classification metrics

to evaluate the quality of the classification with respect to ground

truth. These include the Accuracy (Acc), Precision (prec), Recall

(rec), Jaccard coefficients (JI), Area Under the Curve (AUC) as

well as the ROC curve which plots true positive rate with respect

to false positive rate (Figure 6). Results shown in Table 2 shows

these metrics by averaging across all cross validation runs for the

testing set. Analysis of these results show our model performs

very well across all metrics and has both high accuracy as well as

precision. This indicates that it is successfully able to distinguish

activated microglia from resting for both datasets.

4.2. Evaluation of utility of lifetime data

In this section, we study the impact of the lifetime data in the

joint model. To do this, we use a separate network consisting of

only of the subnetwork described in Section 2.1, which processes

TABLE 2 Results showing performance of the joint lifetime+feature

network on various metrics.

Metric Dataset1 Dataset2

Accuracy 0.964 0.977

Precision 0.986 0.996

Recall 0.95 0.961

Jaccard index 0.938 0.958

AUC 0.966 0.981

FIGURE 6

ROC for classification using our model.

the shape feature data. We use similar 5-fold cross validation

studies to obtain the accuracy results for both training and

test and compare it to the results from the joint network in

Table 3. The results show that while the shape based network

performs well, accuracy improves by 2− 3%, when lifetime data

is included, which indicates it is a useful feature for this purpose.

We also studied the utility of LSTM network in processing

the lifetime data as a time series by comparing with the fitted

life time data τ [given as τ = mean(a1τ1 + a2τ2)] where the

variables have the same meaning as in Equation 6. Since this

converts lifetime into a feature, it can simply be concatenated

to the existing feature set and then our subnetwork in Section

2.1 is used for learning. The results did not show any significant

improvements compared to the features used without τ (Table 3,

last two rows). This shows that using the individual values a1, a2,

τ1 and τ2 for each lifetime component t is more useful for this

purpose than a summary of the lifetime (using τ ).

4.3. Comparison with other classifiers

Here, we discuss the performance of other classifiers on

our datasets. We ran similar 5-fold cross validation studies

by training SVM, KNN (with K = 3), an ensemble classifier
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TABLE 3 Results showing comparison of the shape+lifetime network

with only feature based network.

Metric Dataset1 Dataset2

Shape+ Lifetime
Train accuracy 0.971 0.981

Test accuracy 0.972 0.978

Shape
Train accuracy 0.9472 0.977

Test accuracy 0.9418 0.975

TABLE 4 Comparison with other classifiers.

Method Dataset1 Dataset2

Ours 0.972 0.978

SVM 0.8848 0.9644

KNN 0.9304 0.9605

Ensemble 0.9406 0.9723

DNN 0.9479 0.9684

and a feed-forward deep neural network (DNN) with two

hidden layers each followed by a leaky ReLU and a softmax

function as the output layer on both datasets. The SVM was

trained with a Radial Basis Function (RBF) kernel whereas the

ensemble classifier uses boosting to aggregate of 100 individual

classification trees. Since there is no easy way to incorporate

3D time-series data similar to the format we are using in our

network, in these classifiers, they were trained on shape features

alone. We report on these results in Table 4. It shows that our

model outperforms the other classifiers especially on Dataset1.

Note that we should not compare the classifier scores across

these two datasets, since we found that in general Dataset2 is

easier to classify compared to Dataset1 as is evidenced by the

higher accuracy and other metrics for some of the comparable

methods used here.

4.4. Evaluation of individual shape
features and their combinations

This experiment is aimed at validating the choice

of shape feature set described earlier by comparing its

performance with other several feature extraction approaches

and their concatenation. To do this, we not only run

the joint shape+lifetime model on General shape features

(GenShape), Moment based features (Mom), Chord length

histograms (ChordLen) and Elliptical Fourier features (ElliFou)

individually, but also on various combinations of these features

listed in Table 5. These features have been described earlier

in Section 2.1. We see that Chord length histogram are

the best individual feature whereas Moment based features

perform the worst. The combinations of these feature gradually

improve the performance and the best results are obtained

when all four feature sets are concatenated to yield the

feature set.

4.5. Correlation of lifetime and feature
data

This experiment is not directly related to studying the

performance of our model but aimed at understanding to

what extent the shape and lifetime data used in this paper are

correlated to each other across the two activation classes. For

this purpose, we use Kernel Canonical Correlation Analysis

(KCCA) (Hardoon et al., 2004) to find a common subspace

where both of these feature sets are the most correlated.

To apply KCCA, we need to construct kernels for both

these feature sets. For the lifetime data, we compute the

Wasserstein distance (a distance functions used for probability

distributions) (Rüschendorf, 1985) of the histograms at each

lifetime component for two samples i and j, which is then

summed up across all lifetime components, to yield a distance

dij. The kernel is then constructed as KL
ij = exp(−tdij),

where one can tune if needed the bandwidth parameter t

according to the learning task. For the features, kernel KF is

simply the gaussian kernel. We use the KCCA approach of

Hardoon et al. (2004) to compute two directions of maximum

correlation between these feature sets and project the data

onto these subspaces. The results can be seen in Figure 7.

It shows that the variance in the data is higher and the

correlation between the feature sets are lower in case of activated

vs. resting. This seems to intuitively explain the multiple

morphological states which all can be evident in the activated

state of microglia.

4.6. Evaluation of training set size
network parameters

The network performance depends on various parameters

such as learning rate, number of epochs used in training as well

as size of the training set.We briefly discuss these issues here.We

set the number of epochs to 50. Higher epochs lead to higher

training and test accuracy but the running time in training is

higher. The learning rate has been set to 0.0001, this value is also

determined empirically as a trade-off of accuracy vs. running

time. To evaluate the effect of the training set, we choose the

training set size from the following set: {60, 70, 80, and 90%}
of the overall data, and the rest of the data is considered for

testing and evaluate the accuracy in each setting. The results

are shown in Figure 8. As can be seen from this figure, the

accuracy improves for a larger training size but change in

magnitude is relatively small. This shows the model can give
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TABLE 5 Comparison of di�erent feature subsets.

Feature set Dataset1 Dataset2 Feature set Dataset1 Dataset2

GenShape 0.86 0.845 Mom 0.545 0.562

ChordLen 0.96 0.95 ElliFou 0.918 0.8535

GenShape+Mom 0.957 0.958 GenShape+ChordLen 0.961 0.950

GenShape+ElliFou 0.963 0.9683 Mom+ChordLen 0.962 0.948

ChordLen+ElliFou 0.961 0.956 Mom+ElliFou 0.64 0.697

Mom+ChordLen+ElliFou 0.961 0.9624 GenShape+ChordLen+Mom 0.961 0.954

GenShape+ChordLen + ElliFou 0.958 0.960 All 0.964 0.977

FIGURE 7

Projection using KCCA on the direction where correlation between the feature sets are maximized.

FIGURE 8

Plot showing how classification accuracy varies with training set

size.

good performance even with a smaller training set. We also

plotted the cross entropy loss and misclassification loss with

respect to epochs in Figure 9. This shows that both losses show

relatively small change in magnitude after about 20 epochs, so

the number of epochs can be reduced without a substantial

change in accuracy of the network.

5. Discussion

We have shown that our classification method of microglial

activation status performs well by using morphology and

lifetime metabolism data together. This study provides

improved tools for researching microglia morphological

changes and their corresponding responses that are associated

with changes in the CNS microenvironment. There have

been several recent developments investigating intensity-

based data from tissue immunohistochemistry (Heindl et al.,

2018) to analyze morphological shifts during the microglial

inflammatory response. But to our knowledge, this is the

first study that incorporates deep learning approaches to

study microglia morphology in order to fully automate

extraction of morphological information. This method can

be further adapted to study microglia in various situations to

characterize their activation state without requiring intensity-

based morphological analyzes. In the future, we aim to study

microglial activation in response to neurodegenerative disease,

such as Alzheimer’s disease, in which microglial inflammation

is a hallmark. We postulate that more accurate classification of

microglia functional states will lead to better prediction of early

onset of neurodegenerative disease. Given how physiological

inflammation affects immune cells differently; we believe our

study could allow differentiation of microglia and macrophages

or other CNS cell types. The novelty of combining microglial
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FIGURE 9

Plot showing how the cross entropy loss (left) and misclassification loss (right) varies with increasing epochs.

morphology with FLIM NADH measures adds an additional

layer of tools with which to identify a microglia-specific cellular

signature. This automated deep learning approach can also help

distinguish the localized distribution of activated microglia to

detect local inflammation.

In addition to the above mentioned future directions, below,

we discuss some possible extensions to the methodological side

of this approach as well as some challenges associated with

this method.

Challenges: One of the greatest challenges which we inherit

from other methods for automatically detecting cell morphology

from fluorescence microscopy data is the uneven fluorescence

detection across a field of view. Furthermore, because the

shape feature detection module is dependent on the upstream

segmentation of microglia, an error in the segmentation

process can affect the quality of the morphological features

obtained. Furthermore, the morphology analysis described

above relies on segmentation of a two-dimensional projection

that represents three dimensional volume, which is inherently a

lossy transformation. In terms of computational issues, the time

required for training increases with the size of the dataset, even

though it was not an issue with the dataset used in this paper.

5.1. Possible extensions

1. To verify our classificationmethod with regard to using shape

features, we analyzed several morphological parameters

obtained from 4 different types of shape features. Although

this is more extensive than the types of features used in

previous studies, in the context of microglia (Zanier et al.,

2015; Fernández-Arjona et al., 2019), there are a lot more

shape features that could also be used. Examples of such shape

features include but are not limited to shapelets, wavelets, and

Bag of contour fragments (BCF) (Wang et al., 2014). Since

shape features are generated independently from our neural

network, any of the above mentioned features can be easily

integrated and tested with our model.

2. In this paper, we have focused on only two functional states

of microglia (surveillant and reactive), however in terms

of morphology alone, microglia are often classified into

several different morphological classesc (Leyh et al., 2021).

It would be interesting to extend our model to a multiclass

classification framework to study how lifetime parameters

correlate with different morphological classes.

3. As an additional step, we can study microglia from serial

sections for 3D reconstruction of human brain tissue. For

this, we would need to acquire volumetric features, but the

rest of the algorithm can be applied without adjustments.

6. Conclusion

Using fluorescence lifetime imaging, here we propose an

efficient approach to characterize microglial function/activation

state, using a wide variety of shape features (far beyond

what is commonly used in literature), together with metabolic

characteristics of microglia. Our results show that this tandem

analysis results in highly accurate predictions of microglial

activation states, delivering state of the art results on over 1, 000

cell samples. Our proposed method for identifying microglial

activation status using deep learning methods provides an

unbiased, objective and computationally efficient approach that

can serve as a useful tool for characterizing microglial functional

and morphological transformations in the diseased CNS of

animal models and humans alike. It also provides a baseline

which can be extended by future studies that aim to apply deep
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learning algorithms toward identifying microglial subtypes and

assess their accuracy.
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