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Background: Neuroblastoma is the most common extracranial solid tumor

of childhood, arising from the sympathetic nervous system. High-risk

neuroblastoma (HRNB) remains a major therapeutic challenge with low

survival rates despite the intensification of therapy. This study aimed to

develop a malignant-cell marker gene signature (MMGS) that might serve as a

prognostic indicator in HRNB patients.

Methods: Multi-omics datasets, including mRNA expression (single-cell and

bulk), DNA methylation, and clinical information of HRNB patients, were used

to identify prognostic malignant cell marker genes. MMGS was established

by univariate Cox analysis, LASSO, and stepwise multivariable Cox regression

analysis. Kaplan–Meier (KM) curve and time-dependent receiver operating

characteristic curve (tROC) were used to evaluate the prognostic value and

performance of MMGS, respectively. MMGS further verified its reliability and

accuracy in the independent validation set. Finally, the characteristics of

functional enrichment, tumor immune features, and inflammatory activity

between different MMGS risk groups were also investigated.

Results: We constructed a prognostic model consisting of six malignant

cell maker genes (MAPT, C1QTNF4, MEG3, NPW, RAMP1, and CDT1), which

stratified patients into ultra-high-risk (UHR) and common-high-risk (CHR)

group. Patients in the UHR group had significantly worse overall survival

(OS) than those in the CHR group. MMGS was verified as an independent

predictor for the OS of HRNB patients. The area under the curve (AUC) values

of MMGS at 1-, 3-, and 5-year were 0.78, 0.693, and 0.618, respectively.

Notably, functional enrichment, tumor immune features, and inflammatory

activity analyses preliminarily indicated that the poor prognosis in the UHR
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group might result from the dysregulation of the metabolic process and

immunosuppressive microenvironment.

Conclusion: This study established a novel six-malignant cell maker gene

prognostic model that can be used to predict the prognosis of HRNB patients,

which may provide new insight for the treatment and personalized monitoring

of HRNB patients.

KEYWORDS

multi-omics integration, high-risk neuroblastoma,malignant cell maker gene, single-
cell, prognostic model

Introduction

Neuroblastoma (NB) is one of the most common malignant
solid tumors of childhood, accounting for 15% of childhood
cancer-related deaths (Maris et al., 2007). NB is characterized
by extensive heterogeneous clinical phenotype, ranging from
spontaneous regression to metastatic disease with poor
prognosis (George et al., 2020). The current risk classification
system uses clinical and biological variables, such as age, stage,
and MYCN oncogene amplification, to stratify NB patients into
three risk groups (low-, intermediate-, and high-risk) (Cohn
et al., 2009). The survival probability for low-risk patients
exceeds 90%, however, it remains below 50% (Ladenstein et al.,
2017; Amoroso et al., 2018) in high-risk neuroblastoma (HRNB)
patients despite intensive and multi-modal therapy. In addition,
patients with an inherently good prognosis but classified into
the high-risk group under the current stratification system will
undergo toxic treatment, which exposes them to an unnecessary
risk of potential long-term side effects (Vermeulen et al., 2009).
Therefore, it is imperative to develop more precise biomarkers
for HRNB patients to avoid under- or over-treatment and to
discriminate who will benefit from new experimental therapy.

The advent of high-throughput sequencing technologies
has led to increased efforts to identify molecular prognostic
markers in NB from various omics (De Preter et al., 2011;
Decock et al., 2012; Garcia et al., 2012; Valentijn et al.,
2012; He et al., 2020; Wang et al., 2020), partly with the
desire to refine existing risk stratification further. Previous
studies have only used dysregulated genes (Chen et al., 2016;
Wei et al., 2018) or genomic alterations (Bilke et al., 2008;
Stigliani et al., 2012; Depuydt et al., 2018; Fernandez-Blanco
et al., 2021) to predict HRNB survival, rarely through multi-
omics integration. Additionally, these studies largely used
bulk sequencing technologies, which were restricted to mixed
cell populations. Therefore, despite successfully identifying
many prognostic genes, these studies heavily ignored tumor
heterogeneity. NB is a type of tumor intimately related to the
early development and differentiation of neuroendocrine (NE)

cells (Nunes-Xavier et al., 2021). The intrinsic and extrinsic
features of malignant NE cells can be precisely characterized
using single-cell RNA sequencing (scRNA-seq) technology,
which enables gene profiling and discovery of oncogenic
cellular populations and associated marker genes at single-cell
resolution (Tang et al., 2009; Patel et al., 2014). Thus, the lack
of prognostic stratification for HRNB based on scRNA-seq data
and multi-omics integration analysis prompted us to conduct
this study.

In this study, we first utilized scRNA-seq data from
HRNB patients to identify marker genes of malignant cells.
Subsequently, a malignant-cell marker gene signature (MMGS)
was constructed to predict the prognosis of HRNB patients
based on multi-omics integration analysis. Furthermore,
the prognostic value and performance of MMGS were
validated in an independent cohort. Finally, the relationships
between MMGS and tumor immune/inflammatory features
were investigated.

Materials and methods

Data acquisition and preprocessing

ScRNA-seq data of 11 HRNB samples and cell types
annotation file were downloaded from GSE137804 (Dong
et al., 2020) and were exploited to identify the marker genes
of malignant cell. Meta-program gene sets (1 and 6) highly
expressed in HRNB and strongly associated with a poor
prognosis were downloaded from Dong et al. (2020). Bulk DNA
methylation and bulk mRNA expression datasets of 56 HRNB
patients were downloaded from GSE73515 and GSE73517,
respectively (Henrich et al., 2016). Sequencing Quality Control
(SEQC) (Zhang et al., 2015) and Therapeutically Applicable
Research to Generate Effective Treatments (TARGET) (Pugh
et al., 2013) HRNB cohorts with bulk RNA-seq profiles and
clinical information were downloaded from GSE49711 and
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TARGET datasets,1 respectively. Gene mutation profiles of
HRNB samples were downloaded from the TARGET project.2

The “Seurat” package (Butler et al., 2018) was employed to
analyze and visualize scRNA-seq data. The “FindAllMarkers”
function was used to identify the marker genes of malignant
cells. Adjusted p-value < 0.05 and log2(fold change) > 0.25
were used as the cutoff threshold values to identify marker
genes. The “RunUMAP” function was used to embed the
cells in a two-dimensional map. For bulk RNA expression
data, quantile algorithm from “limma” package (Ritchie et al.,
2015) was used to perform normalization. For bulk DNA
methylation data, subset quantile normalization was applied
according to Touleimat and Tost (2012). We removed the
sites missing in more than 30% of the samples and filled
the missing values using the k-Nearest Neighbor algorithm.
Pearson’s correlation coefficient of each gene corresponding to
bulk mRNA expression and bulk DNA methylation profile was
calculated. Genes with an absolute correlation coefficient greater
than 0.4 and p-value < 0.001 were identified as methylation
correlated (METcor) genes. The overlap between malignant cell
marker genes and METcor genes was named MK-METcor genes
and used for further study.

Construction and validation of
malignant cell marker genes
prognostic model

A univariate Cox regression analysis was conducted to assess
the prognostic value of MK-METcor genes for overall survival
(OS) in SEQC HRNB cohort. P-value < 0.05 was used as
the cutoff threshold value to identify as a prognostic gene.
Next, least absolute shrinkage and selection operator (LASSO)
Cox regression (Tibshirani, 1997) analysis was conducted to
evaluate the prognostic genes using the “glmnet” package.
Finally, a stepwise multivariate Cox regression analysis was used
to optimize the prognostic signatures. A linear combination
of the risk coefficient and mRNA expression of the genes was
used to construct a risk model. Based on the median risk score,
HRNB patients were divided into two risk groups: the ultra-
high-risk group (UHR group) and the common-high-risk group
(CHR group). The Kaplan–Meier (KM) method and the log-
rank test were used to calculate the statistical significance of
the differences in survival using the “survminer” package. The
area under the curve (AUC) of the time-dependent receiver
operating characteristic (tROC) curve was calculated to validate
the prognostic power of MMGS using the “survivalROC”
package (Heagerty and Zheng, 2005). The prognostic ability
of MMGS was validated in an independent TARGET HRNB
cohort. Clinical model was constructed based on canonical

1 https://ocg.cancer.gov/programs/target/data-matrix

2 https://portal.gdc.cancer.gov/

clinical and molecular variables (including age, sex, and MYCN
status) by multivariable cox regression.

Differentially expressed gene
identification and enrichment analysis

The “limma” package (Ritchie et al., 2015) was used to
identify DEGs between UHR and CHR groups. Adjusted
p-value < 0.05 and fold change (FC) > 1 were used as
the cutoff threshold values to identify differentially expressed
genes (DEGs). Compared with the CHR group, DEGs that
were overexpressed in the UHR group were considered
“overexpressed DEGs” and those that were underexpressed in
the UHR group were considered “underexpressed DEGs.”

Gene ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analyses were
conducted using the “enrichGO” and “enrichKEGG” functions
in the “clusterProfiler” (Yu et al., 2012) package, respectively.
The enriched terms were filtered with the p-value adjusted by
the Benjamini-Hochberg method (adjP-value) < 0.05.

Gene Set Enrichment Analysis (GSEA) was performed using
the “gseKEGG” and “GSEA” functions in the “clusterProfiler”
package (Yu et al., 2012) with gene sets involved in KEGG
pathways and hallmarks, respectively. Hallmark gene sets
were download from Molecular Signatures Database (MsigDB)
(h.all.v6.2.symbols.gmt) (Liberzon et al., 2015). False discovery
rate (FDR) q-value < 0.05 and | NES (net enrichment score)| > 1
were set as the significant thresholds.

Tumor immune and inflammatory
features analyses

The ESTIMATE algorithm was employed to assess
infiltration levels of the immune and stromal cells by the
“estimate” package (Yoshihara et al., 2013). The CIBERSORT
algorithm (Newman et al., 2019) was used to dissect the
proportion of 22 immune cell types infiltration.

Seven metagene clusters (HCK, Interferon, MHC-I, MHC-
II, IgG, LCK, and STAT1) were collected from Rody et al.
(2009) that have been widely applied to evaluate the tumor
inflammatory activity. We conducted a single-sample GSEA
(ssGSEA) analysis to obtain an inflammatory activity score by
the “GSVA” package (Hanzelmann et al., 2013).

Statistical analysis

All analyses were conducted with R version 4.0.03 and
its appropriate packages. Univariate and multivariate Cox

3 http://www.R-project.org
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regression analyses were performed to assess the prognostic
value of MMGS and various clinical variables. Wilcoxon
test or Kruskal–Wallis test was used to analyze differences
between different groups. The chi-square test was conducted to
investigate the association between MMGS risk groups, MYCN
status, and OS status. The “maftools” package (Mayakonda et al.,
2018) was used to visualize the genomic mutation landscape.
Heatmap plot was visualized using the “pheatmap” package.
P-value < 0.05 was set as a significant threshold.

Results

Identification of malignant cell marker
genes expression profiles

The overall flowchart of this study was shown in
Supplementary Figure 1. First, we obtained scRNA-seq data
of 160,910 cells from 11 HRNB patients, including 96,843
malignant NE cells (Dong et al., 2020; Figure 1A). A total of
3,404 malignant cell marker genes were identified (Figure 1B).
We observed that malignant cells highly expressed signature
genes of chromaffin cells (such as STMN2, TUBB2B, and
MEG3), presenting consistent results reported by Dong et al.
(2020) that most cancer cells showed a strong chromaffin-cell-
like feature. We found that the malignant cell marker genes were
enriched in pathways associated with cell cycle and metabolic
features, such as oxidative phosphorylation, carbon metabolism,
citrate cycle (TCA cycle), regulation of the cellular amino acid
metabolic process, and pyruvate metabolism (Figures 1C,D).

Construction of malignant-cell marker
gene signature prognostic model

Based on the correlation between bulk mRNA expression
and bulk DNA methylation, a total of 829 METCor genes
were obtained (Supplementary Figure 2A), mainly located on
the CpG island (Supplementary Figure 2B). The 168 MK-
METcor genes, overlapping between malignant cell marker
genes and METcor genes, were used for subsequent analysis
(Supplementary Figure 2C).

To construct a prognostic model based on the 168 MK-
METcor genes, we first used 176 HRNB patients from the
SEQC dataset as the training set to conduct a univariate
Cox regression analysis. We identified 35 MK-METcor
genes with prognostic value. Subsequently, LASSO Cox
regression analysis was used to shrink the variants to 16
genes (Supplementary Figures 3A,B). Finally, stepwise
multivariate Cox regression analysis was performed to
optimize genes to include only the six most predictive
genes. Therefore, MMGS risk score = (0.279 × RAMP1
expression) + (0.278 × CDT1 expression) + (0.024 × NPW

expression) + (-0.073 × MAPT expression) + (-0.101 × MEG3
expression) + (-0.347 × C1QTNF4 expression) (Figure 2A).
RAMP1, CDT1, NPW, and MAPT showed significant
expression differences between CHR and UHR groups,
while MEG3 and C1QTNF4 didn’t show expression differences
between UHR and CHR groups (Supplementary Figure 3C).
The relative expression of these six signature genes in various
cell types showed their tumor cell-specific expression
(Supplementary Figure 3D). Except for MAPT, the other
genes showed a negative correlation between mRNA expression
and DNA methylation (Supplementary Figure 3E). By ranking
the risk score from low to high, the median risk score (0.901)
was used to divide patients into CHR (n = 88) and UHR (n = 88)
groups (Figure 2B). The expression profiles of six signature
genes in the training set were shown in Figure 2C. KM analysis
demonstrated that UHR patients had a significantly shorter OS
than CHR patients (p = 0.012, HR: 3.722 [95% CI: 1.800–7.695])
(Figure 2D). A tROC analysis showed that the AUC values for
the 1-, 3-, and 5-year OS of MMGS model were 0.780, 0.693,
and 0.618, respectively, which were higher than those of the
clinical model (except AUC for 5-year OS) (Figure 2E).

Validation of the prognostic value of
malignant-cell marker gene signature

In an independent cohort including 123 HRNB patients
from the TARGET project, a risk score was calculated for each
patient. Taking the median risk score as the cutoff value, patients
were classified into UHR (n = 61) and CHR (n = 62) groups
(Figure 3A). KM analysis also showed that the UHR group had
an inferior prognosis than the CHR group (Figure 3B, p = 0.033,
HR: 3.557, [95% CI: 1.856–6.818]). A tROC analysis showed that
the AUC values for 1-, 3-, and 5-year OS of MMGS model were
0.649, 0.669, and 0.681, respectively, which were higher than
those of the clinical model (0.552, 0.649, and 0.592, respectively)
(Figure 3C).

To further validate the superiority of MMGS, we compared
MMGS model to the model constructed without DNA
methylation information (not including METcor gene set)
(Supplementary Figure 4A). This model consisted of eight
signature genes (Supplementary Figure 4B). UHR patients
had a significantly shorter OS than CHR patients (p = 0.0011
and 0.042, respectively) in both training and validation sets
(Supplementary Figures 4C,D). The AUC values for the 3- and
5-year OS (0.727, 0.675, respectively) of this model were slightly
higher than those of MMGS in the training set (Supplementary
Figure 4E). However, in the validation set, the AUC values
for 1-, 3- and 5-year OS of this model (0.626, 0.632, and
0.562, respectively) were lower than those of the MMGS model
(Supplementary Figure 4F).

Additionally, Dong et al. (2020) identified two meta-
program gene sets (1 and 6), which were highly expressed in
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FIGURE 1

Identification of malignant cell marker genes by scRNA-seq analysis. (A) UMAP plot colored by various cell types. (B) Heatmap showing the top
five marker genes of each cell type. GO biological process (BP) terms (C) and KEGG pathways (D) enrichment analysis of malignant cell marker
genes of HRNB. pDC, plasmacytoid dendritic cell.

HRNB and strongly associated with a poor prognosis. Then, we
compared MMGS model to the model starting with these two
meta-program gene sets and with (Supplementary Figure 5)
or without DNA methylation information (Supplementary
Figure 6). The model constructed with meta-program gene
sets and METcor gene set consisted of three signature
genes (Supplementary Figures 5A,B). UHR patients had a
significantly shorter OS than CHR patients (p = 0.0074) in
the training set (Supplementary Figure 5C) and had a nearly
significantly shorter OS than CHR patients (p = 0.053) in the
validation set (Supplementary Figure 5D). The AUC values
for the 3- and 5-year OS (0.72, 0.646, respectively) of this
model were slightly higher than those of the MMGS model
in the training set (Supplementary Figure 5E). However, in

the validation set, the AUC values for 1-, 3- and 5-year OS of
this model (0.633, 0.592, and 0.564, respectively) was all lower
than those of the MMGS model (Supplementary Figure 5F).
The model construction using metaprograms genes without
DNA methylation information consisted of eight signature
genes (Supplementary Figures 6A,B). UHR patients had a
significantly shorter OS than CHR patients (p = 0.00053) in the
training set (Supplementary Figure 6C). However, there was
no significant difference in OS between UHR and CHR patients
(p = 0.81) in the validation set (Supplementary Figure 6D). The
AUC values for the 3- and 5-year OS (0.7, 0.706, respectively)
of this model were slightly higher than those of MMGS model
in the training set (Supplementary Figure 6E). However, in
the validation set, the AUC values for 1-, 3- and 5-year OS
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FIGURE 2

Establishment of MMGS in the SEQC HRNB cohort. (A) The coefficients of the identified six malignant cell marker genes. (B) The distribution of
risk score and survival status. (C) The expression characteristics of the identified six malignant cell marker genes. (D) KM curves of OS between
the UHR and CHR groups. (E) ROC curves of MMGS model (solid lines) and clinical model (dot lines) to predict the 1-, 3-, and 5-year OS.
ClinModel, clinical model; HR, hazard ratio; CI, confidence interval.

of this model (0.546, 0.572, and 0.548, respectively) were all
lower than those of MMGS model (Supplementary Figure 6F).
These results indicated that construction of the model starting
with meta-program gene sets had slight better performance in
predicting 3- and 5-year OS in the training set. However, it’s
performance in the validation set was lower than the MMGS
model.

To further investigate whether MMGS model can be used
to independently predict the survival of HRNB patients, we
conducted univariate and multivariate Cox regression analyses
using the risk score, clinical variables, and molecular features.
As expected, multivariate Cox regression analysis demonstrated
that MMGS model was an independent prognostic factor in the
SEQC (Table 1, p = 0.039, HR: 1.585, [95% CI: 1.023–2.457]) and

TARGET (Table 2, p = 0.008, HR: 1.910, [95% CI: 1.188–3.070])
cohorts.

The correlation of malignant-cell
marker gene signature risk score with
clinical variables

To examine the correlation between MMGS risk score and
clinical features, we investigated MMGS risk score distribution
in patients from the SEQC cohort. We observed that the
risk score was lower in the non-MYCN-amplified and alive
subgroups whereas higher in MYCN-amplified and dead
subgroups (Figure 4A and Supplementary Figure 7A). The
sankey diagram was employed to visualize the association
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FIGURE 3

Validation of MMGS in the TARGET HRNB cohort. (A) The distribution of risk score and survival status. (B) KM curves of OS between the UHR and
CHR groups. (C) ROC curves of MMGS model (solid lines) and clinical model (dot lines) to predict the 1-, 3-, and 5-year OS. ClinModel, clinical
model; HR, hazard ratio; CI, confidence interval.

between MMGS risk group, MYCN status, and OS status
(Figure 4B). We found that patients in the HRNB group
had a higher proportion of MYCN amplification with the
dead outcome (chi-square test, p = 0.003). Moreover, we
found that significantly poorer survival probability was
associated with high risk scores in HRNB patients with
different clinical features, including age (=5 years), male, and
stage 4 (Figures 4C–E and Supplementary Figure 7B). In
addition, we also compared the difference in event-free survival
(EFS) between UHR and CHR groups and observed almost
the same results compared with results of overall survival
(Supplementary Figures 7C,D).

Functional enrichment analysis of
malignant-cell marker gene signature
risk groups

To explore transcriptomic differences between MMGS
risk groups, we further investigated pathways and hallmarks
enriched in UHR and CHR groups from the SEQC cohort.

Differential expression analysis showed UHR group highly
expressed metabolic-related genes, such as HTR1E and
KCNH5, while CHR group highly expressed inflammatory-
related genes, such as CNR2, TNFSF11, CCL21, and CCL19
(Supplementary Figure 8A). We found that the UHR group
significantly enriched in the metabolic-related pathways such
as oxidative phosphorylation, and MYC target hallmarks
(Figures 5A,C), whereas the CHR group enriched in immune-
and inflammatory-related pathways like IL6_JAK_STAT3
signaling, inflammatory response, and interferon alpha/gamma
response (Figures 5B,D). Consistent results were also observed
in the TARGET cohort (Supplementary Figures 8B–E).

Malignant-cell marker gene signature
risk score was associated with tumor
immune and inflammatory features

To assess the potential efficacy of immunotherapies
in MMGS risk groups, we explored the relationship
between MMGS and tumor immune features in the HRNB
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TABLE 1 Univariate and multivariate analyses of MMGS model in the SEQC HRNB cohort.

Univariate analysis Multivariate analysis

Variables HR (95% CI) P-value HR (95% CI) P-value

MMGS (UHR vs. CHR) 1.69 (1.119–2.553) 0.012 1.585 (1.023–2.457) 0.039

Age (y) (> 5 vs. =5) 1.333 (0.810–2.192) 0.257 1.546 (0.926–2.583) 0.096

Sex (Male vs. female) 0.571 (0.377–0.864) 0.007 0.656 (0.426–1.010) 0.055

MYCN (amp vs. non-amp) 1.708 (1.125–2.592) 0.011 1.466 (0.925–2.323) 0.104

HR, hazard ratio; CI, confidence interval; y, year.
P-values less than 0.05 in multivariate analysis were highlighted in bold.

TABLE 2 Univariate and multivariate analyses of MMGS model in the TARGET HRNB cohort.

Univariate analysis Multivariate analysis

Variables HR (95% CI) P-value HR (95% CI) P-value

MMGS (UHR vs. CHR) 1.729 (1.090–2.744) 0.019 1.910 (1.188–3.070) 0.008

Age (y) (> 5 vs. = 5) 0.572 (0.329–0.997) 0.046 0.541 (0.309–0.947) 0.031

Sex (Male vs. female) 1.118 (0.706–1.772) 0.634 1.136 (0.713–1.810) 0.591

MYCN (amp vs. non-amp) 0.977 (0.568–1.682) 0.934 0.790 (0.453–1.376) 0.405

HR, hazard ratio; CI, confidence interval; y, year.
P-values less than 0.05 in multivariate analysis were highlighted in bold.

microenvironment in the SEQC cohort. Based on the
ESTIMATE algorithm, we observed that UHR group had
significantly lower immune, stromal, and ESTIMATE scores
than CHR group (Figure 6A). Next, using the CIBERSORT
algorithm, we found that UHR patients had a higher fraction
of T cells follicular helper, NK cells activated, and monocytes
but had a lower fraction of B cells naïve, T cells CD4 naïve, and
macrophage M1 (Figure 6B). Previous studies have reported
that B cells promoted immunotherapy response (Helmink
et al., 2020) and macrophages functioned as regulators of
tumor immunity and immunotherapy (DeNardo and Ruffell,
2019). Characterization of immune cell infiltration levels might
provide implications for the development of immunotherapy
targets. Furthermore, we compared the expression levels
of immune checkpoints and immune-activity-related genes
between UHR and CHR groups. The results demonstrated that
most of these genes had relatively lower expression in the UHR
group (Figure 6C), suggesting that such tumors might be less
responsive to immunotherapies.

To explore the relationship between MMGS risk scores and
tumor inflammatory activities, we investigated the associations
between MMGS risk scores and seven metagene clusters. These
metagene clusters (HCK, Interferon, MHC-I, MHC-II, IgG,
LCK, and STAT1) have previously been reported to represent
various tumor inflammatory activities (Rody et al., 2009). We
found that most of the metagenes were significantly lower
expressed in the UHR group (Figure 7A). Next, we found that
the UHR group had a lower inflammatory activity score than the
CHR group based on ssGSEA analysis (Figure 7B). Moreover,

we observed that MMGS risk score showed negative correlations
with all clusters (Figure 7C). Similar results were also observed
in the TARGET cohort (Supplementary Figures 9, 10).

These significant differences in immune and inflammatory
features between the UHR and CHR groups inspired us to
explore whether these features can improve the performance of
MMGS model. Thus, we combined these features into MMGS
to construct seven kinds of models. In the training set, AUC
values for 1- and 5-year OS of these models were lower than
those of MMGS model; AUC values for 3-year OS were close
to that of MMGS model (Supplementary Figure 11A). In
the validation set, AUC values for 1- and 5-year OS were
close to those of MMGS model; AUC values for 3-year OS
were lower than those of MMGS model (Supplementary
Figure 11B). These results showed that these immune and
inflammatory features didn’t effectively seem to improve the
performance of MMGS model.

Mutation landscape of malignant-cell
marker gene signature risk groups

We further examined the mutation profiles of MMGS risk
groups. ALK stood out that it’s the highest mutation frequency
(Supplementary Figure 12A). It was proven that ALK gene
mutation was a susceptibility factor and a crucial molecular
driver of NB (Mosse et al., 2008). In addition, we found that
patients with ALK mutation nearly correlated with poor survival
compared to the wild-type (WT) patients in the UHR group
(Supplementary Figure 12B, p = 0.06).
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FIGURE 4

The relationship between MMGS risk score and clinical variables in the SEQC cohort. (A) The relationship between MMGS risk score and MYCN
status, OS status. (B) Sankey diagram showing the association between MMGS risk score, MYCN status, and OS status. KM curves of OS between
UHR and CHR patients with age less than 5 years old (C), male (D), and stage 4 (E), respectively. Amp, amplified.

Discussion

The majority of HRNB is resistant or refractory to the
current intensive multimodality therapy, and the survival rates
of these patients remain poor (Irwin et al., 2021). ScRNA-
seq technology combined with multi-omics data could help
to dissect tumor cell heterogeneity and identify potential
prognostic biomarkers effectively. Therefore, we first screened
HRNB scRNA-seq data to identify 3,404 malignant cell marker
genes and found 35 prognostic MK-METcor genes based on
multi-omics integration analysis. After that, we developed
a six-malignant cell marker cell signature, termed MMGS,
which could serve as a novel and independent indicator for
the prognosis of HRNB patients. We found that the CHR
group had higher levels of tumor-infiltrating immune cells
and inflammatory activity. In addition, we discovered that the
genes related to immune checkpoints had higher expression
in the CHR group than in the UHR group, indicating that
immunotherapy might be more appropriate for CHR patients.

Malignant cell marker genes included in our model are:
MAPT, C1QTNF4, MEG3, NPW, RAMP1, and CDT1. MAPT
is a gene encoding tau protein, which is closely related to
maintaining the function of microtubules. It was reported that
MAPT might affect tumorigenesis through dysregulation of
cell cycle progression, cell mobility, or organelle organization
(Papin and Paganetti, 2020). Zaman et al. (2018) reported
that MAPT expression was a biomarker for an increased
survival rate in pediatric NB. C1QTNF4 belongs to the C1q
and TNF-related family. Previous studies suggested its roles
in cancer-related inflammation (Li et al., 2011; Luo et al.,
2016) and metabolism (Li et al., 2020; Sarver et al., 2020).
MEG3 is the first lncRNA discovered to have tumor suppressor
function (Beygo et al., 2015). MEG3 expression is controlled
by epigenetics, and it is aberrantly CpG-methylated in various
tumors (Modali et al., 2015). MEG3 was reported to be
significantly downregulated in NB and negatively associated
with the international neuroblastoma staging system (INSS)
stage (Ye et al., 2020). Moreover, Novak et al. (2020) reported
that MEG3 and EZH2 regulated each other through a negative

Frontiers in Neuroinformatics 09 frontiersin.org

https://doi.org/10.3389/fninf.2022.1034793
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-16-1034793 November 10, 2022 Time: 6:50 # 10

Yan et al. 10.3389/fninf.2022.1034793

FIGURE 5

Representative pathways enriched in UHR and CHR groups from the SEQC cohort. The top five significantly enriched KEGG pathways in the
UHR (A) and CHR (B) HRNB patients. The top five significantly enriched hallmarks in the UHR (C) and CHR (D) HRNB patients.

feedback loop and jointly promoted NB progression, suggesting
MEG3 may be a potential treatment target for NB. NPW is
a gene encoding neuropeptide protein, which can enhance
cortisol secretion from adrenal cells. RAMP1 is a chaperone
to the amylin and calcitonin-gene-related peptide (CGRP)
receptors. It has been reported that RAMP1 is expressed in
various tissues, including the adrenal gland (Nagae et al., 2000;
Cottrell et al., 2005). CDT1 plays a pivotal role in cell replication
and cell cycle regulation (Yang et al., 2019). The destructive role
of CDT1 has been demonstrated in tumorigenesis, progression,
and chemoresistance in certain tumor types (Karakaidos et al.,
2004; Bravou et al., 2005). These reports suggested that genes
identified in our MMGS model might play pivotal roles in
malignant cells’ biological behaviors and were potential targets
for elucidating molecular mechanisms of HRNB.

In this study, MMGS model was proved to be an
independent prognostic tool for HRNB tumors in both training
and validation datasets. The excellent prognostic value and
performance of MMGS motivated us to explore the potential
molecular mechanism. We first conducted GSEA analysis,
including KEGG pathway and hallmarks, in MMGS risk groups
and observed that the UHR group was significantly enriched
in metabolic-related pathways, whereas the CHR group was
enriched in immune- and inflammatory-related pathways. Thus,
the inferior prognosis of UHR group may be partly due to the
dysregulation of the metabolic process, which plays a crucial
role in tumor progression (Faubert et al., 2020). Additionally,
tumor-infiltrating immune cells have been reported to affect
tumor development and prognosis (Petitprez et al., 2020; Paijens
et al., 2021). Then, we applied ESTIMATE and CIBERSORT
algorithms to compare the levels of immune cell infiltration
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FIGURE 6

The association between MMGS and the immune cell infiltration in the SEQC cohort. (A) Differences among stromal score, immune score, and
ESTIMATE score between UHR and CHR groups. (B) The comparison of infiltration levels of 22 immune cell types between UHR and CHR
groups. (C) Immune checkpoints expression between UHR and CHR groups. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, no
significance.
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FIGURE 7

Relationship between MMGS and inflammatory metagenes in the SEQC cohort. (A) Heatmap showing the expression characteristics of seven
clusters of metagenes. (B) The ssGSEA score of inflammatory activity in MMGS risk groups. (C) The correlation between MMGS risk scores and
metagenes. *p < 0.05; **p < 0.01; ***p < 0.001.

between UHR and CHR groups. The results demonstrated
that the UHR group had a lower level of immune cell
infiltration, suggesting that this group has a characteristic of
“cold tumors” with reduced antitumor activity (Bonaventura
et al., 2019). Low levels of tumor-infiltrating immune cells can
facilitate tumor cells to evade immune surveillance and promote
malignant progression (Song et al., 2022), which may partially
be responsible for the inferior prognosis in UHR patients.
Furthermore, we found that most of immune checkpoint genes
had relatively lower expression in the UHR group. Besides, we
observed that most of the inflammatory-related metagenes also
had lower expression in the UHR group. Additionally, MMGS

risk score showed negative correlations with all metagenes
clusters. These results indicated that UHR patients might
be in a more immunosuppressive microenvironment, which
may partly account for the decreased OS of UHR tumors.
Based on the above findings, we indicated that the underlying
mechanism for the powerful prognostic performance of MMGS
may be due to the dysregulation of the metabolic process and
immunosuppressive microenvironment.

Nevertheless, our study still has some limitations. Our
prognostic model was constructed and validated based
on retrospective cohorts. A large local cohort is need
to further validate our model. Additionally, our study
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did not analyze the interaction of malignant cell marker
genes with microenvironmental cell marker genes. Taken
together, although there were still some limitations, our
study provided a novel and independent indicator for
the prognosis of HRNB patients and illuminated potential
molecular mechanisms for HRNB.

Conclusion

In conclusion, a six-malignant-cell marker gene signature
was established and validated to have an independent
performance in predicting the prognosis of HRNB patients.
It may serve as a prognostic signature to better predict the
prognosis of HRNB patients and help clinicians to develop
personalized treatment for HRNB patients.
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