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Machine learning techniques such as deep learning have been increasingly

used to assist EEG annotation, by automating artifact recognition, sleep

staging, and seizure detection. In lack of automation, the annotation process

is prone to bias, even for trained annotators. On the other hand, completely

automated processes do not offer the users the opportunity to inspect the

models’ output and re-evaluate potential false predictions. As a first step

toward addressing these challenges, we developed Robin’s Viewer (RV), a

Python-based EEG viewer for annotating time-series EEG data. The key

feature distinguishing RV from existing EEG viewers is the visualization of

output predictions of deep-learning models trained to recognize patterns in

EEG data. RV was developed on top of the plotting library Plotly, the app-

building framework Dash, and the popular M/EEG analysis toolbox MNE. It

is an open-source, platform-independent, interactive web application, which

supports common EEG-file formats to facilitate easy integration with other

EEG toolboxes. RV includes common features of other EEG viewers, e.g.,

a view-slider, tools for marking bad channels and transient artifacts, and

customizable preprocessing. Altogether, RV is an EEG viewer that combines

the predictive power of deep-learning models and the knowledge of scientists

and clinicians to optimize EEG annotation. With the training of new deep-

learning models, RV could be developed to detect clinical patterns other than

artifacts, for example sleep stages and EEG abnormalities.
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1. Introduction

Electroencephalography (EEG) remains one of the most widely used methods for
measuring normal brain activity (Niedermeyer and da Silva, 2005; da Silva, 2013;
Biasiucci et al., 2019), essential in the study of brain disorders [e.g., epilepsy, sleep-, and
mental disorders (Acharya et al., 2013; Arns et al., 2013; Diaz et al., 2016; Chen and
Koubeissi, 2019; Olbrich and Brunovsky, 2021)], and more recently, a cornerstone for
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the development of brain-computer interfaces (BCI) which
interpret EEG to establish control over external devices, e.g.,
prosthetic limbs (Wolpaw et al., 1991; Allison et al., 2007;
Abiri et al., 2019). EEG signals, however, come mixed with
many physiological and non-physiological artifacts (e.g., muscle
activity, eye movements and blinking for the former, and
electrode movement, impedance changes, and interference from
other electronic devices) (Niedermeyer and da Silva, 2005; Barua
and Begum, 2014). The frequency spectra of artifacts may
overlap with those of neural oscillations relevant for clinical
evaluation (e.g., epilepsy) or scientific research (Ward, 2003;
McKay and Tatum, 2019; Donoghue et al., 2022). Therefore,
accurate artifact detection and removal is crucial prior to
any qualitative or quantitative EEG assessment. Generally, this
requires the input of experienced clinicians and/or researchers,
which can be time consuming and, inevitably, introduces a
certain degree of subjectivity (Biasiucci et al., 2019).

Machine-learning techniques trained to detect artifacts in
EEG data can address the aforementioned issues, by providing
an objective standard for artifact marking, and speeding up
the marking process. The most common machine-leaning
techniques used for artifact detection in EEG data, are based
on support vector machines (SVMs) (Shao et al., 2008; Barua
and Begum, 2014; Sai et al., 2017), k-nearest neighbor classifiers
(k-NN) (Barua and Begum, 2014; Roy, 2019), independent
component analysis (ICA) (Barua and Begum, 2014; Radüntz
et al., 2015; Sai et al., 2017), and, as of recently, various deep-
learning models [e.g., autoencoders (Yang et al., 2016, 2018; Roy
et al., 2019), convolutional neural networks (CNNs) (Roy et al.,
2019; Sun et al., 2020; Diachenko et al., 2022; Jurczak et al.,
2022), and recurrent neural networks (RNNs) (Roy et al., 2019;
Liu et al., 2022)]. Deep-learning solutions, in particular, have
increased in popularity for artifact handling (Roy et al., 2019)
due to the minimal preprocessing they require and because
of their ability to learn very complex functions between input
data and the desired output classification (LeCun et al., 2015).
Nevertheless, the performance of automated EEG annotation
through deep-learning models is still far from replacing trained
human annotators in a clinical setting. Furthermore, when
artifact removal is completely automated, it does not offer the
users the opportunity to inspect the models’ output and re-
evaluate potential false predictions.

To this end, we developed Robin’s Viewer (RV), a user-
friendly EEG viewer for annotating time-series EEG data using
deep-learning models trained to recognize artifacts in EEG data,
as a decision-support-system. As such, with RV, we combine the
predictive power of deep-learning models and the knowledge of
subject-matter experts (i.e., scientists and clinicians) to improve
the EEG annotation process. Importantly, RV was developed in
close collaboration with machine-learning experts, neurologists,
EEG researchers, and non-expert users (e.g., students), to ensure
comfortable and efficient EEG viewing and annotation. RV is
open-source (MIT license), platform independent (it runs in

the user’s web browser), and supports many common EEG-file
formats, allowing for integration into data-processing pipelines
developed for other EEG toolboxes. RV was developed in
Python and builds on the popular M/EEG analysis toolbox MNE
(Gramfort et al., 2013), Plotly1, a Python-based plotting library,
and Dash2, used for the interactive graphical user interface
(GUI) and for providing a locally hosted server to run the
application. In RV, the user can load EEG recordings, apply
common preprocessing methods (e.g., bandpass filtering, re-
referencing, and down-sampling), plot the data, use the GUI
to navigate through the signal, and mark bad channels and
artifacts. To provide an example of how the viewer can be used
with integrated deep-learning predictions, we have additionally
included with RV a proof-of-concept deep-learning model
trained to recognize artifacts in resting-state, multichannel EEG
recordings (Diachenko et al., 2022). RV can be downloaded for
free at https://github.com/RobinWeiler/RV.git, where we also
provide code documentation, demos, and example data. Here,
we give an overview of the design and key features of RV using
artifact annotation as the running-example.

2. Methods

2.1. Programming environment

We developed RV in Python and built it around the
following main libraries: Plotly, Dash, and MNE. A full list of
the required libraries can be found in the “requirements.txt” file
included on GitHub. Because of Python’s portability and the
fact that Plotly and Dash allow RV to be served in the user’s
web browser, our application is largely platform independent.
We tested RV on the three major platforms MacOS, Windows,
and (Ubuntu) Linux, as well as the popular web browsers Safari,
Google Chrome, and Mozilla Firefox.

All plots and visualizations, as well as parts of the
interactive GUI, including the slider and artifact annotation
mechanism, included in RV, were written using Plotly. We
used Dash to deploy and host the application in the user’s
web browser. Moreover, most of the buttons, dropdown-menus,
and pop-up windows of RV were developed in Dash using the
integrated callbacks.

MNE (Gramfort et al., 2013) is a popular M/EEG analysis
toolbox built in Python, which features a wide variety of
common techniques applied to EEG data. RV relies on the data
structures provided by MNE. Additionally, all the preprocessing
applied in RV depends on MNE code, including automatic bad-
channel detection, which uses the Autoreject library (Jas et al.,
2017), and which is also based on MNE. However, when needed,

1 https://github.com/plotly/plotly.py

2 https://dash.plotly.com
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the user can pre-process their data outside of RV and then plot it
directly using the techniques outlined in Section “3.8 Integration
into EEG toolboxes,” skipping the preprocessing steps applied by
RV.

2.2. Deep-learning model

A convolutional neural network was trained on expert-
annotated resting-state EEG data from typically developing
children and children with neurodevelopmental disorders, with
the purpose of recognizing artifacts (Diachenko et al., 2022).
This model was integrated into RV as a proof-of-concept
decision-support system for EEG artifact annotation. The model
reached 80% balanced accuracy (a performance metric based on
the average of sensitivity and specificity which is used to assess
accuracy in imbalanced data, i.e., where one target class appears
more often than the other) in distinguishing artifact from non-
artifact EEG patterns and, importantly, detected valid artifacts
missed by the trained annotator. Therefore, using this model
together with RV could increase the quality and speed of manual
annotation of EEG artifacts.

RV also allows the model to be used for automatic artifact
annotation, i.e., it can automatically annotate portions of the
signal predicted with confidence that exceeds a customizable
threshold, which will be explained in more detail in Section “3.5
Deep-learning model predictions.” For the data where the model
confidence does not cross the fixed threshold, the user has to
make the final decision.

Importantly, the model applies the following preprocessing
steps, independent of the preprocessing set by the user in
RV, to generate its predictions: First, the data is bandpass
filtered in the range of 0.5 to 45 Hz with a Hamming window.
Then, bad channels, which should either be marked through
RV (as explained in Section “3.4 Bad-channel marking”) or
be contained in the loaded data, are interpolated. Finally, 19
channels are selected according to the standard 10–20 system
and the data is segmented into 1-s segments with 0.5 s overlap.
From these segments, time-frequency plots are generated which
the model uses as input. For more details, we refer to Diachenko
et al. (2022).

3. Results

In the following, we give an overview of the design and
key features of RV and its graphical user interface (GUI) using
artifact annotation as the running-example.

3.1. Loading EEG data

The initial screen of RV consists of a pop-up window where
the user can load EEG data and select from the preprocessing

and visualization methods provided by the application. This
window can be seen in Figure 1 and can always be reopened with
the “Preprocessing” button in the top-left corner of the menu bar
of the main GUI (seen in Figure 2A and explained in Section
“3.3.1 Menu bar”).

Robin’s Viewer follows the following file structure: There
is the “data” directory, from which files can be loaded but
not overwritten. This is done to ensure that the user never
accidentally overwrites the original raw EEG-data files. Next,
there is the “save_files” directory, where all files annotated in
RV will be saved, and where files can be overwritten when
the user explicitly chooses to do so in the “Save to” pop-
up window (more information on RV’s saving functionality in
Section “3.7 Saving annotated data”). Additionally, there is the
“temp_raw.fif” file located in the main RV directory, which is
a temporary working save-file updated automatically with every
annotation made to the data and which can be loaded in case RV
is closed accidentally without saving.

All files located in both the “data” and “save_files” directory,
as well as the “temp_raw.fif” file, can be loaded in RV. Currently,
the following file-formats are supported for loading: .edf, .bdf,
.fif, and .set. To load these files, the user can either drag-and-
drop them into the “Drag-and-drop or click here to select EEG
file” area (Figure 1), or click on said area, after which a file-
selection window will open and allow the user to select the file
to load. However, RV only has access for reading files in the
directories named above because the browser RV runs in hides
file paths for security reasons. Therefore, the selected file will still
have to be inside one of the predefined directories to be loadable.
Note that the user can also choose to load the data outside of
RV (e.g., to load a file-format not currently supported) and pass
it as a MNE Raw data-structure to the “run_viewer” function
(explained in more detail in Section “3.8 Integration into EEG
toolboxes”). Using this function, the user can circumvent RV’s
restriction of only loading files from the predefined directories,
and only saving files to the “save_files” directory, by loading
the data externally and passing it to the “run_viewer” function,
together with a desired save-file path.

After loading EEG data, the user can use the “Stats” button
(Figure 1) in order to view statistics surrounding the annotated
data for a quick overview of the data before plotting (Figure 3).
Currently, the implemented statistics consist of the recording’s
total length (in seconds), the amount of artifacts and clean
data (in seconds), as well as the amount of consecutive, clean
intervals longer than 2 s (this is useful because, if most of
the remaining clean data segments are shorter than 2 s, the
recording’s quality is likely not sufficient for further analysis).
Furthermore, we included a histogram to show the distribution
of the length of clean data segments. These statistics are intended
to give the annotator a feeling for the quality of the data and
whether this data can be used for further analysis. We invite
researchers to implement new statistics, or to create a feature
request on GitHub.
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FIGURE 1

The “Preprocessing” pop-up window is the initial screen of Robin’s Viewer (RV) and has five distinct sections: First, the electroencephalography
(EEG)-file selection (see Section “3.1 Loading EEG data”), where the user can load their EEG recording and display selected statistics about the
data once it is loaded. Second, the preprocessing settings (see Section “3.2 Preprocessing and visualization settings”), which are used to set a
bandpass filter [finite impulse response (FIR) filter with Blackman window] and a custom reference. Third, the bad-channel handling (see
Sections “3.2 Preprocessing and visualization settings” and “3.4 Bad-channel marking”), where the user can decide whether to use automatic
bad channel detection, and whether to interpolate bad channels. Fourth, the visualization settings (see Section “3.2 Preprocessing and
visualization settings”), comprised of downsampling, custom scaling (by default 1e-6 as RV scales data from volts to microvolts for plotting), the
gap between traces (by default 40 (µV); setting this to 0 results in butterfly mode where all traces are collapsed on top of each other; values
higher than 40 move traces further apart), segment length to plot [by default 60 (seconds)], whether or not to activate the view-slider, and
selection of channels to plot. Visualization settings will only be applied to the data for plotting and hence will not be saved in the save-file (in
contrast to the preprocessing settings). Fifth, the deep-learning model settings (see Sections “3.2 Preprocessing and visualization settings” and
3.5 Deep-learning model predictions”), where previously saved model output can be loaded and the integrated deep-learning model can be
activated to generate predictions. Clicking the “Plot” button at the bottom will close this window and, after a loading screen (which lasts as long
as it takes to plot the data), it will open up the main graphical user interface (GUI).
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FIGURE 2

(A) The main graphical user interface (GUI) of Robin’s Viewer (RV) with its six subsections highlighted [see Section “3.3 Graphical user interface
(GUI)”]: The menu bar (red) contains buttons to open pop-up windows for file loading and preprocessing, saving, annotation statistics, power
spectrum, help, and shutting down RV, as well as a button to recalculate the deep-learning model’s predictions (if activated) and left and right
arrow buttons used to navigate the currently viewed timeframe (if the data is loaded in segments). The taskbar (light blue) seen in detail in panel
(B). The labeled buttons (dark blue): The first two buttons are used to reset the view, either across the channel- (“Reset channel-axis”) or
time-axis (“Reset time-axis”). The third button (“Hide/show bad channels”) allows to hide marked bad channels from the plot. The fourth button
(“Highlight model-channels”) only appears when deep-learning predictions are activated and highlights the channels used by the model to
make its predictions in blue. The view-slider (green) is used to scroll continuously along the time-axis of the signal. The legend (purple) shows
all available channels. Clicking on any channel in the legend once will hide it from the plot (clicking again reverses this). Double-clicking on a
channel will hide all other channels from the plot, except for the selected channel. The plot (yellow) shows the traces for all selected channels
spread across the vertical axis, and time (in seconds) on the horizontal axis. The user can hover over any given point in the plot in order to
display the time (in seconds) and amplitude (in µV if no custom scaling was used) values of the trace under the mouse. The deep-learning
predictions, if activated (see Section “3.5 Deep-learning model predictions”), are plotted below the EEG traces. (B) The taskbar hosts ten buttons
from left to right: (1) Take a picture of the (annotated) electroencephalography (EEG) signal and download it as a .png file. (2) Select an area to
zoom in on. (3) Move view along the channel- or time-axis. (4) Select a channel to mark it as “bad” or select a segment of the data for which to
calculate and display the main underlying frequency and power spectrum. (5) Select a segment of the plot to annotate. (6) Delete the currently
selected annotation. (7) Zoom in one step. (8) Zoom out one step. (9) Zoom out as much as necessary to show all channels for the entire
duration of the recording (or segment). (10) Display a ruler from both axes to the datapoint currently hovered on.

3.2. Preprocessing and visualization
settings

Robin’s Viewer offers a handful of popular EEG
preprocessing methods within the “Preprocessing” pop-up
window seen in Figure 1, which rely on the MNE package
(Gramfort et al., 2013). These include bandpass filtering,
re-referencing, bad channel interpolation, and automatic
bad-channel detection, which is based on the random sample
consensus (RANSAC) method of the PREP pipeline (Bigdely-
Shamlo et al., 2015) implemented in the Autoreject library (Jas
et al., 2017). The flowchart in Figure 4 shows the order in which
preprocessing and visualization settings are applied to the data.

For the high- and low-pass filter, the user needs to provide
the values (in Hz) in the respective input fields. For this

bandpass filter, we used the “mne.io.Raw.filter” function from
MNE set to an finite impulse response (FIR) filter with a
Blackman window (Lai, 2003) (all the other parameters were
MNE defaults). More filters will be added in future versions of
RV. If the loaded EEG data has previously been preprocessed
(because it is a save-file or because it was preprocessed outside
of RV), the filter settings will be extracted and filled in
automatically. In this case, if no changes are made to these
values, or fields are empty, the data will be loaded without any
additional filtering.

Below the bandpass filter, the user can choose how to re-
reference the signals: using an average reference, a Cz-reference,
or altogether skipping this step by selecting no custom reference.
Importantly, when the annotated data is saved in RV, this
includes the applied preprocessing options (bandpass filter and
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FIGURE 3

The “Stats” pop-up window offers an overview over the annotated data. Currently, the integrated statistics consist of the recording’s total length
(in seconds), the amount of annotated (artifact) and non-annotated (artifact-free) data (in seconds), as well as the amount of consecutive,
non-annotated (artifact-free) intervals longer than 2 s. Finally, there is a histogram to show the distribution of the length of non-annotated data.

custom reference). This is to avoid the situation where, e.g.,
high-frequency artifacts are filtered away during viewing but not
when subsequently applying quantitative analysis algorithms.

Below the preprocessing options, there is a compartment
for bad-channel handling. For automatic bad-channel detection,
there are two options: skip the step altogether (“None”) or
use automatic bad-channel detection (“RANSAC”). For more
details on the automatic bad-channel detection, see Section
“3.4.2 Automatic bad-channel detection.” More methods for
automatic bad-channel detection will be added in future
versions of RV. Bad channels can also be marked manually
in RV, which will be explained in Section “3.4.1 Manual bad-
channel marking.” If the loaded file already contains marked bad
channels, they will be selected in the bad-channel dropdown-
menu. The user can de-select channels here or select more
channels by clicking on the dropdown-menu, which will list all
available EEG channels. The user can select a channel or type the
beginning of a channel name in the dropdown-menu text box,
which will filter the list of available channels.

Interpolation of bad channels can be activated in this
compartment as well and is performed when there are marked
bad channels (regardless of whether they were marked manually

or by the automatic bad-channel detection algorithm) and when
the loaded file contains channel-position information. If the
latter is not provided, RV will display an error message.

Aside from the preprocessing options and bad-channel
handling, there are several settings that only affect the
visualization and are not reflected in the save-file when saved.
First, the user can determine the resampling frequency (in Hz)
used for plotting the signal. By default, this is initialized with
three times the lowpass-filter parameter (leaving this field empty
will load the signal with its original sampling frequency). We
highly recommend downsampling the data before plotting, as
this will have a big impact on the overall performance and
usability of RV as it effectively reduces the number of datapoints
plotted at once. For the future, we will investigate the option
to automatically adapt the sampling rate based on the current
level of zoom, e.g., by plotting more points as the user zooms
in on the data. Note that resampling will only be used for
plotting and does not affect the sampling frequency of the data
saved in the end.

Another option that affects the visualization of the signal
is the scaling factor, which determines the scaling the data
should have in relation to volts, the default unit used by MNE.
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FIGURE 4

Flowchart of Robin’s Viewer (RV)’s preprocessing and visualization settings pipeline (see Section “3.2 Preprocessing and visualization settings”).
After the data is loaded, it goes through the preprocessing and visualization steps in the following order before being plotted: Bandpass-filtering
[finite impulse response (FIR) filter with Blackman window] (none by default), automatic bad channel detection [random sample consensus
(RANSAC) method of the PREP pipeline (Bigdely-Shamlo et al., 2015) implemented in the Autoreject library (Jas et al., 2017)] (none by default),
re-referencing (none by default), bad-channel interpolation (none by default), resampling (three times the lowpass-filter frequency (if given) by
default), channel selection (all by default), scaling (1e-6 by default), channel offsetting (40 µV by default), and data segmentation (60-s
segments by default). Importantly, many of these steps are optional (as indicated by their default values) and will be skipped if they are not
specifically set. In parallel to the visualization settings, the deep-learning model generates predictions (if activated). Using the “Rerun model”
button in the menu bar of the main GUI (see Figure 2A) restarts the process of generating deep-learning predictions while taking newly marked
bad channels into account. Saving the annotated data will include the preprocessing settings but not the visualization settings.
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By default, this is equal to 1e-6, allowing for EEG data to be
scaled from volts to microvolts so that fluctuations in the signal
are visible. Additionally, there is an input field allowing the
user to change the space between channels for plotting, called
“Channel-offset.” By default, this is equal to 40 µV, which creates
enough space between individual channels while still spreading
them out as much as possible to preserve detail in the traces.
Butterfly mode, i.e., setting channel offset to 0, will collapse all
channels on top of each other, which can be useful to identify
potential bad channels with high variance. Setting channel offset
to numbers bigger than 40 will spread the channels further apart,
requiring the user to scroll up and down through the channels.

Another visualization option that significantly improves
RV’s performance and responsiveness is the ability to load and
visualize the recording in segments of a specified length (in
seconds). When using this option, the user can move between
the segments (which have half a second overlap in either
direction) using the left- and right-arrow buttons in the menu
bar of the GUI (Figure 2A), just below the “Preprocessing”
button. When the recording is segmented in this way, fewer
datapoints are plotted at once, compared to the case where the
entire signal is loaded. By default, the recording is segmented
into 60-s segments plus half a second overlap with both the
previous and following segment. On a MacBook Pro 13-inch,
2020, with the Apple M1 chip and 16GB RAM, for example,
switching between two 60-s (plus 1-second overlap) segments
with 32 channels and a sample frequency of 135 Hz (i.e., 263,520
points plotted at once) takes approximately 1 s.

Underneath the input field to set the segment size, there is an
option to enable/disable the adjustable view-slider, which can be
used to scroll through the recording (or segments) continuously.
Using the view-slider, the user could load their EEG recording
in segments of 60 s, for example, and then continuously scroll
through each segment with an adjustable (see Section “3.3.4
View-slider”) sliding window [i.e., without switching between
segments until the end of a (e.g., 60-s) segment is reached].
Scrolling through the data continuously comes with the cost of
data outside of the timeframe shown by the view-slider having
to be preloaded in the background (e.g., the full 60-s segment is
preloaded even if only 10 s are displayed at a time). Therefore,
disabling the view-slider, and viewing the signal in smaller
(e.g., 10-s) segments instead, can improve RV’s performance, if
necessary. By default, the view-slider is active and initialized to
span a 10-s timeframe.

Finally, by pressing the “Select channels” button, the user
can select what channels they want to plot the signals (see
Figure 5). Channels can be selected from a sensor-layout plot (if
the loaded data-file contains channel-position information) or
by choosing specific channel names to be plotted in a dropdown-
menu. If no selection is made, all channels will be plotted and
visible after loading.

Pressing the “Plot” button at the bottom will close the
“Preprocessing” window and, after a period in which the signal

is loaded, it will open the main GUI where the preprocessed
EEG data is displayed. The “Preprocessing” window can be
reopened at any time using the “Preprocessing” button in the
menu bar of the application (Section “3.3.1 Menu bar”), and
all the preprocessing and visualization settings can be changed.
Clicking the “Plot” button again will reset the current view and
remove all existing annotations and marked bad channels. This
is because changing the bandpass filter settings can influence the
timing of artifacts. When needed, all relevant data should first be
saved before changing these settings and re-plotting.

3.3. Graphical user interface (GUI)

The GUI of RV is divided into six components, as indicated
in Figure 2A, each of which will be explained in detail in the
following subsections.

3.3.1. Menu bar
The menu bar is located at the top of the screen. It contains

buttons which, when pressed, open pop-up windows for file
loading and preprocessing, file saving, annotation statistics,
power spectrum, help, and shutting down RV. Additionally, the
menubar hosts a button to rerun the deep-learning model, as
well as left and right arrow buttons used to navigate between
segments if the data is loaded in segments. The “Preprocessing”
button opens the file-selection and preprocessing window
mentioned in Section “3.1 Loading EEG data.” The “Save to”
button opens a pop-up window allowing the user to save the
annotated data with a given filename (explained in detail in
Section “3.7 Saving annotated data”).

Next to the “Save to” button, there is the “Re-run model”
button, which, as the name suggests, reruns the integrated
deep-learning model (see Section “3.5.2 Running the integrated
deep-learning model”), if activated. This button should be used
after marking all bad channels in order to recalculate the model’s
predictions while considering the newly marked bad channels.

The “Stats” button opens the same pop-up window
described in Section “3.1 Loading EEG data” and shown in
Figure 3, containing statistics surrounding the annotated data.
Next to the “Stats” button, there is the “Power Spectrum” button,
which opens a pop-up window showing the most prominent
frequency, as well as the respective power spectrum for the
currently selected time interval of EEG data. For the power-
spectrum computation, the Welch method (Welch, 1967) is used
as implemented in the Python-library SciPy (Virtanen et al.,
2020). How to select such a time interval will be explained in
the following Section “3.3.2 Taskbar”–button 4.

Finally, on the top-right, there are two buttons grouped
together. On the left, the “Help” button opens a pop-up window
containing links to the documentation and GitHub. On the
right, the “Quit” button displays a pop-up window asking for
confirmation to shut down RV, shuts down the local server RV
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FIGURE 5

Channel-selection pop-up window where the user can select specific channels to plot. At the top, there is a dropdown-menu to select channels
out of a list of all channels. Alternatively, the channels can be selected on the channel layout below by clicking and dragging on the plot.

is running on, and after this the RV interface cannot be used
anymore. Before shutting down RV, the user should save the
annotated data using the “Save to” button mentioned above (if
the user forgets to save the data, it can be restored using the
“temp_raw.fif” file after RV is restarted).

3.3.2. Taskbar
The taskbar seen in Figure 2B [located in the upper right

corner of the GUI, below the menu bar (Figure 2A)] allows the
user to interact with the EEG plot. From left to right, there are
the following buttons:

1. Take a picture of the (annotated) EEG signal and download
it as a .png file.

2. While this button is active, select an area to zoom in on
(click-and-drag).

3. While this button is active, move view along the channel-
or time-axis, or both simultaneously (click-and-drag).

4. While this button is active, click on a channel to mark it as
a bad channel. After a brief loading period, the respective
channel will be marked in gray. Clicking on a bad channel

again will remove the marking. Also, while this button is
active, select a segment of the data for which to calculate
and display the main underlying frequency, as well as a
power spectrum in the “Power-spectrum” pop-up window,
which can be opened using the “Power spectrum” button
in the menu bar (click-and-drag). It is possible to select all
channels or only a few desired ones, as explained in Section
“3.3.5 Legend.”

5. While this button is active, select a segment of the plot
to annotate, which creates a semi-transparent red box
(indicating the presence of an artifact) spanning the
entire vertical axis in view (currently only annotations
across all channels are supported) across the selected
time interval (click-and-drag). These annotations can be
freely adjusted in their position and size, or removed
entirely (with button 6), when clicked on. The annotation
is saved with “bad_artifact” as its description (see
Section “3.6 Annotations” for more details). This tool is
activated by default.

6. Delete the currently selected annotation.
7. Zoom in one step.
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8. Zoom out one step.
9. Zoom out as much as necessary to show all channels for the

entire duration of the recording (or segment), including all
peaks in the data (potentially produced by artifacts).

10. Display rulers for both axes corresponding the datapoint
currently hovered on.

3.3.3. Labeled buttons
By default, there are three labeled buttons in the top-left of

the plot (Figure 2A). The first two buttons are used to reset the
view, either across the channel- (“Reset channel-axis”) or time-
axis (“Reset time-axis”). “Reset channel-axis” will reset the view
to fit all channels in the plot. “Reset time-axis” will reset the
plotted timeframe to show the initial configuration, i.e., the first
10 s of the recording (or segment) if the view-slider is activated
or the entire recording (or segment) otherwise.

The third button (“Hide/show bad channels”) allows the
user to hide marked bad channels from the plot. Once bad
channels have been hidden, they can be made visible by clicking
the button again.

An additional fourth button, called “Highlight model-
channels,” appears only when the integrated deep-learning
model is activated. This button highlights the channels which
were used by the model to generate predictions in blue. These
channels are defined in the model implementation and cannot
be changed. Knowing which channels are considered by the
model can be helpful in understanding its predictions, e.g., when
an artifact was not marked by the model because it occurred on
a channel that was not part of the model input.

3.3.4. View-slider
The view-slider, once activated in the “Preprocessing”

window (Figure 1), is located at the bottom of the screen
(Figure 2A), and can be used to continuously scroll through
the recording (horizontally along the time-axis) by clicking and
dragging it (as mentioned in Section “3.2 Preprocessing and
visualization settings”). The slider’s range, by default initialized
to 10 s, can be adjusted by clicking and dragging the small
rectangles at its edges. In this way, the user can visualize
anything from the entire recording (or segment) at once, down
to several milliseconds. It should be noted that the same
functionality as the view-slider can also be achieved by clicking
and dragging on the time-axis’ labels or selecting the third
button in the taskbar (Figure 2B–button 3) and then clicking
and dragging on the plot directly.

3.3.5. Legend
At the right side of the plot, there is a scrollable legend

showing the names of all available EEG channels (Figure 2A).
Clicking on any channel name hides the channel from the plot.
Double-clicking a channel name hides all channels except for
the selected one, and the user can follow up by adding more

channels to be displayed, by clicking their names once. The
latter can be used to retrieve the most prominent underlying
frequency and power spectrum of an interval mentioned in
Section “3.3.1 Menu bar,” if it is desired to only include specific
channels in the power spectrum.

3.3.6. Plot
As can be seen in Figure 2A, the majority of the screen is

occupied by the plot which dynamically adapts its size based on
RV’s window size to fill as much space as possible. All selected
channels are spread across the vertical axis with an offset of
40 µV between them by default, unless specified otherwise
in the visualization settings. Time, on the horizontal axis, is
displayed in seconds. If the view-slider is enabled, the first
10 s of the recording (or segment) are displayed across all
selected channels, by default. Otherwise, the whole recording (or
segment) is shown.

The EEG traces are plotted in black, with the exception
of bad channels, whose traces are shown in gray. The
user can hover over any given point in the plot in order
to display the time (in seconds) and amplitude (in µV
if no custom scaling was used) values, rounded to three
decimals, of the trace under the mouse. When deep-learning
predictions are activated in the “Preprocessing” pop-up window
(Figure 1), they are plotted below the EEG traces. This will be
explained in more detail in Section “3.5 Deep-learning model
predictions.” Figure 6A shows an example plot, where the
integrated deep-learning model is activated, and several artifacts
are annotated.

3.4. Bad-channel marking

Bad channels are EEG electrodes which did not record actual
brain activity, for example because they were disconnected from
the patient’s scalp, and, as such, cannot be used for analysis
and interpretation. In RV, we offer two possibilities to mark
bad channels: The manual way of inspecting the EEG data
first and then marking the bad channels through the GUI, and
the automatic method selectable in the “Preprocessing” pop-up
window (Figure 1). Bad channels marked in RV can be saved as
a list of the respective channel names in a .txt file (see Section
“3.7 Saving annotated data”).

3.4.1. Manual bad-channel marking
As mentioned in Section “3.3.2 Taskbar,” the user can

mark channels as “bad” by clicking on them while the
button (#4) in the taskbar (Figure 2B–button 4) is activated.
Clicking an already marked bad channel will remove the
marking. Additionally, channels can be marked as bad in
the respective dropdown-menu in the “Preprocessing” pop-
up window (Figure 1), where channels will be selected if the
loaded file already contains marked bad channels. In the plot,
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FIGURE 6

Visualizing deep-learning predictions of artifacts in Robin’s Viewer (RV). (A) Example timeframe of an electroencephalography (EEG) file
displayed in RV. An annotated artifact is illustrated here (in red) with the respective deep-learning model predictions at the bottom of the plot, in
accordance with the colorbar seen in panel (B). (B) The color indicates predicted probability of an artifact. Red (1) corresponds to high
probability and blue (0) to low probability.

bad channels will be highlighted in gray. Furthermore, once at
least one bad channel has been marked, the “Hide/show bad
channels” button (Figure 2A) is enabled. This button allows for
bad channels to be hidden from the plot, as explained in Section
“3.3.3 Labeled buttons.”

3.4.2. Automatic bad-channel detection
Automatic bad-channel detection is performed using the

RANSAC method of the PREP pipeline (Bigdely-Shamlo et al.,
2015) implemented in the Autoreject library (Jas et al., 2017),
and can be activated in the “Preprocessing” pop-up window
(Figure 1). When this method is used, the EEG recording
is first cut into 4-s segments, in accordance with the default
in the PREP pipeline. Then, 25% of the total number of
channels are selected. These selected channels are used to
interpolate all other channels. This process is repeated 50
times to generate 50 interpolated time series per channel.
Next, for each channel, the correlation of the median of
these 50 time series with the corresponding, actual channel
is calculated. If this correlation is lower than 75% for more
than 40% of the segments of a channel, the respective channel
is marked as “bad.” Then, it will automatically be selected in
the bad-channel dropdown-menu in the “Preprocessing” pop-
up window (Figure 1) and highlighted in gray in the plot.
The user can then further adjust the automatically selected
channels using the methods outlined above (Section “3.4.1
Manual bad-channel marking”). Note that, for future versions
of RV, we are planning to add more automatic bad-channel
detection methods.

3.5. Deep-learning model predictions

There are two possibilities for visualizing deep-learning
model predictions within RV. The first option is to load
predictions from a file; the second option is to run the integrated
deep-learning model on the currently loaded EEG recording
in RV. Once loaded, predictions can be used to automatically
annotate the data. Note that RV can also be used without the
deep-learning model.

3.5.1. Loading predictions from files
The first option for displaying predictions in RV is for the

user to run the deep-learning model of choice over each EEG
recording individually with their own scripts outside of RV,
saving the predictions (scaled between zero and one) in separate
files, and then loading them in RV for each recording. Note that
there must be one prediction per timepoint in the raw recording.
RV assumes that the loaded predictions have the same sampling
frequency, and hence align with, the loaded raw EEG data (i.e.,
without the downsampling applied). If this was not the case, the
predictions would not be scaled correctly across the time-axis
and RV will display an error message. Note that if the deep-
learning model is integrated into RV and run accordingly (see
following Section “3.5.2 Running the integrated deep-learning
model”), predictions are internally returned along with their
corresponding sampling frequency, allowing for correct scaling
along the time-axis.

Loading prediction files is very similar to loading EEG
data: After generating the model-prediction files, they must
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be placed in the “data” directory. To load these files, the user
can either drag-and-drop them into the “Drag-and-drop or
click here to select model output” area of the “Preprocessing”
pop-up window seen in Figure 1, or click on said area, after
which a file selection window will open and allow the user
to select the file to load (the selected file will still have to be
inside the predefined directories as mentioned in Section “3.1
Loading EEG data”). In contrast to loading an EEG recording,
however, multiple prediction files can be loaded, allowing
the user to compare several models simultaneously. Currently
supported file formats for prediction files are .npy and .txt
(where every row represents the prediction for one timepoint in
the raw recording). Additionally, .csv files containing previously
made annotations can be loaded here. These files must have
columns called “onset,” “duration,” and “description,” where
each row represents one annotation with these respective values.
Annotations made in RV can be saved in this format as
described in Section “3.7 Saving annotated data.” When the
user wants to load an EEG recording other than the one for
which the predictions were loaded, or if the user wants to
remove the predictions from the plot, they can use the “Remove
model predictions” button underneath the dashed file selection
area.

3.5.2. Running the integrated deep-learning
model

Underneath the “Remove model predictions” button in
Figure 1, there is an option to run the integrated deep-learning
model defined in the “run_model.py” file. The model that
is currently included was pre-trained to recognize artifacts
(Diachenko et al., 2022). Notably, the model receives the
raw EEG data as input from RV. This is done to allow for
custom preprocessing of the model’s input, independent of
the preprocessing applied to the viewed data. In the case of
the integrated model by Diachenko et al. (2022), for example,
this is necessary because this model specifically requires time-
frequency plots generated from segments of the time-series
EEG data as input, as mentioned in Section “2.2 Deep-learning
model.” Note that, because the model is sensitive to bad
channels, they should be marked before running the model and
evaluating the predictions.

The code for the integrated deep-learning model can be
found in the “model” directory. If the user wants to implement
their own model, there are a few steps to follow: In RV, the
model predictions are generated in the “run_model” function
within the “run_model.py” file. This function receives as input
the preprocessed EEG data, established in the “Preprocessing”
pop-up window (Figure 1), and the raw EEG data. Depending
on whether the user’s model needs a separate preprocessing
routine, either input can be used. The output of the “run_model”
function has to consist of a one-dimensional array, where
each individual prediction is scaled between zero and one, a
list of channel names that the predictions are based on, if

applicable (otherwise, a list of all channel names or “None”
can be returned), and the sampling rate of the predictions
(if “None,” the predictions’ sampling rate is assumed to be
equal to the sampling rate of the raw EEG data). The latter
is required for RV to correctly match the predictions to the
time-axis. Following these requirements for the output, the user
can simply replace the code in the “run_model” function to
load their own model, preprocess the EEG data passed as input
to the function as desired, and feed the data to their model
to generate the predictions. For more information on how to
implement a custom model, please refer to the docstrings in the
“run_model.py” file or the documentation on GitHub.

3.5.3. Predictions visualization
As mentioned previously, the deep-learning models’

predictions are plotted below the EEG channels (Figure 6A)
and are colored according to a colorbar (Figure 6B), where the
color changes from blue to white to red for predictions ranging
from 0 to 0.5 to 1, respectively. Since the integrated deep-
learning model was trained to recognize artifacts, in this case,
0 (blue) corresponds to a high likelihood of clean data, while 1
(red) indicates a high likelihood for an artifact being present.
When hovering with the mouse over the predictions, RV shows
the time (in seconds) and the corresponding prediction value.
In the legend and on the y-axis, if more than one model output
is loaded, the prediction channels will be named “M0,” “M1,”
etc. If the user loaded previously generated predictions, they
will be displayed in the order of the list shown under “Selected
model output” in the “Preprocessing” window (Figure 1). If the
user ran the integrated model on the data, it will always be the
bottom one.

3.6. Annotations

In RV, annotations can be made manually using the GUI,
or automatically using the integrated (or loaded) deep-learning
model predictions. Annotations are saved in the “annotations”
attribute of the saved MNE Raw data-structure, each with its
own onset-time, duration, and, because we are primarily focused
on artifact annotation for this version of RV, with the description
“bad_artifact.” The user can save annotations made in RV in
a .csv file (see Section “3.7 Saving annotated data” for more
details). Currently, only annotations across all channels are
supported. The user will be able to set the description and color
of the annotation in the GUI in a future version of RV.

3.6.1. Manual annotation
As mentioned in Section “3.3.2 Taskbar,” annotations can

be made only when the button (#5) in the taskbar (Figure 2B–
button 5) is activated, which it is by default upon loading. While
this mode is active, the user can select a segment of the plot
to annotate by clicking and dragging on the plot. Doing so
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creates a semi-transparent red box spanning the entire vertical
axis in view across the selected time interval. Annotations can
be freely adjusted in their position and size when selected: the
selected annotation can be moved with click-and-drag, and
its corners can be dragged in order to adjust its size. If the
user wants to delete the annotation, they first have to select
it and then click the button (#6) in the taskbar (Figure 2B–
button 6) which deletes the currently selected annotation. Note
that, if annotations are overlapping, they will be merged in the
underlying data structure and will be displayed merged once the
plot is redrawn.

3.6.2. Automatic annotation
It is possible to let the integrated deep-learning model

create annotations automatically according to a customizable
threshold specified in the “Preprocessing” pop-up window
(see Section “3.2 Preprocessing and visualization settings” and
Figure 1). When doing so, for every datapoint where the
supplied model outputs a prediction higher than the given
threshold, an annotation will be drawn. These automatic
annotations will be given the same description as the manually
created ones (“bad_artifact”).

3.7. Saving annotated data

As mentioned in Section “3.1 Loading EEG data,” RV always
keeps one temporary working save-file, which is updated with
every annotation made to the data. This file can be loaded in case
RV is accidentally closed before saving. This automatic save-file
is called “temp_raw.fif” and is located in the main RV directory.
To properly save data, the user has to use the “Save to” button
in the menu bar (see Figure 2A), which will open a small pop-
up window giving the option to either save the data with a given
filename and the .fif file-extension, or to overwrite the loaded
file (this is possible only when the loaded file is a .fif file in
the “save_files” directory; files in the “data” directory cannot be
overwritten, as explained in Section “3.1 Loading EEG data”).
RV relies on the saving functionality of MNE, which is why we
currently only support saving to the native MNE .fif format. For
future versions of RV, we will investigate possibilities to export
to other EEG-file formats, e.g., .edf and .set (which can currently
only be loaded into RV). Once files are saved in the “save-files”
directory, they can also be loaded through the same steps as
outlined in Section “3.1 Loading EEG data.” If a save-file already
exists with the same name, it will be saved with an increasing
integer added to the end of the name, unless the user chooses
to overwrite the loaded save-file. When choosing to overwrite
the loaded save-file, an additional confirmation pop-up window
opens.

As mentioned in Section “3.2 Preprocessing and
visualization settings,” the save-file will contain the preprocessed
data after applying bandpass filters and setting of the custom

reference. This is because the bandpass filter settings can
influence the timing of artifacts and we want to avoid that
some artifacts are filtered away during viewing but not
when subsequently performing further analysis. Visualization
settings, such as downsampling, will not be included as these
are exclusively used for plotting.

In addition to saving the entire annotated EEG data, there
are two buttons to separately save the annotations and bad
channels, respectively. The annotations are saved in a .csv
file, where each row represents an annotation and there are
columns for the onset, the duration, and the description of
each annotation (following the same structure MNE uses, as
described in Section “3.6 Annotations”). These annotation save-
files can subsequently be loaded in RV as external deep-learning
predictions (as described in Section “3.5.1 Loading predictions
from files”), allowing to compare annotations made by multiple
deep-learning models or human annotators. However, the
user must ensure to keep the preprocessing options constant
when loading these annotations due to the potential temporal
shifting of artifacts mentioned above. The bad channels are
simply saved in a .txt file as a list of the bad channel names.
Both files are named according to the full EEG-save files
described above, with the addition of “_annotations” and
“_bad_channels,” respectively, right before their respective file
extension (.csv and .txt).

3.8. Integration into EEG toolboxes

Since RV supports many common EEG-file formats for
loading, it can easily be integrated into data-processing pipelines
developed with different EEG toolboxes. Aside from loading
data in RV and running it through the integrated preprocessing
pipeline (Figure 4), the user can preprocess their data in a script
outside of RV before loading it or pass it to the “run_viewer”
function as a MNE Raw data-structure. The latter allows the
user to circumvent the restriction of only loading and saving
data in the “data” and “save_files” directories, respectively (for
more details on the “run_viewer” function, please refer to
the documentation on GitHub). Then, because preprocessing
has been done externally, all the preprocessing steps (except
the visualization settings) within RV can be skipped (by not
changing the preprocessing parameters), and the data can be
visualized and annotated immediately. After annotating the
data, the user can use the files saved with RV with their
custom pipeline afterward. Importantly, the ability to save
the annotations in a separate .csv file also allows for RV to
be integrated into MATLAB-based pipelines, even though the
entire annotated EEG data can only be saved in .fif files at the
moment (see Section “3.7 Saving annotated data”): The data
could be preprocessed and saved in a .set file in MATLAB, loaded
and annotated in RV, and finally the saved annotations can be
loaded back into MATLAB.
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4. Discussion

We developed an open-source EEG viewer that facilitates
EEG annotation with the optional support of deep-
learning model predictions. RV offers common EEG viewer
functionalities with an emphasis on tools surrounding artifact
annotation. The integration of deep-learning model predictions
into RV facilitates an efficient decision-support system that
can be used in research and clinical settings. An important
advantage of RV is that it can be easily integrated into pipelines
developed with other EEG toolboxes. Moreover, because RV
is programmed in Python, and it gets served in the user’s web
browser, RV can be run on any operating system.

The main limitation of RV lies in its performance if
neither downsampling nor segmentation is used, as plotting the
entire signal can burden memory significantly and result in a
long initial loading time and slow-responding GUI. Therefore,
for EEG recordings with a high number of channels, or for
long EEG recordings, segmenting and downsampling the data
(resulting in smaller amounts of data being loaded into memory
and plotted at one given time) become indispensable. However,
the user can use these settings to adjust the trade-off between
RV’s computational cost and the amount of data loaded at
one time, which allows RV to be run on a wide range of
hardware. Another limitation is that the current version of RV
was developed for binary classification (artifact or clean data)
and hence does not yet support annotations with customizable
labels and colors. Similarly, RV cannot handle multi-class deep-
learning predictions yet. However, this will be revised in a
future version of RV.

This paper marks the beginning of Robin’s Viewer (Version
1.1). Many additional features and improvements are currently
in development for future versions. The main working points
are the option to add labels to annotations to support
multi-class deep-learning predictions and annotations (e.g.,
for sleep staging), the possibility to save annotated EEG
data in a MATLAB-readable format to better facilitate the
integration of RV into MATLAB-based EEG toolboxes, as well
as functionality to interact with the RV-GUI using keyboard
keys and combinations of keys. Once the implemented deep-
learning model is accurate enough, we will also consider adding
an option where the user is presented only with segments for
which the model’s confidence stays within a certain interval,
e.g., predictions between 0.3 and 0.7. This would speed up the
annotation process further. Additionally, we want to further
reduce the computational cost of RV and improve its speed. In
this regard, we are investigating a more sophisticated preloading
technique where the data outside of the currently plotted
timeframe is loaded on the fly as the user is using the view-slider
to scroll through the recording.

Finally, we invite other Python programmers, deep-learning
researchers, EEG researchers and clinicians alike to collaborate
and build on RV, according to their requirements, or to make

feature requests on GitHub at https://github.com/RobinWeiler/
RV.git.
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