AUTHOR=Liang Shuai , Beaton Derek , Arnott Stephen R. , Gee Tom , Zamyadi Mojdeh , Bartha Robert , Symons Sean , MacQueen Glenda M. , Hassel Stefanie , Lerch Jason P. , Anagnostou Evdokia , Lam Raymond W. , Frey Benicio N. , Milev Roumen , Müller Daniel J. , Kennedy Sidney H. , Scott Christopher J. M. , The ONDRI Investigators , Strother Stephen C. , Troyer Angela , Lang Anthony E. , Greenberg Barry , Hudson Chris , Corbett Dale , Grimes David A. , Munoz David G. , Munoz Douglas P. , Finger Elizabeth , Orange J. B. , Zinman Lorne , Montero-Odasso Manuel , Tartaglia Maria Carmela , Masellis Mario , Borrie Michael , Strong Michael J. , Freedman Morris , McLaughlin Paula M. , Swartz Richard H. , Hegele Robert A. , Bartha Robert , Black Sandra E. , Symons Sean , Strother Stephen C. , McIlroy William E. TITLE=Magnetic Resonance Imaging Sequence Identification Using a Metadata Learning Approach JOURNAL=Frontiers in Neuroinformatics VOLUME=15 YEAR=2021 URL=https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2021.622951 DOI=10.3389/fninf.2021.622951 ISSN=1662-5196 ABSTRACT=
Despite the wide application of the magnetic resonance imaging (MRI) technique, there are no widely used standards on naming and describing MRI sequences. The absence of consistent naming conventions presents a major challenge in automating image processing since most MRI software require