
ORIGINAL RESEARCH
published: 19 August 2021

doi: 10.3389/fninf.2021.605729

Frontiers in Neuroinformatics | www.frontiersin.org 1 August 2021 | Volume 15 | Article 605729

Edited by:

Giuseppe Luigi Banna,

United Lincolnshire Hospitals NHS

Trust, United Kingdom

Reviewed by:

Xizi Song,

Tianjin University, China

Dong Wen,

Yanshan University, China

Fangzhou Xu,

Qilu University of Technology, China

*Correspondence:

Yuanjie Zheng

zhengyuanjie@gmail.com

Sutao Song

sutao.song@sdnu.edu.cn

Received: 13 September 2020

Accepted: 26 July 2021

Published: 19 August 2021

Citation:

Chen X, Zheng Y, Dong C and Song S

(2021) Multi-Dimensional Enhanced

Seizure Prediction Framework Based

on Graph Convolutional Network.

Front. Neuroinform. 15:605729.

doi: 10.3389/fninf.2021.605729

Multi-Dimensional Enhanced Seizure
Prediction Framework Based on
Graph Convolutional Network
Xin Chen 1,2, Yuanjie Zheng 1,3,4,5*, Changxu Dong 1 and Sutao Song 1,3,4,5*

1 School of Information Science and Engineering at Shandong Normal University, Jinan, China, 2 School of Computer Science

and Engineering at Southeast University, Nanjing, China, 3 Key Lab of Intelligent Computing and Information Security in

Universities of Shandong, Shandong Normal University, Jinan, China, 4 Shandong Provincial Key Laboratory for Novel

Distributed Computer Software Technology, Shandong Normal University, Jinan, China, 5 Institute of Biomedical Sciences,

Shandong Normal University, Jinan, China

In terms of seizure prediction, how to fully mine relational data information among

multiple channels of epileptic EEG? This is a scientific research subject worthy

of further exploration. Recently, we propose a multi-dimensional enhanced seizure

prediction framework, which mainly includes information reconstruction space, graph

state encoder, and space-time predictor. It takes multi-channel spatial relationship as

breakthrough point. At the same time, it reconstructs data unit from frequency band level,

updates graph coding representation, and explores space-time relationship. Through

experiments on CHB-MIT dataset, sensitivity of the model reaches 98.61%, which proves

effectiveness of the proposed model.

Keywords: epilepsy EEG signal, seizures prediction, multichannel relationship, graph convolutional network,

space-time prediction

1. INTRODUCTION

Epilepsy is a chronic disease caused by brain dysfunction, which is characterized by sudden and
transient (Jia et al., 2004). In the study of seizure symptoms, EEG plays an important role. It is an
important auxiliary technology for epilepsy diagnosis (Yuan et al., 2012). In traditional diagnosis
of epilepsy symptoms, EEG data is often analyzed by experienced doctors. This process takes the
doctors too much time and energy. Besides, doctors often work for long time, their judgments are
also likely to be negatively affected by their body fatigue. To solve the problem, automatic detection
technology of epilepsy EEG is born.

At present, there are abundant researches of automatic detection based on epilepsy EEG.
However, only a few literatures have focused on the analysis of seizure prediction. In real life, it
is meaningful to predict seizures. For patients, uncertainty of seizures may cause unpredictable
accidents, which may seriously affect life and work (Holmes, 1984; Ahmed, 2005). The effective
prediction of seizure can help patients to solve the problems in time, thus reducing the loss of
patients to a minimum. In addition, for doctors and researchers, the effective prediction of seizures
not only helps them to explore the basic mechanisms of epileptic seizures, but also provides
important support for building accurate and stable epilepsy auxiliary diagnostic tools. In this paper,
we will focus on seizure prediction.

The process of seizure prediction generally consists of EEG signal acquisition, data
preprocessing, feature extraction, and classification. In particular, mining rich and effective features
from native EEG data is essential to improve classification accuracy. According to variation of the
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domains that EEG features are extracted from, features may
come from time domain, frequency domain, and the time-
frequency domain.

In time domain, Tessy et al. (2016) focused on extracting two
time-domain features of line length and energy to obtain high
classification results on k-nearest neighbors (KNN) classifier.
The algorithm proposed by Shanir et al. (2015) was based on
average and minimum of each segment. In addition, the team
of Zhang et al. (2018) divided EEG into several clusters and
extracted a set of time-domain features from each cluster. Each
group of features was regarded as a node of complex network.
Then, average weighted degree was calculated from network as
classification feature.

In frequency-domain, through experiments on Freiburg and
CHB-MIT databases, Zhou et al. (2018) proved that classification
accuracy of frequency-domain signals is significantly better than
that of time-domain signals. Al Ghayab et al. (2019) extracted
statistical features from sub windows by Fourier transform, and
sorted features by using information gain technique to select the
most appropriate ones.

In time-frequency-domain, more and more researches
focused on extracting EEG features from time-frequency
distribution (TFDs). Guerrero-Mosquera et al. (2010) extracted
length, frequency, and energy from the smoothed Wigner-
Ville distribution (SWVD) by using trajectory estimated from
McAulay-Quatieri sinusoidal model. A new method (Wavelet-
Chaos) of wavelet transformation was proposed by analyzing
δ, θ , α, and β subbands of EEG, they found that significant
differences could be captured by combining subband information
(Adeli et al., 2007). Sharma et al. (2014) used cubical threshold
denoising methods based on wavelet to analyze EEG signals
before extracting statistical features from frequency bands (0 ∼

8, 8 ∼ 16, 16 ∼ 32, and 0 ∼ 32 Hz). In addition, local binary
pattern (LBP) was extended to analysis of EEG signals, because
of its outstanding advantages such as rotation invariance and
gray invariance. For example, Shanir et al. (2018) proposed a
morphological feature extractionmethod based on LBP operator.

Considering comprehensively above these points, we propose
multi-dimensional enhanced seizure prediction framework based
on graph convolutional network (MESPF). The contributions of
this research are as follows:

• It is very importance to improve accuracy of seizure
prediction. To provide the prediction model with
more powerful and abundant data, we enhance overall
consideration of dimensions about epilepsy EEG signals.
In particular, we take multichannel spatial relationship
as breakthrough point, update representation of graph
relational data at frequency band level, and explore the
space-time relationships.

• We propose a multi-dimensional enhanced seizure
prediction framework, which mainly includes information
reconstruction space, graph state encoder, and space-time
predictor. We combine technical advantages of wavelet packet
decomposition, graph convolutional network and gated
recurrent neural network in construction of the framework.
From aspects of frequency, channel, and time, we intend

to mine richer and more effective data information than
previous studies.

• Finally, we apply the framework to data set (CHB-MIT)
for verification. In terms of experimental results, it has
surpassed or approached many existing algorithms. In short,
our framework provides a novel way for peers to study
principle of seizure prediction.

The organizational structure of our article is as follows, the
second section introduces prediction principle of the framework
(MESPF), the third section briefly describes experimental results
and analysis, and the fourth section is summary.

2. METHODOLOGIES

For seizure prediction, we propose a multi-dimensional
enhanced seizure prediction framework (MESPF). It mainly
includes information reconstruction space, graph state encoder,
and space-time predictor. The main process of the model
is shown in Figure 1. The following contents give specific
explanations in turn.

2.1. Information Reconstruction Space
Patients vary in physiological mechanisms, and their pre-ictal
signals may occur in different frequency band range. To capture
these subtle difference, we designs an information reconstruction
space. It is mainly used to highlight specificity and explore the
effect of feature enhancement on graph encoding.

Since epileptic EEG signals are random, non-stationary and
non-linear, we actively introduce wavelet packet decomposition
(WPD) in information reconstruction space to decompose EEG
signals. It should be emphasized that since range of wavelet
transform is mainly low frequency part of signals, it is difficult
to characterize a large amount of detailed information. However,
wavelet packet decomposition can orthogonally decompose
signal in full frequency range, and resolution of high frequency
part is better than the former. It is a more precise analysis method
than wavelet transform. So that it has gradually become one of
main methods for analyzing non-stationary signals (Hyvarinen
et al., 2001). Through wavelet packet decomposition, we can
analyze EEG signals from multiple frequency bands.

The principle of information reconstruction space in MESPF
is shown in Figure 2. By decomposing epileptic EEG signals
and calculating characteristics of energy value, it can update
representation of graph data. First of all, C1 − Cn represents
18 channels. In the third step, data of each channel is
processed by wavelet packet decomposition technique. Then
we calculate energy values of corresponding sub-bands and
reconstruct vectors characterized by energy values (step 4–
5). After completion of channel data reconstruction, we use
Pearson correlation coefficient calculation method to calculate
correlation between multiple channels (step 6). We update graph
relationship representation as one of direct inputs to graph
encoder (equivalent to edges of graph). Finally, related relational
data and each channel data itself (equivalent to vertex data of
graph) are used as input to graph encoder, as shown in step 7.
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FIGURE 1 | Our model mainly includes information reconstruction space, graph state encoder, and space-time predictor.

Specifically, decomposition principle of information
reconstruction space is shown in Figure 3. For a signal,
wavelet coefficients (A and D) are obtained by wavelet packet
decomposition of the first layer. A represents low frequency part
of signal, and D represents high frequency part. Each node in
graph represents a data sequence. Then, energy values of each
sub-band are calculated, respectively. In the experiment, four-
layer wavelet packet decomposition is adopted to obtain wavelet
coefficients of 16 frequency bands. In this way, each signal unit
can be represented by energy values. It should be noted that since
epilepsy EEG signal is continuous waveform, our experiment
uses a relatively smooth Daubechies (Db) wavelet base.

2.2. Graph State Encoder
After signal unit is processed by information reconstruction
space, the graph data are given into graph encoder for further
feature processing.

Seizure is a synergistic result of multiple brain regions.
For EEG, each channel records activities of different brain
regions, and there must be a certain relationship between
channels. Therefore, we build a graph state encoder to
explore relationship by extracting spatial features between
multiple channels. The specific structure and parameters

about graph encoder are shown in Figure 4, which mainly
includes input layer, graph convolution layer-1, graph
convolution layer-2, fully connected layer, and graph status
code layer. The activation layer in network uses Rectified
Linear Unit (ReLU), which can speed up convergence speed.
In general, after extracting features of graph space through
graph convolution layer, relevant data are weighted by fully
connected layer. Then, graph status code is generated. As
for status code, it is composed of 18 eigenvalues, which,
respectively, represent 18 channels of graph data. Each status
code represents data characteristics of corresponding time
period. Finally, we feed status codes into space-time predictor in
chronological order.

As for graph state encoder, we refer to method proposed
by Kipf and Welling (2016) and build sub-module based on
graph convolutional network. In particular, we need to emphasize
application of filter. Firstly, we define convolution operation on
graph as:

Conv = XMESPF ∗ Ke (1)

XMESPF represents direct input (signal) of graph state encoder, Ke

represents convolution kernel. Furthermore, in previous studies,
Defferrard et al. (2016) introduced Chebyshev polynomials,
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FIGURE 2 | The figure shows concrete principle of information reconstruction space.

FIGURE 3 | EEG signals are divided into several sub-bands by wavelet packet decomposition.

and they provided an algorithm for constructing fast local
filters in spectral domain, which can learn local, static and
combined features on graph. Subsequently, Kipf and Welling
(2016) optimized convolutional network structure through the
first-order local approximation of spectrogram convolution.

In process of graph convolution, due to existence of graph
Fourier transform, computational complexity of model is
relatively high. Chebyshev polynomials have numerical stability
and computational efficiency in field of polynomial function
approximation. Therefore, we actively introduce Chebyshev
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FIGURE 4 | Graph state encoder mainly includes input layer, graph convolution layer, and fully connected layer.

FIGURE 5 | The core part of space-time predictor is gate recurrent unit.

polynomials into the model. The relevant formula is as follows:

Tk(XMESPF) = 2XMESPFTk−1(XMESPF)− Tk−2(XMESPF) (2)

Ke(3) ≈
∑N

n=0 θnTn(3̃) (3)

θ represents vector of Chebyshev coefficients, 3̃ =
2

λmax
3− I, 3

represents diagonal matrix of eigenvalues, λmax represents
maximum eigenvalue of regularized feature matrix, I

represents identity matrix, convolution on graph is finally
expressed as:

OMESPF = XMESPF ∗ Ke ≈
∑N

n=0 θnTn(3̃)XMESPF (4)

OMESPF represents the output of graph convolution layer. Then
OMESPF is processed through ReLU activation function, this is
shown in Formula 5.
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FIGURE 6 | According to actual seizure process, EEG is divided into different stages.

O∗

MESPF = ReLU(OMESPF) = max(0,OMESPF) (5)

Finally, through fully connected layer, we synthesize several
graph space features to generate status code SMESPF .

SMESPF = FC(O∗

MESPF)18 (6)

2.3. Space-Time Predictor
In themodel, space-time predictor is constructed. After exploring
multi-channel spatial relationship, we further explore change rule
at time series level.

The internal structure of space-time predictor is shown in
Figure 5. SMESPF_t−1 and SMESPF_t , respectively, represent graph
status codes at time t − 1 and time t. Specifically, as complexity
of neural network architecture increases or training time of
experimental data becomes longer, phenomenon of gradient
disappearance or explosion is easy to occur. It is difficult to
master law of EEG timing signal. The emergence of gate recurrent
network solves related problems well. So, it is mainly built on
the basis of gate recurrent unit. And direct input of space-
time predictor is output of graph state encoder. It should
be emphasized that relevant input data should be entered in
chronological order. By mining implicit relationship in terms
of timing, prediction results are finally output by multilayer
perceptron (MLP).

Focus on gated recurrent unit, Cho et al. (2014) integrate
forget gate and input gate into an update gate. Specifically, GRU
includes update gate and reset gate. The former controls extent
to which state information at previous moment is brought into
the current state. And the latter controls extent to which state
information at previous moment is ignored. The GRU structure
is shown in lower right corner of Figure 6. Then, we combine
diagram and formulas to further explain.

The calculations for reset gate (Rt) is shown in Formula (5).
Both Wr and Ur are weight matrices. And σ represents sigmoid
function, which can map results between 0 and 1. The calculation
principle of update gate (Nt) is similar to that of reset gate.

Rt = σ (WrSMESPF_t + UrCt−1) (7)

Nt = σ (WzSMESPF_t + UzCt−1) (8)

The calculation of candidate hidden layer (C̃t) is as follows. Tanh
represents tanh function, and its mapping range is−1 to +1.

C̃t = tanh(WSMESPF_t + RtUCt−1) (9)

The final output hidden layer information (Ct) calculation
formula is as follows:

Ct = (1− Nt) ∗ Ct−1 + Nt ∗ C̃t (10)

3. RESULTS ANALYSIS

3.1. Data Set Description
In order to prove effectiveness of the framework, we further apply
it to CHB-MIT data set. The download link for complete database
is https://physionet.org/content/chbmit/1.0.0/. It consist of 23
data samples from 22 subjects(5 males, ages 3–22; and 17 females,
ages 1.5–19). All samples are stored in EDF format. And all
signals are sampled at 256 samples per second. It should be
noted that this is a verification experiment of validity. In order
to achieve effective prediction of seizures, we uses the framework
to classify pre-ictal and inter-ictal.

In previous studies, Litt et al. (2001) have demonstrated
that seizure-like EEG signals become more frequent at 2 h
before actual seizure. They propose that accumulated energy will
increase within 50 min before initial state. And Affes et al. (2019)
propose that pre-seizure phase is 1 h before seizure. Based on
researches mentioned above, we defines pre-ictal period as data
between 1 h and 5 min before seizure. And the definition of
inter-ictal is shown in Figure 6.

It should be noted that in the process of data collection, data
of inter-ictal period is much more than data of pre-ictal period.
To make the number of samples in these two periods equal,
an overlapped window is applied in pre-ictal period for data
segmentation, and the window overlap rate is set as 50%.
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3.2. Experimental Indicators
The evaluation indicators of our model include Accuracy,
Sensitivity, Specificity, False Positive Rate, and F1-Score. The
calculation formulas for these indicators are as follows:

Accuracy = TP+TN
TP+TN+FP+FN × 100 (11)

Specificity = TN
TN+FP × 100 (12)

Sensitivity = TP
TP+FN × 100 (13)

False Positive Rate = FP
FP+TN × 100 (14)

Positive Predictive Value (PPV) = TP
TP+FP × 100 (15)

Negative Predictive Value (NPV) = TN
TN+FN × 100 (16)

F1− Score = 2TP
2TP+FP+FN (17)

TP indicates that it is actually a positive example and the
predicted result is a positive example. FP is actually a negative
example, and the predicted result is a positive example. TN
indicates that it is actually a negative example, and predicted
result is a negative example. FN indicates that it is actually a
positive example, and predicted result is a negative example.

3.3. Experimental Environment
Configuration
As for experimental environment, information reconstruction
space of MESPF model is completed on the Windows10 system
with Intel(R) Core(TM) I7-6500U CPU @ 2.50GHz 2.59GHz.
Construction of graph encoder and space-time predictor is
completed on the Ubuntu system. Relevant model is built based
on TensorFlow framework with Python. Adam optimizer is also
used in related experiments, and initial learning rate is set at 0.01.

In addition, the loss function of the model includes cross
entropy term and L2 regularization term, as shown in Formula
(18). H(pMESPF_O,qMESPF_R) represents the loss function of
MESPFmodel for seizure prediction. pMESPF_O represents related
predicted value of space-time predictor. qMESPF_R represents true
label for each data unit.

H(pMESPF_O,qMESPF_R) =

∑

x

PMESPF_O(x) · log(
1

qMESPF_R(x)
)

+
λ

2

∑
w2 (18)

FIGURE 7 | Time-domain image of signal in pre-ictal is shown in figure.

FIGURE 8 | Time-domain image of signal in pre-ictal is shown in figure.

3.4. Analysis of Experimental Results
To further explain principle of information reconstruction
space, we set up a control group to visualize the process of
reconstruction. One group is pre-ictal samples, and the other
group is inter-ictal samples. Figures 7, 8 show time domain
information. It can be seen that there are more high frequency
signals before seizure. These are extremely important features
for predicting seizure in advance. Figures 9, 10 are images after
transforming from time domain to frequency domain. It can also
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FIGURE 9 | Frequency-domain image of signal in inter-ictal is shown in figure.

FIGURE 10 | Frequency-domain image of signal in inter-ictal is shown in figure.

be seen from the former that times of high frequency increases
significantly in pre-ictal period.

Subsequently, in order to mine the law of different frequency
band in signals, we use WPD to decompose signals. Through
WPD, we extract wavelet packet coefficients of nodes. Then
energy of wavelet packet coefficients is used as eigenvalue to
construct eigenvector. Figures 11, 12 show energy values of the
fourth layer after four-layer WPD.

FIGURE 11 | Energy percentage of each frequency band (pre-ictal) in the

fourth layer of WPD is shown in figure.

FIGURE 12 | Energy percentage of each frequency band (inter-ictal) in the

fourth layer of WPD is shown in figure.

In our experiment, each epileptic patient is assigned a
unique ID number, from case 1 to case 24. The comprehensive
index analysis for each patient is shown in Table 1. These
indicators include specificity, sensitivity, PPV, NPV, FPR, and
accuracy. More than half of the experiments achieve sensitivity
of 100%. The average level of false positive rate is only 0.0106.
Experimental data shows that the lower false positive rate, the
better model’s performance. For details of other experimental
indicators, please refer to Table 1.

As a comprehensive index, F1-Score balances effects of
precision and recall, and can systematically evaluate a classifier.
The value of F1-Score ranges from 0 to 100%, and the larger
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TABLE 1 | Specific indicators of samples are shown in the table.

ID Specificity Sensitivity PPV NPV FPR Accuracy

1 98.85 100.00 98.87 100.00 0.0115 99.43

2 100.00 100.00 100.00 100.00 0.0000 100.00

3 99.67 100.00 99.67 100.00 0.0033 99.84

4 97.82 97.85 97.81 97.85 0.0219 97.83

5 100.00 100.00 100.00 100.00 0.0000 100.00

6 92.85 95.38 93.02 95.26 0.0715 94.11

7 98.65 100.00 98.66 100.00 0.0135 99.32

8 100.00 99.34 100.00 99.34 0.0000 99.67

9 100.00 100.00 100.00 100.00 0.0000 100.00

10 100.00 100.00 100.00 100.00 0.0000 100.00

11 99.24 94.56 99.20 94.80 0.0076 96.90

12 98.46 94.50 98.39 94.71 0.0155 96.48

13 96.98 96.24 96.96 96.27 0.0302 96.61

14 99.02 100.00 99.04 100.00 0.0097 99.51

15 98.63 97.05 98.61 97.10 0.0137 97.84

16 97.76 100.00 97.81 100.00 0.0224 98.88

17 99.12 100.00 99.12 100.00 0.0089 99.56

18 99.42 97.04 99.41 97.11 0.0057 98.23

19 100.00 100.00 100.00 100.00 0.0000 100.00

20 100.00 97.18 100.00 97.26 0.0000 98.59

21 100.00 100.00 100.00 100.00 0.0000 100.00

22 100.00 100.00 100.00 100.00 0.0000 100.00

23 98.37 98.31 98.37 98.31 0.0163 98.34

24 99.85 99.26 99.84 99.26 0.0016 99.55

Average 98.95 98.61 98.95 98.64 0.0106 98.78

FIGURE 13 | In order to balance influences of precision and recall, we have added F1-Score indicator.
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TABLE 2 | In classification tasks of pre-ictal and inter-ictal, the framework is compared with other advanced methods.

References Years Method Specificity Sensitivity Accuracy

Khan et al. (2012) 2012 LDA 100.00 83.00 91.80

Kiranyaz et al. (2014) 2014 Automated patient-specific 94.71 89.00 -

Pramod et al. (2014) 2015 NN 99.29 98.06 -

Alotaiby et al. (2015) 2015 CSP 98.61 86.84 92.72

Yuan et al. (2018) 2018 Multi-view DL - - 94.37

Solaija et al. (2018) 2018 Dynamic mode decomposition 98.93 87.00 -

Dash et al. (2020) 2019 IFD and HMM 99.85 96.78 99.60

Our method 2020 MESPF 98.95 98.61 98.78

the F1 value, the better the model performance. The result of
F1-Score is shown in Figure 13. The average level of 24 cases is
0.9877. The best F1-Score value reach 100% for patients with ID
2, 3, and 5. And the lowest F1-score is 0.9419 for patient with
ID 6.

Finally, we compare the performance of the proposed model
with some existing algorithms, from traditional ones to that
based on deep learning. The results are shown in Table 2. In
terms of our method, we have analyzed epileptic EEG signals
from multiple dimensions, including energy characteristics
of frequency bands, spatial characteristics of channels, and
timing characteristics of signals. In the process, we make full
use of advantages of wavelet packet decomposition, graph
convolutional network and gate recurrent unit network in their
professional fields.

As we all know, sensitivity is the proportion of people who
are actually sick that are correctly judged as true positives. It is a
meaningful indicator in medical clinical diagnosis. Table 2 shows
an excellent performance of our model in sensitivity (98.61%).
Besides, the accuracy is also consistent with the high level of other
algorithms, and the specificity also reaches the average level of the
other algorithms.

4. CONCLUSIONS

In conclusion, we propose the MESPF framework to explore
the law of epilepsy EEG signals. From frequency, channel and
time, we, respectively, build information reconstruction space
based on wavelet packet decomposition, graph state encoder
based on graph convolution network, and space-time predictor
based on gated recurrent unit. We make full use of advantages
of different methods to build an efficient seizure prediction
framework (MESPF). MESPF has achieved better results in
classification of pre-ictal and inter-ictal than existing methods.

This integrated method of multidimensional and multi-method
epileptic EEG provides a more novel idea for peers to study
biomedical signals.

As far as the research is concerned, we take frequency, space
(channel), and time into consideration. However, there is still
a lot of work to be done. In our next step, we will consider
more features, such as multiple spikes, approximate entropy,
information entropy, fuzzy entropy, etc. Finally, we hope to build
a more accurate and stable intelligent framework for seizure
prediction by continuously mining surface meaning and internal
correlation of epileptic EEG.
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