AUTHOR=Fernandez-Musoles Carlos , Coca Daniel , Richmond Paul TITLE=Communication Sparsity in Distributed Spiking Neural Network Simulations to Improve Scalability JOURNAL=Frontiers in Neuroinformatics VOLUME=13 YEAR=2019 URL=https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2019.00019 DOI=10.3389/fninf.2019.00019 ISSN=1662-5196 ABSTRACT=
In the last decade there has been a surge in the number of big science projects interested in achieving a comprehensive understanding of the functions of the brain, using Spiking Neuronal Network (SNN) simulations to aid discovery and experimentation. Such an approach increases the computational demands on SNN simulators: if natural scale brain-size simulations are to be realized, it is necessary to use parallel and distributed models of computing. Communication is recognized as the dominant part of distributed SNN simulations. As the number of computational nodes increases, the proportion of time the simulation spends in useful computing (computational efficiency) is reduced and therefore applies a limit to scalability. This work targets the three phases of communication to improve overall computational efficiency in distributed simulations: implicit synchronization, process handshake and data exchange. We introduce a connectivity-aware allocation of neurons to compute nodes by modeling the SNN as a