AUTHOR=Jayapandian Catherine , Wei Annan , Ramesh Priya , Zonjy Bilal , Lhatoo Samden D. , Loparo Kenneth , Zhang Guo-Qiang , Sahoo Satya S. TITLE=A scalable neuroinformatics data flow for electrophysiological signals using MapReduce JOURNAL=Frontiers in Neuroinformatics VOLUME=9 YEAR=2015 URL=https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2015.00004 DOI=10.3389/fninf.2015.00004 ISSN=1662-5196 ABSTRACT=

Data-driven neuroscience research is providing new insights in progression of neurological disorders and supporting the development of improved treatment approaches. However, the volume, velocity, and variety of neuroscience data generated from sophisticated recording instruments and acquisition methods have exacerbated the limited scalability of existing neuroinformatics tools. This makes it difficult for neuroscience researchers to effectively leverage the growing multi-modal neuroscience data to advance research in serious neurological disorders, such as epilepsy. We describe the development of the Cloudwave data flow that uses new data partitioning techniques to store and analyze electrophysiological signal in distributed computing infrastructure. The Cloudwave data flow uses MapReduce parallel programming algorithm to implement an integrated signal data processing pipeline that scales with large volume of data generated at high velocity. Using an epilepsy domain ontology together with an epilepsy focused extensible data representation format called Cloudwave Signal Format (CSF), the data flow addresses the challenge of data heterogeneity and is interoperable with existing neuroinformatics data representation formats, such as HDF5. The scalability of the Cloudwave data flow is evaluated using a 30-node cluster installed with the open source Hadoop software stack. The results demonstrate that the Cloudwave data flow can process increasing volume of signal data by leveraging Hadoop Data Nodes to reduce the total data processing time. The Cloudwave data flow is a template for developing highly scalable neuroscience data processing pipelines using MapReduce algorithms to support a variety of user applications.