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Human adolescence marks a crucial phase of extensive brain development,

highly susceptible to environmental influences. Employing brain age estimation

to assess individual brain aging, we categorized individuals (N = 7,435, aged 9–

10 years old) from the Adolescent Brain and Cognitive Development (ABCD)

cohort into groups exhibiting either accelerated or delayed brain maturation,

where the accelerated group also displayed increased cognitive performance

compared to their delayed counterparts. A 4-waymulti-set canonical correlation

analysis integrating three modalities of brain metrics (gray matter density,

brain morphological measures, and functional network connectivity) with

nine environmental factors unveiled a significant 4-way canonical correlation

between linked patterns of neural features, air pollution, area crime, and

population density. Correlations among the three brain modalities were notably

strong (ranging from 0.65 to 0.77), linking reduced gray matter density in

the middle temporal gyrus and precuneus to decreased volumes in the left

medial orbitofrontal cortex paired with increased cortical thickness in the right

supramarginal and bilateral occipital regions, as well as increased functional

connectivity in occipital sub-regions. These specific brain characteristics were

significantly more pronounced in the accelerated brain aging group compared

to the delayed group. Additionally, these brain regions exhibited significant

associations with air pollution, area crime, and population density, where lower

air pollution and higher area crime and population density were correlated to

brain variations more prominently in the accelerated brain aging group.
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1 Introduction

During adolescence, the brain experiences rapid development, second only to infancy

(Arain et al., 2013). Studies of brain structure using MRI have shown that gray

matter exhibits a pre-adolescence increase, followed by a steady decrease into adulthood

(Blakemore and Choudhury, 2006). In contrast, white matter density increases roughly

linearly until young adulthood (Paus et al., 1999). This general pattern varies across brain

regions in terms of rate and time (Giedd et al., 1999; Sowell et al., 2001; Gogtay et al.,

2004), and is accompanied by synaptic pruning (Huttenlocher and Dabholkar, 1997), and

prolonged increases in myelination (Miller et al., 2012). Functional brain imaging studies
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also demonstrated that brain responses to stimuli such as sensory

inputs, affection, rewards, or demands, change during adolescence

(Casey et al., 2005; Laruelle et al., 2002; Kwon et al., 2002; Rubia

et al., 2000). Such multidimensional changes in the brain also

provide the biological foundation for the maturation of adolescent

cognitive ability, which is why cognitive performance is often

thought to reflect brain maturation (Dosenbach et al., 2010).

This period of rapid brain maturation has been shown

to also be a period of vulnerability to environmental factors

(Green et al., 2010). The complex relationship between the brain,

behavior, and environmental factors has been well-established

(Modabbernia et al., 2021; Xu et al., 2023). Much of the latest

research has used the Adolescent Brain andCognitive Development

Study (ABCD) to investigate the effects of environment on

brain development. Consistently, researchers using this large

adolescent cohort (N = 11 k), have found that environmental

measures such as neighborhood disadvantage, school environment,

and socioeconomic disadvantage are associated with increased

functional connectivity (Rakesh et al., 2021, 2023) and reductions in

global cortical thickness (Rakesh et al., 2022; Hackman et al., 2021;

Taylor et al., 2020). A longitudinal study of the same cohort, looking

at these relationships at baseline and year two, found similar

associations between changes in brain connectivity and negative

environmental factors, suggesting that accelerated maturation of

the brain may be an adaptive response to adversity (Brieant et al.,

2021).

Beyond the ABCD cohort, other studies have established

the relationship between multiple environmental factors, on a

variety of scales, with brain maturation, health, and cognitive

development. The factors include air pollution (Cipriani et al.,

2018), urbanization (Lederbogen et al., 2013; Sampson et al.,

2020), negative and unstable family relationships (Bush et al.,

2020), and stressful life events (Gapp et al., 2014; Herzberg and

Gunnar, 2020). Specifically, on a macro scale, higher air pollution

has been associated with a thinner cortex in the precuneus and

rostral middle frontal regions, with partially mediating effects

on impaired inhibitory control (Guxens et al., 2018), as well as

lower functional integration and segregation in key brain networks

in school-age children (Pujol et al., 2016). Population density,

closely related to urbanicity, has been consistently associated with

affective symptoms, including elevated depression (Sampson et al.,

2020). Urbanicity is positively correlated with cerebellar volume

and negatively correlated with medial prefrontal cortex volume in

young people (Xu et al., 2022). Recent research shows that people

living in areas with higher ratios of green space exhibit stronger

parietal and insular activation during stress, whereas exposure to

more air pollution leads to weaker activation in the same brain

areas (Dimitrov-Discher et al., 2022). Meso-scale environmental

factors like deprived neighborhoods, often characterized by area

deprivation, area crime rates, or limited access to school education,

are known to have negative effects on young people. These include

increased chronic stress (Jorgensen et al., 2023), increased risk

of childhood mental health problems, (Baranyi et al., 2021; Sui

et al., 2022; Alderton et al., 2019), anxiety, depression (Barnett

et al., 2018; Thapaliya et al., 2024), and increased suicidal

tendencies (Cairns et al., 2017). Moreover, previous studies on

micro-scale environmental factors have established strong links,

such as smaller gray matter volume in focal regions resulting

from socioeconomic status deprivation (Jeong et al., 2023) and

neighborhood disadvantage being associated with lower cortical

thickness in brain regions like the cuneus and lateral occipital

cortex (Rakesh et al., 2022). A good school environment was

also associated with decreased connectivity between the cingulo-

opercular network and the default mode network (Rakesh et al.,

2023). At the same time, various types of early life adversity

were linked to noticeable effects on the brain, including extended

activation of prefrontal–hippocampal–amygdala circuits (Smith

and Pollak, 2020; Herzberg and Gunnar, 2020).

Despite the depth of our understanding regarding these

relationships between environmental factors and specific brain

regional alterations, there has been very little research on how they

might be related to brain maturation in a holistic way. To estimate

the relative brain maturation, neuronal features derived from MRI

have been used to create an objective, biological measure, referred

to as brain age estimation (Franke and Gaser, 2019; Franke et al.,

2010). The gap between estimated brain age and chronological

age, referred to as delta age, is commonly used to indicate an

individual’s brain aging process. Both accelerated and delayed brain

aging have been associated with various symptoms of mental illness

as well as health conditions (Baecker et al., 2021; Ramduny et al.,

2022; Dunlop et al., 2021; Casanova et al., 2022; Phillips et al.,

2023). Hereafter, we will refer to the positive/negative gaps between

estimated brain age and chronological age as accelerated/delayed

brain aging (Peng et al., 2021), indicating the individual differences

in brain aging/maturation when compared to the estimated norm

of the same age subjects. The validity of brain age estimation

has been verified in various cohorts (Baecker et al., 2021) where

the brain age gap has been shown to be a reliable biomarker for

abnormal brain development, resilient aging process, or risk of

mental illness (Franke and Gaser, 2019; Kaufmann et al., 2017;

Konrad et al., 2013). In particular, children and adolescent studies,

including ours (Ray et al., 2021), have demonstrated that estimated

brain age not only reflects age-related changes but is also indicative

of cognitive maturation (Ray et al., 2021; Basodi et al., 2021,

2022; Liem et al., 2017; Dosenbach et al., 2010). Accelerated

brain age (brain age older than chronological age) is significantly

associated with faster information processing speeds and higher

verbal comprehension compared to the delayed brain age group

(Ray et al., 2023).

Brain age estimation models are effective at selecting brain

features that contribute to the accurate estimation of brain age,

but they cannot provide coherent information regarding whole

brain development patterns. For instance, interrelated bilateral gray

matter density in the frontal cortex may both show similar growth

patterns, but only one might be selected for the estimation of

brain age (Ray et al., 2021). In our previous work, we built a

reliable brain age estimation model that identified adolescents in

the ABCD Study who were experiencing accelerated or delayed

brain maturation (Ray et al., 2023). To fully understand the whole

brain patterns related to accelerated vs. delayed brain maturation,

as well as investigate the influence of environmental factors, in this

study we have applied a multi-set canonical correlation analysis

(mCCA) (Li et al., 2009; Zhuang et al., 2020) to overcome the

limitations associated with brain age estimation models. Our
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study is focused on: (i) identifying whole-brain patterns linked

to accelerated or delayed brain aging, (ii) exploring the impact

of various environmental factors on these brain patterns, (iii)

and providing an understanding of how environmental factors

may contribute to brain maturation. We seek to reveal, at least

partially, the complex interplay between the brain and multi-scale

environmental factors, providing further understanding of how

brain maturation may be influenced by environments.

2 Data and method

2.1 Participants

We analyzed the data collected from the ABCD study https://

abcdstudy.org (Hagler et al., 2019), which is a 10-year-long study

on participants initially recruited at the age of nine to ten from 21

sites across the United States. Along with multisession structural

and functional brain MRI scans, the ABCD study also includes key

demographic information, including gender, race, socio-economic

background, cognitive development, and a mental and physical

health assessment of the subjects. Written informed consent from

the parents and assent from the child were obtained for each

participant, with approval from the Institutional Review Board

(IRB). The ABCD dataset is provided by the National Institute of

Mental Health Data Archive (NDA) https://nda.nih.gov/. The NDA

shares the ABCD data as an open-source dataset, collected from a

wide range of research projects across various scientific domains,

to enable collaborative science and discovery. In this study, we used

data from the ABCD baseline, which contains 11,875 participants,

to select a subpopulation with accelerated or delayed brain age.

In our prior study, we developed a refined brain age

model to robustly and accurately estimate the brain age of

ABCD participants within a narrow age range (9–10 years) (Ray

et al., 2024, 2023). The refined model was constructed with

two modules. The first module is the brain age model pre-

trained with 1,417 subjects aged 8–22 years from the Philadelphia

Neurodevelopmental Cohort (PNC) (Satterthwaite et al., 2016),

which leveraged the wider age range of PNC data to ensure broader

prediction power. After pre-training the first module, the second

module was trained by utilizing the ABCD baseline data with a

narrow age range (9–10 years) to account for unexplained residual

variation (the difference between the prediction of the first module

and actual age). The refined brain age estimation was finally

obtained by subtracting the estimated residuals from the broader

predicted age, thereby improving model accuracy. The final refined

model showed the best performance on both ABCD baseline and

year-two data with a mean absolute error of 0.49 and 0.48 years,

respectively. Furthermore, the brain age gap yielded by the refined

model demonstrated significant associations with participants’

information processing speed and verbal comprehension ability on

the baseline data. In this study, we have applied the model to ABCD

full baseline data to estimate participants’ brain age. The brain

age gaps (estimated brain age—chronological age) were computed

(see Supplementary Figure 1) and were found to roughly follow a

normal distribution. We identified 7,435 participants whose brain

age gap was 0.41 standard deviation away from the mean after

z transformation, partitioned into accelerated brain age group

TABLE 1 Demography table.

Demographics Accelerated
(N = 2,149)

Delayed
(N = 2,115)

Mean age 9.94± 0.63 9.93± 0.63

Gender 1,158 male/991 female 1,012 male/1,103

female

Race
1,714 white/412 black 1,678 white/334 black

92 other/34 missing

Mean total composite

score

87.94± 8.71 86.94± 8.65

Mean fluid composite

score

93.32± 0.29 92.13± 10.08

Mean crystallized

composite score

87.48± 6.79 87.02± 6.84

(z > 0.41 :N = 3, 755) and delayed brain age group (z <

−0.41 :N = 3, 680). The threshold of 0.41 was chosen to include

roughly the bottom and top third of the cohort. In our analysis, we

specifically targeted these two subgroups to identify brain patterns

with significant differences between the two groups and linked to

environmental factors. We did not use all participants to emphasize

the factors contributing most to the variations between accelerated

and delayed brain age. In the data quality control steps, we removed

samples following the inclusion recommendation of ABCD release

version 5 for T1 weighted sMRI and rs-fMRI and removed samples

with missing values in the environmental factors. Finally, we have

4,264 samples (Accelerated group: N = 2,149, Delayed group: N =

2,115) for our analysis. The two groups listed in Table 1 had no

significant differences in age, gender, and race.

2.2 sMRI data preprocessing and feature
generation

We extracted three types of brain features: (i) gray matter

density of 100 independent components derived from independent

component analysis (ICA) (Xu et al., 2009) of gray matter images,

(ii) 152 brain morphological features derived from FreeSurfer

version v5.3 (Khan et al., 2008), and (iii) 1,378 static functional

network connectivity (sFNC) values (Saha et al., 2022) derived from

resting state functional MRI.

Gray matter (GM) density maps were generated by

preprocessing the T1-weighted sMRI images using the Statistical

Parametric Mapping 12 (SPM12) (Ashburner et al., 2014) software

toolbox. Six types of tissue maps (gray matter, white matter,

CSF, bone, soft tissue, and others) were created in Montreal

Neuroimaging Institute (MNI) space after jointly segmenting

and spatially normalizing the T1-weighted sMRI images using

SPM12 default tissue probability maps. The gray matter maps

were then smoothed using a 6 mm3 Gaussian kernel. Finally, we

applied quality control on the individual gray matter maps and

selected those correlated to the group mean gray matter map at

correlation ≥ 0.9. After quality control, the gray matter maps were

then masked to only include voxels with a gray matter density
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value >0.2. We then applied independent component analysis

(ICA) (Bell and Sejnowski, 1995; Amari, 1998) to extract 100

brain components. ICA decomposes the gray matter data into

a linear combination of maximally independent components,

called source-based morphometry (SBM) (Xu et al., 2009). Each

component as a brain network identifies a network of voxels

with covarying gray matter patterns and often these components

resemble those in resting fMRI data (Luo et al., 2020). The ICA

loadings reflect how these brain networks are expressed across

subjects, which are used as one type of brain feature in this

study, referred to as gray matter density of 100 independent

components. In addition, the brain morphological measures

derived by FreeSurfer version v5.3 (Khan et al., 2008) are provided

by the ABCD study (data release version 5). We selected 152

measures as the second type of brain features, which included the

estimated total intracranial volume, cortical thickness and cortical

volume, and subcortical volume of the human brain based on the

Desikan atlas (Desikan et al., 2006).

2.3 fMRI data preprocessing and functional
network connectivity (sFNC) features

We conducted preprocessing on the raw resting-state fMRI

data using a combination of the FMRIB Software Library (FSL) v6.0

(Jenkinson et al., 2012; Smith et al., 2004; Woolrich et al., 2009)

toolbox and the Statistical Parametric Mapping (SPM) 12 toolbox

within the MATLAB 2020b environment. The preprocessing steps

involved: (i) correcting for rigid body motion; (ii) addressing

distortion; (iii) eliminating dummy scans; (iv) normalizing the

data to standard Montreal Neurological Institute space; and (v)

applying smoothing with a 6 mm Gaussian kernel. We conducted

data quality control on the preprocessed fMRI data using the

Neuromark framework (Fu et al., 2023). The FSL MCFLIRT tool

was employed to rectify any rigid body motion observed in the

subject’s head during the fMRI scanning. After correcting head

motion, distortion correction in the fMRI images was performed

using field map files. These files were obtained by acquiring

phase encoding in both the anterior-posterior (AP) and posterior-

anterior (PA) directions with the FSL tool topup. The distortion

present in the fMRI volume was then addressed by applying

the output field map coefficients using the FSL tool applytopup.

After distortion correction, 10 initial scans with significant signal

changes were discarded to help the tissue gain a steady state of

radiofrequency excitation. Then wrapping and smoothening of the

fMRI data were done with MNI space 3 × 3 × 3 mm3 spatial

resolution and a Gaussian kernel with a full width at half maximum

(FWHM) of 6 mm. We employed the Neuromark_fMRI_1.0 (Du

et al., 2020) network templates to extract intrinsic connectivity

networks (ICNs) and corresponding time courses (TCs) through

an entirely automated spatially restricted ICA method. These

templates were obtained based on replicated networks estimated

from two healthy control datasets, the human connectome

project (Van Essen et al., 2012) and the genomics super struct

project (Holmes et al., 2015). More details of the Neuromark

framework and templates can be found in the GIFT toolbox http://

trendscenter.org/software/gift and at http://trendscenter.org/data

(Correa et al., 2005). These spatial priors have been established to

be highly consistent between pipelines and across various datasets

and populations. We obtained 53 intrinsic connectivity networks

for each subject by implementing this approach. To address any

confounding effects, such as the greater degree of head motion

present in pediatric images, we included four additional post-

processing steps to regulate the remaining noise in the TCs of ICNs.

These steps involved detrending linear, quadratic, and cubic trends,

eliminating detected outliers, implementing multiple regression on

the head motion parameters, and bandpass filtering. After the post-

processing phase, Pearson correlation coefficients between post-

processed TCs were calculated to measure the static functional

network connectivity (sFNC) among 53 ICNs. The 53 × 53

symmetric sFNC matrix was then flattened, and 1,378 correlation

values from off-diagonal elements were extracted. These form the

third type of brain features of this study.

2.4 Environmental factors

In our study, we utilized a total of nine environmental factors

spanning macro, meso, and micro scales (Thapaliya et al., 2021,

2023) from the ABCD Cohort, both because of their established

relevance in the literature and our own group’s previous work

(Thapaliya et al., 2021, 2024) with these factors elucidating the

complex relationship between the brain and the environment. We

are aware that more environmental variables are now available,

which are unexplored in our current research and can be utilized in

future studies. The factors we included are air pollution, population

density, area crime, neighborhood safety, school safety, household

income, family conflict, early life stress (ELS), and area deprivation.

Each factor was derived by aggregating multiple related variables

to construct a comprehensive measure through summation, with

variables reversed, if necessary, to maintain consistency in the

direction of the effect. A higher value in air pollution, population

density, area crime, family conflict, ELS, and area deprivation

implies a negative or unfavorable direction. Conversely, higher

values in neighborhood safety, school safety, and household

income indicate a positive or desirable direction, such as a safe

neighborhood and school environment and better socio-economic

status. A detailed explanation of the relevant variables of each

environmental factor is presented in Supplementary material.

2.5 Cognitive measures

In this study, we utilized three cognitive composite scores

from the NIH Toolbox Cognition Battery (Akshoomoff et al.,

2013) for our analysis. The three main cognitive summary scores

are: (i) crystallized cognition composite score (combination of

picture vocabulary and oral reading recognition tests), which

reflects crystallized cognition based on past learning experiences.

(ii) fluid cognition composite score (includes tests that evaluate

fluid abilities like executive function, working memory, attention,

and processing speed), which demonstrates the ability for new

learning and information processing in unexplored situations.

(iii) total cognitive function composite score, which provides a
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comprehensive measure of general cognitive abilities by combining

both the crystallized and fluid cognition composite scores.

2.6 Statistical analysis

We utilized multi-set canonical correlation analysis to identify

the distinct multivariate patterns of different brain feature sets,

as well as environmental factors, for the accelerated and delayed

subpopulation. Canonical correlation analysis (CCA) is a statistical

approach, first proposed by Hotelling (Hardoon et al., 2004)

in 1936, which tries to find pairs of linear projections for

different views in such a way that the correlation between them

is maximized.

If we have two data matrices X = [x1, x2, . . . , xn] ∈ R
dx×n

and Y =
[

y1, y2, . . . , yn
]

∈ R
dy×n where n denotes the

number of samples and dx, dy indicate feature dimensions for data

matrices X and Y , respectively. CCA will find m pairs of linear

projections. Wx =
[

wx,1,wx,2, . . . ,wx,m

]

∈ R
dx×m and Wy =

[

wy,1,wy,2, . . . ,wy,m

]

∈ R
dy×m represent the canonical weight

matrices for two data matrices X and Y . The correlation between

ath pair of canonical projections wT
x,aX and wT

y,aY are maximized as

in Equation 1. Equation 1 can be simplified as Equation 2.

ρ

(

XTwx,a,Y
Twy,a

)

=
wT
x,aXY

Twy,a
√

(

wT
x,aXX

Twx,a

)

(

wT
y,aYY

Twy,a

)

(1)

max
wx,awy,a

wT
x,aXY

Twy,a

s.t. wT
x,aXX

Twx,a = 1, wT
y,aYY

Twy,a = 1,

(orthogonality constraint)

wT
x,aXX

Twx,b = 0, wT
y,aYY

Twy,b = 0 ∀a 6= b : a, b ∈ {1, 2, . . . ,m}

(2)

The mCCA approach basically extends the concept of the

general form of CCA in order to find correlated patterns among

more than two views. Multi-view CCA aims to maximize the sum

of pairwise canonical correlations via optimizing canonical vectors

of all views. ci is the regularization parameter to be defined.

wopt = argmax
w







∑

i

∑

j6=i

wT
i,aX

T
i Xjwj,a







s.t. (1− ci)w
T
i,aX

T
i Xiwi,a + ciw

T
i,awi,a = 1,

(orthogonality constraint)

wT
i,aX

T
i Xiwi,b = 0 ∀i, ∀a 6= b : a, b ∈ {1, 2, . . . ,m}

(3)

In Equations 2, 3, the orthogonality constraint ensures that

every pair of canonical variables is orthogonal/uncorrelated with

another pair of canonical variables.

To investigate the covariation patterns of the brain and the

environment in this subpopulation, we conducted a 4-way mCCA

analysis using the environmental factors and three types of brain

features. Specifically, mCCA was applied to the subject gray matter

loadings of 100 independent components, 152 morphological

measures, 1,378 sFNC values, and nine environmental factors.

The data were split as follows: 80% for training and 20% for

testing, with a stratified 3-fold cross-validation in the training

set to select the ci parameter and avoid overfitting issues. We

used the CCA-Zoo (Chapman and Wang, 2021) package for our

analysis. To be conservative, we selected the number of canonical

variable sets based on the smallest dataset. Since the top four

principal components explained nearly 90% of the variance in

the smallest input data matrix of nine environmental factors, we

applied mCCA with four sets of canonical variables in the training

data to derive correlated brain and environmental variables. Thus,

only those brain patterns potentially associated with environmental

factors were extracted. The derived latent variables were directly

projected into the testing data to verify their associations. In order

to test for significant mean differences between the accelerated

and delayed groups, we applied the analysis of variance (ANOVA)

method on latent variables. To help further understanding of our

findings, we examined the canonical weight and shared variance

percentage of each original feature to identify its contribution to the

canonical latent variables. Canonical weights are the values in the

canonical vectors W in Equation 3. The shared variance percentage

is calculated as the square of the correlation between an original

observed feature and its corresponding canonical variable (r2).

To test the stability and robustness of the mCCA results, we

applied the mCCA analysis 100 times, each time randomly splitting

the data into an 80/20 split for training and hold-out test data. The

mCCA model was trained on the training data and tested on the

hold-out data. We then reported the average canonical weights,

the variance explained, and the frequency of a given feature that

was among the “Top 5” list across the 100 mCCA models on the

hold-out test data. For illustration purposes, related brain areas

for the top five (arbitrary selection) features based on the shared

variance percentage from the three brain datasets (ICA, FreeSurfer,

and sFNC) are plotted using Talairach Daemon software from the

GIFT toolbox and the Desikan atlas and displayed in the results

section (Rachakonda et al., 2007).

To test the associations with cognition and brain maturation

group, we implemented linear mixed-effects regression models

using cognitive measures (NIH Toolbox Fluid Cognition

Composite Score, Crystallized Cognition Composite Score, and

Total Cognition Composite Score) as the dependent variable,

with age, gender (Male = 0, Female = 1), and brain maturation

group (Accelerated = 3, Delayed = 2) as fixed-effect independent

variables. ABCD Family ID nested within ABCD site information

was included as random-effect variables.We included each subject’s

actual age and gender as predictors, along with the developmental

group, to control for the known effects of age and gender on

cognition during development. Additionally, we conducted linear

mixed-effects regression analyses on our 20% test data to examine

associations with cognitive measures and brain-related canonical

variables, using the cognitive score as the dependent variable and

age, gender, and brain-related canonical variables as fixed-effect

independent variables, while ABCD Family ID nested within

ABCD site information were included as random effect variables.

3 Results

In our 4-way mCCA analysis, four sets of canonical variables

were extracted during the training, while each set comprised of

four canonical latent variables: three latent brain variables and
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TABLE 2 Pairwise correlation of four sets of canonical variables (results from the 20% testing data).

Pairwise correlation
Canonical variables

SET 1 (r, p) SET 2 (r, p) SET 3 r, p SET 4 r, p

ICA GM-FreeSurfer r = 0.88, p < 1e-16 r = 0.77, p < 1e-16 r = 0.84, p < 1e-16 r = 0.80, p < 1e-16

ICA GM-sFNC r = 0.64, p < 1e-16 r = 0.65, p < 1e-16 r = 0.64, p < 1e-16 r = 0.63, p < 1e-16

ICA GM-environment r = 0.37, p < 1e-16 r = 0.15, p < 1e-16 r = 0.17, p < 1e-16 r = 0.11, p = 9e-4

FreeSurfer-sFNC r = 0.64, p < 1e-16 r = 0.68, p < 1e-16 r = 0.55, p < 1e-16 r = 0.60, p < 1e-16

FreeSurfer-environment r = 0.36, p < 1e-16 r = 0.18, p < 1e-16 r = 0.14, p = 1e-4 r = 0.09, p = 1.2e-2

sFNC-environment r = 0.34, p < 1e-16 r = 0.16, p < 1e-16 r = 0.20, p < 1e-16 r = 0.12, p = 4e-4

TABLE 3 Group di�erence of four sets of canonical variables on the 20% testing data.

Canonical variables Group di�erences of canonical variables

SET 1
(F, p)

SET 2
(F, p)

SET 3
(F, p)

SET 4
(F, p)

ICA GM F = 12.67, p = 3.92e-4 F = 17.57, p = 3.1e-5 Not significant Not significant

FreeSurfer Not significant F = 22.93, p = 2e-6 F = 10.70, p = 11.11e-3 Not significant

sFNC Not significant F = 18.67, p = 1.7e-5 Not significant Not significant

Environment Not significant Not significant Not signifi cant Not significant

one latent environmental variable. All four canonical variables

within each set were significantly correlated (p-values that survived

FDR correction) during the training phase. The direct projection

of derived latent variables into the 20% hold-out testing data

revealed that all four sets of canonical latent variables were

significantly cross-correlated within each set in the testing data

as well (see Table 2). Since results from the testing data are more

impartial, hereafter we present only those results. The correlations

between canonical variables of the brain features were high with

r-values ranging from 0.88 to 0.55. In contrast, the correlations of

environmental factors with brain features were low, but statistically

significant, with r-values ranging between 0.37 and 0.09.

A detailed report of the brain regions and associated

environmental variables is presented in Supplementary Tables 1–8.

The 1st derived environmental variable highlights the positive

effect of household income (shared variance percentage of

71.95%, canonical weight of 0.16) and the negative effect

of area deprivation (shared variance percentage of 68.56%,

canonical weight of −0.14) (see Supplementary Table 2). The 2nd

environmental variable highlights air pollution and area crime

(see Supplementary Table 4). The 3rd environmental variable

emphasizes area deprivation (shared variance percentage of

77.11%, canonical weight of 0.12) in contrast to household income

(shared variance percentage of 44.15%, canonical weight of −0.02)

and neighborhood safety (shared variance percentage of 44.95%,

canonical weight of −0.04) (see Supplementary Table 6). The

4th environmental variable highlights relatively small effects

of negative household income (shared variance percentage of

64.16%, canonical weight of −0.10) and positive area deprivation

(shared variance percentage of 49.04%, canonical weight of

0.06) (see Supplementary Table 8). All four environmental

variables are associated with specific brain features (see

Supplementary Tables 1–8).

We further examined whether the derived canonical variables

had differences between the accelerated and delayed brain age

groups. The 2nd set of canonical variables showed consistently

significant differences in the three brain-related canonical latent

variables, where the accelerated group had higher values than the

delayed group. The environmental canonical latent variable did

not show group differences in all four sets. We presented the

results of the testing data in Table 3. Given our interest is in

identifying brain patterns related to brain development, the 2nd set

of canonical variables became our focus hereafter. We presented

their four-way associations on testing data in Figure 1. The figure

displays the pairwise canonical correlation coefficients among the

four canonical latent variables, as well as the top three features

contributing to each of the canonical variables for illustration

purposes. Based on the percentage of shared variance calculated

using the testing data, we have identified the top five contributing

features for each canonical variable. Table 4 provides feature names,

canonical weights, and shared variance percentages. The resulting

brain areas corresponding to these top five features are depicted

collectively in Figure 2, with green indicating gray matter ICA

components, red representing FreeSurfer morphological features,

and blue denoting sFNC.

We performed linearmixed-effect regressionmodel analyses on

the accelerated and delayed brain age group to test the associations

with cognitive measures and the brain maturation group. The

results showed a t−value : 4.24, p < 1e−16 for the Total composite

score, t − value : 4.19, p < 1e − 16 for the Fluid composite score,

and t = 2.63, p = 0.009 for the Crystallized composite score,

suggesting the accelerated age group showed significantly higher

performance on cognitive tests, consistent with accelerated brain

maturation. Moreover, the association analyses between cognitive

scores and brain-related canonical variables showed that the 1st

set of brain canonical variables were all significantly associated
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FIGURE 1

The association among the 2nd set of canonical variables from 20% testing data.

with all three cognitive composite scores, passing FDR correction.

Sets 2, 3, and 4 brain canonical variables were not associated with

cognitive measures. The detailed association results are listed in

Supplementary Table 9.

4 Discussion and conclusion

Our study aims to explore the multifaceted brain features

that are associated with brain maturation and their relationship

with environmental factors. From the ABCD cohort, we have

identified a subpopulation of participants with either accelerated

or delayed brain age using the brain age estimation model from

our prior study. These two groups showed significant differences

in cognitive measures, with the accelerated brain age group

performing higher than the delayed group on cognitive measures,

even after adjusting for biological age. To study environmental

effects on multimodal brain features, we performed a 4-way mCCA

analysis on regional gray matter density, morphometric measures,

resting-state functional network connectivity, and environmental

factors from nine domains. The 4-way mCCA analysis revealed

highly related patterns between the three types of brain measures

and their relationship with the environment.

Four sets of 4-way canonical variable correlations were verified

(all four latent variables were significantly correlated in the testing

data), and each set highlights a different environmental association

with brain patterns. While the 1st, 3rd, and 4th sets present

mainly effects from household income, area deprivation, and

neighborhood, the 2nd set presents effects of air pollution and

area crime at large. The 2nd set of brain canonical variables also

demonstrates significant mean differences between the accelerated

and delayed groups. The 1st set of brain canonical variables

are also positively associated with all three cognitive scores

(see Supplementary Table 9). Given they relate significantly to

household income, which is one of the most studied environmental

factors with abundant evidence for associations with brain and

cognition (Tomasi and Volkow, 2021, 2023), we are not surprised

to observe this particular set of brain canonical variables associated

with overall cognition. The lack of cognitive association of other

sets of brain variables warrants further investigation on more

specific cognitive ability, such as processing speed, inhibition, etc.,

in addition to over composite scores. Though all four sets of

brain-environmental associations are valid and important, given

our research interest, we focus our discussion on the associations

among brain and environmental latent variables from the 2nd set

of canonical variables.

To improve the interpretation of how the original observed

features contribute to the latent variables, we presented the

canonical weights assigned to each variable and the percentage

of variance explained. The magnitude of the weight indicates the

degree of contribution of the feature to the latent variable. Features

with positive weights contribute to the canonical variable positively,

while features with negative weights contribute inversely. However,

interpreting the importance of a feature based on its canonical

weight is subject to the limitation of the beta weights in

regression analyses. Small weight can either suggest that the

corresponding feature is nonessential, or its contribution has been

partially explained by other features due to high multicollinearity.

This limitation applies only to the interpretation of the CCA

components, not to their extraction since multicollinearity is not

a concern for extracting CCA components. CCA is designed to

extract multivariate linearly related patterns within each dataset,

ensuring that these linear patterns are correlated across datasets.

To address the limitation inherent in canonical weights, we also

examined the percentage of variance shared which represents the
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TABLE 4 The top five contributing features of the 2nd set of canonical variables, along with their canonical weights and shared variance percentages in

the testing data, are presented.

Canonical
variates

Top 5
contributing
features

Canonical
weights

Shared
variance

percentages
(r2%)

Stability test results (mCCA 100 iterations)

Canonical
weights

mean (95%
CI)

Shared
variance

percentages
mean (95% CI)

Frequency
within the
top 5 list

ICA GM Sub-gyral 1 0.15 40.58 0.15 (0.126, 0.165) 40.47 (39.95, 40.99) 100%

Middle temporal

gyrus 1

−0.06 38.15 −0.05 (−0.055,

−0.038)

38.25 (37.69, 38.80) 100%

Precuneus −0.01 33.26 −0.01 (−0.007,

−0.005)

33.12 (32.54, 33.71) 100%

Middle temporal

gyrus 2

−0.07 27.36 −0.06 (−0.068,

−0.049)

26.54 (25.98, 27.11) 85%

Superior temporal

gyrus

0.03 26.69 0.03 (0.024, 0.029) 25.63 (25.04, 26.23) 72%

FreeSurfer Left medial

Orbitofrontal

Volume

−0.10 32.33 −0.08 (−0.096,

−0.067)

32.76 (32.21, 33.31) 100%

Right

supramarginal

thickness

0.05 24.30 0.06 (0.051, 0.075) 23.89 (23.33, 24.46) 98%

Left lateral occipital

thickness

0.09 23.64 0.08 (0.066, 0.088) 23.70 (23.23, 24.16) 100%

Right lateral

occipital thickness

0.07 22.73 0.06 (0.047, 0.067) 21.42 (20.87, 21.97) 86%

Right lateral

orbitofrontal

volume

−0.08 20.78 −0.07 (−0.076,

−0.059)

20.56 (20.03, 21.10) 96%

sFNC Lingual gyrus,

precuneus

0.02 15.23 0.02 (0.015, 0.021) 14.91 (14.53, 15.29) 100%

Middle temporal

gyrus, right

Inferior frontal

gyrus

−0.02 13.10 −0.02 (−0.019,

−0.013)

12.86 (12.51, 13.21) 98%

Cuneus,

hippocampus

0.02 12.84 0.02 (0.012, 0.019) 13.02 (12.64, 13.41) 93%

Cuneus, precuneus 0.003 12.25 0.005 (0.004, 0.006) 11.95 (11.62,12.27) 87%

Lingual gyrus,

hippocampus

0.009 12.25 0.01 (0.007, 0.009) 12.39 (12.02, 12.76) 82%

Environmental

factors

Air pollution −0.26 84.59 −0.25 (−0.280,

−0.216)

85.04 (84.41, 85.66) 100%

Area crime 0.06 16.29 0.05 (0.039, 0.055) 16.59 (15.71, 17.47) 100%

Population density 0.01 8.50 0.01 (0.004, 0.008) 8.45 (7.94, 8.96) 100%

Family conflicts 0.04 1.92 0.03 (0.025, 0.036) 2.23 (1.90, 2.57) 89%

Neighborhood

safety

0.01 1.01 0.01 (0.005, 0.009) 1.19 (0.90, 1.48) 77%

The stability test results show the mean and 95% confidence intervals for the canonical weights and shared variance percentages of the top features, as well as their frequency within the top five

list of features across 100 iterations of mCCA on hold-out test data.

degree to which the observed feature shares variance with the

canonical variable.

The accelerated brain age group displayed higher values across

all three canonical variables of brain measures compared to the

delayed group. First, the ICA gray matter density of the top

regions contributed highly to the ICA latent variable. Notably,

the first and last contributing regions exhibited positive canonical

weights, while the remaining three areas had negative canonical

weights (refer to Table 4). Positive weights indicated increased gray

matter density in sub-gyral and superior temporal gyrus regions,

whereas negative weights indicated reduced gray matter density

in middle temporal gyrus and precuneus regions, resulting in

higher values of the canonical variable. The sub-gyral region stood

out as the most prominent contributor, accounting for 40.58%
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FIGURE 2

The brain regions associated with the top five contributing features of the 2nd set of brain canonical variables (ICA GM in green, FreeSurfer in red,

sFNC in blue).

of the shared variance, followed by the middle temporal gyrus

with 38.15%. Therefore, reduced gray matter density in the middle

temporal gyrus and precuneus, along with increased density in the

superior temporal region, albeit to a lesser extent, contributed to

elevated values in the latent gray matter variable. The accelerated

group exhibited higher values than the delayed group, implying

potentially greater reductions in gray matter density overall,

consistent with advanced brain maturation observed during this

stage of adolescence (Arain et al., 2013; Giedd et al., 1999; Gogtay

and Thompson, 2010; Paus, 2005; Whitford et al., 2007).

Typically, maturation of gray matter volume appears first as

linear loss in the dorsal parietal cortices, frontal and occipital poles,

then progresses rostrally through the frontal cortex as quadratic

and cubic gray matter volume loss (Gogtay et al., 2004). This

reduction in gray matter volume is accompanied by increases

in cortical thickness in the frontal and parieto-occipital regions

as the brain matures (Sowell et al., 2004). Our results are in

alignment with the current understanding of thematuration of gray

matter volume and cortical thickness. The top five features that

contributed to the latent morphological variable were decreases

in gray matter volume in the orbitofrontal regions (left medial,

and right lateral) and increases in cortical thickness in the

right supramarginal region and bilateral occipital regions. The

accelerated maturation group demonstrated higher values in this

latent variable, confirming that reduction in gray matter volume in

the orbitofrontal cortex, alongside increases in cortical thickness in

the supramarginal and lateral occipital cortex are associated with

the accelerated brain age.

Maturation of functional connectivity during adolescence is

marked by increased segregation between short-range connectivity

as well as increased integration of long-range connectivity (Fair

et al., 2007). This is seen in decreases in connectivity between

the anterior PFC, dorsolateral PFC, and the frontoparietal control

network in conjunction with increases in connectivity between the

dorsal ACC, the medial superior frontal cortex, and the cingula-

opercular control network (Stevens et al., 2009). Consistent with

this understanding of adolescent maturation, our study showed

positive contributions to the latent variable from the functional

connectivity of the occipital regions (cuneus, precuneus, and

lingual gyrus), while connectivity between the middle temporal

gyrus and right inferior frontal gyrus contributed negatively.

The accelerated maturation group again had higher values with

regard to the latent variable, confirming that they are experiencing

accelerated brain maturation.
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All three latent brain variables in our study were highly

correlated, confirming our expectation that changes in gray matter

density, cortical thickness, and functional connectivity are tightly

coupled and covary during brain development. Figure 2 also

illustrates anatomical regions from the three latent variables that

are concentrated in the posterior part of the brain (occipital,

temporal, and parietal cortices), accompanied by the inferior orbital

part of the frontal cortex. Our results suggest the accelerated brain

age group may be experiencing accelerated gray matter density

reduction in the middle temporal gyrus and precuneus, volume

reduction in the orbitofrontal cortex, as well as increased thickness

in the supramarginal region, and increased functional connectivity

across cortical-subcortical regions.

The environmental variable linked with the second set of

brain patterns reveals that air pollution has the highest shared

variance percentage at 84.59% and a canonical weight of −0.26,

positioning it as the primary contributing feature (see Table 4).

Following air pollution, area crime, and population density emerge

as significant contributors to the environmental canonical variable,

with canonical weights of 0.06 and 0.01, and shared variance

percentages of 16.29 and 8.50%, respectively. Low levels of

air pollution coupled with higher area crime and population

density result in a heightened latent variable that exhibits positive

associations with all three latent brain variables. Although there are

no discernible group differences in the environmental variable, its

positive correlations with brain variables suggest that exposure to

an environment characterized by low air pollution and elevated

area crime and population density is associated with patterns of

brain regions that include reductions in gray matter and enhanced

functional connectivity, regions which are more prominent in the

accelerated brain aging group. It seems counterintuitive that lower

air pollution, a desirable environmental factor, would be coupled

with unfavorable or harsh neighborhood conditions like higher

crime rate and population density. However, in terms of brain

development/maturation both favorable and unfavorable factors

can work in the same direction. Prior research has suggested

that individuals may mature faster when exposed to harsh social

environmental conditions (Hedderich et al., 2021), and brain

development trajectory may be altered by air pollution in a time-

sensitive manner (Herting et al., 2024). The lack of group difference

in environmental variables could be interpreted in two ways.

One is that environmental variables stimulate brain development

in specific patterns but with small effect sizes, so large samples

are needed to verify environmental effects. The other is that

environmental variables are only associated with the part of the

variance in the brain patterns not showing brain development

differences, and the part showing brain development difference is

contributed by something else, such that more investigations on

other environmental factors are warranted. In the literature air

pollution (specifically fine particulate PM2.5) has been reported to

have a positive correlation with gray matter volumetric changes

across various brain regions, such as the medial orbitofrontal

cortex, while a negative association between air pollution and gray

matter volume is observed in regions like the superior temporal

gyrus (Miller et al., 2022). Our result showed that a low level

of ambient air pollution is linked to a reduction of gray matter

density in the middle temporal gyrus and the precuneus, as well as

a reduction of gray matter volume in the left medial orbitofrontal

cortex and the right lateral orbitofrontal cortex. Moreover, low air

pollution is associated with increased gray matter density in the

sub-gyral, superior temporal gyrus, and increased cortical thickness

in the right supramarginal, bilateral occipital brain regions.

The limitations of our study are also opportunities for future

research. Even though our study shows significant associations

between environmental factors and brain maturation, we note

that these results are only observational. These findings could

be affected by potential confounders such as genetics, culture,

or other unexplored demographic elements. The mCCA method

assumes a linear relationship between observed features and the

latent variables, as well as a linear correlation between different

datasets. The method will fail to capture hidden relationships if

they are complex nonlinear interactions. All our findings are based

on ABCD baseline data with a cross-sectional analytical design. A

longitudinal analysis of the ABCD cohort that tracks the changes

in the multivariate relationships between brain-environment will

paint a more complete and likely more complex picture.

In sum, our research leveraged brain age estimation in a

large developmental cohort and revealed neuronal structural and

functional variations associated with accelerated vs. delayed brain

maturation. Furthermore, we provided evidence of associations

between environmental factors and brain maturation, suggesting

that such factors may modulate neuronal variations. However,

the influence of other confounders should be considered. Future

longitudinal studies on brain development could further unveil the

dynamic trajectory of environmental factors.
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