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Introduction: Multi-shell di�usion Magnetic Resonance Imaging (dMRI) data

has been widely used to characterise white matter microstructure in several

neurodegenerative diseases. The lack of standardised dMRI protocols often

implies the acquisition of redundant measurements, resulting in prolonged

acquisition times. In this study, we investigate the impact of the number of

gradient directions on Di�usion Tensor Imaging (DTI) and on Neurite Orientation

Dispersion and Density Imaging (NODDI) metrics.

Methods: Data from124 healthy controls collected in three di�erent longitudinal

studies were included. Using an in-house algorithm, we reduced the number of

gradient directions in each data shell. We estimated DTI and NODDI measures

on six white matter bundles clinically relevant for neurodegenerative diseases.

Results: Fractional Anisotropy (FA) measures on bundles where data were

sampled at the 30% rate, showed a median L1 distance of up to 3.92% and a

95% CI of (1.74, 8.97)% when compared to those obtained at reference sampling.

Mean Di�usivity (MD) reached up to 4.31% and a 95% CI of (1.60, 16.98)% on the

same premises. At a sampling rate of 50%, we obtained a median of 3.90% and a

95% CI of (1.99, 16.65)% in FA, and 5.49% with a 95% CI of (2.14, 21.68)% in MD.

The Intra-Cellular volume fraction (ICvf) median L1 distancewas up to 2.83%with

a 95% CI of (1.98, 4.82)% at a 30% sampling rate and 3.95% with a 95% CI of (2.39,

7.81)% at a 50% sampling rate. The volume di�erence of the reconstructed white

matter at reference and 50% sampling reached a maximum of (2.09 ± 0.81)%.

Discussion: In conclusion, DTI and NODDI measures reported at reference

samplingwere comparable to those obtainedwhen the number of dMRI volumes

was reduced by up to 30%. Close to reference DTI and NODDI metrics were

estimated with a significant reduction in acquisition time using three shells,

respectively with: 4 directions at a b value of 700 s/mm2, 14 at 1000 s/mm2,

and 32 at 2000 s/mm2. The study revealed aspects that can be important for

large-scale clinical studies on bundle-specific di�usion MRI.
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1 Introduction

Diffusion MRI (dMRI) is used for studying white matter

(WM) alterations by extracting parameters that are associated with

tissue microstructure (e.g., intra-cellular axonal volume fraction).

Different approaches were developed tomodel the diffusion process

of water molecules in tissue, either using single models, i.e.,

diffusion tensor imaging (DTI) (Basser et al., 1994a,b), or multiple-

compartment models such as the Neurite Orientation Dispersion

and Density Imaging (NODDI) (Zhang et al., 2012; Winston, 2015)

and the Composite Hindered and Restricted Model of Diffusion

(CHARMED) (Assaf and Basser, 2005).

DTI measures can quantify the diffusion coefficient of water

molecules in different directions inside the brain. This information

is sensitive to properties of tissue microstructure, such as the

level of myelination, axon, and cell density (Schilling et al., 2019).

DTI metrics estimate different quantities and show various tissue

physical properties. Namely, the mean diffusivity (MD) or apparent

diffusion coefficient (ADC) evaluates the overall water diffusion

at the voxel-wise level, by averaging the elements along the

tensor diagonal. Fractional anisotropy (FA) measures the degree

of diffusion asymmetry, while radial diffusivity (RD) reflects the

diffusivity perpendicular to axonal fibers, i.e., the average of the

smaller elements on the tensor diagonal.

Still, the DTI model presents some sensitivity and specificity

limitations (Tournier et al., 2011; Minosse et al., 2021) that can be

overcome using multi-compartment models, which help describe

more complex WM fiber orientations than a diffusion tensor.

With these types of models it is possible to increase the angular

resolution of the orientational information and describe crossing

fibers within a voxel. In these cases, diffusion-encoding images can

be represented as sampling points on a spherical shell (Aganj et al.,

2015).

One of the most popular multi-compartment models is

NODDI. It divides brain tissue into three compartments: intra-

cellular, extra-cellular, and CSF. Each one represents different

characteristics and reflects a unique behavior of water diffusion.

The intra-cellular compartment models the space bounded by

membranes of neurites as a set of cylinders of zero radii,

reflecting unhindered diffusion along neurites and the highly

restricted diffusion in the orthogonal direction. The extra-cellular

compartment represents the space outside of the membrane of

neurites, which is characterized by the diffusion of water molecules

hindered by neurites, and therefore is modeled as a Gaussian

anisotropic diffusion process. The CSF compartment refers to the

cerebrospinal fluid space and is described by isotropic Gaussian

diffusion using a constant diffusivity parameter.

To analyze white matter bundles, further steps are necessary.

The first step involves performing tractography, which is

the reconstruction of fiber tracts. This process includes a

computational procedure for determining the anatomical

trajectories of the fiber tracts. There are several software solutions

available with different fiber tracking algorithms; a comprehensive
review of tractography and its approaches can be found in a recent
publication (Zhang et al., 2022). The second step is tractometry,

which involves estimating the distribution of microstructural
measurements along fiber tracks (Yeatman et al., 2012). Recent

research, such as Edde et al. (2023), has evaluated the variability

and reproducibility of DTI and NODDI metrics in white matter

bundles.

However, these approaches present some underlying critical

inefficiencies that often jeopardize the use of MRI in clinical

research. Namely, the lengthy acquisition time and the increased

risk of movement artifacts during long protocols (Hollingsworth,

2015).

Attempts to reduce acquisition times have been made

by, e.g., parallel imaging (Feinberg and Setsompop, 2013),

where down-sampling takes place in k-space, or using post-

processing reconstruction methods (Lustig et al., 2007). Another

study (Caruyer et al., 2013) developed a sampling method to cover

spherical shells via non-convex optimisation, i.e., treating gradient

directions as electrical charges and selecting the distribution

to minimize the electrostatic repulsion. Another possible way

is reconstructing the signal from a much smaller number of

measurements, e.g., through compressive sampling (Michailovich

and Rathi, 2010). The effects of different sampling schemes have

been reported on the computation of orientational-average (Afzali

et al., 2021a) and the sensitivity to microstructural properties

(Afzali et al., 2021b).

This study investigated the possibility of saving acquisition

time in dMRI protocols by concomitantly reducing the number

of acquired directions and estimating metrics comparable to those

obtained at reference sampling. To do so, we assessed the influence

of the number of gradient directions on standard DTI (Mean

Diffusivity [MD] and Fractional Anisotropy [FA]) and NODDI

measures (Intra-Cellular volume fraction [ICvf]) in three data sets

with different multi-shell diffusion protocols.

2 Materials and methods

2.1 Subjects and MRI protocol

We analyzed MRI data from one public source (adni.loni.

usc.edu) and two data sets collected in collaboration with the

University of Sherbrooke (Canada) and the University of Basel

(Switzerland), respectively. Written consent was obtained from all

subjects participating in the studies according to the Declaration

of Helsinki (WMA, 2001), and the study was approved by the

institutional review board at each participating site.

Throughout this and the following sections, the term “reference

sequence” means the originally acquired number of gradient

directions, while down-sampled data will be indicated by specifying

the respective sampling rate.

Data set 1 consisted of a subset of 93 healthy subjects collected

in ADNI31 (mean age 75.64 years ± 8.42, 64 females) with three

1 Data used in the preparation of this article were obtained from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private

partnership, led by Principal Investigator Michael W. Weiner, MD. The primary

goal of ADNI has been to test whether serial magnetic resonance imaging

(MRI), positron emission tomography (PET), other biological markers, and

clinical and neuropsychological assessment can be combined to measure

the progression of mild cognitive impairment (MCI) and early Alzheimer’s

disease (AD).
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TABLE 1 Description of reference sequences.

ADNI3 Sherbrooke Basel

b = 0 s/mm2 13 7 12

b = 300 s/mm2 – 8 –

b = 500 s/mm2 6 – –

b = 700 s/mm2 – – 6

b = 1,000 s/mm2 48 32 20

b = 2,000 s/mm2 60 60 45

b = 3,000 s/mm2 – – 66

δ (ms) 13.6 21.9 19

1 (ms) 35 46.5 36

Voxel resolution (mm) 2× 2× 2 2× 2× 2 1.8× 1.8×
1.8

TR (ms) 3,300 4,800 4,500

TE (ms) 71 92 75

Field strength (T) 3 3 3

Acquisition type 2D 2D 2D

Total time 7 min 20 s 9 min 19 s 15 min 18 s

Each column represents a different data set, while rows show the acquisition parameters,

such as b values, small and big deltas, the voxel resolution, repetition and echo time, and

the estimated acquisition time.

annual visits. Data were collected using three 3T Siemens scanners

(Prisma, Prisma Fit, and Skyra). The dMRI reference sequence

included three b values and lasted for 7 min and 20 s (Table 1).

Data set 2 included 19 healthy controls (HC) (mean age 36.15

years ± 4.8, 19 females), with five visits per participant acquired

over five months at the University of Sherbrooke. The diffusion

protocol contained three shells of data obtained in 9 min and 19

s using a Philips 3T Ingenia scanner (Table 2) (Edde et al. (2022)).

Data set 3 consisted of 12 healthy subjects (mean age 31 years

± 8.72, 6 females), with three visits for each subject acquired at the

University of Basel. Two sessions were collected on the same day

without repositioning the subject, and a third session was collected

one week apart. The diffusion protocol included four shells of data

acquired in 15 min and 18 s using a Siemens 3T Prisma scanner

(Table 1) (Rahmanzadeh et al. (2022)).

2.2 Down-sampling of gradient directions

To identify the minimal number of gradient directions that

allowed us to compute DTI and NODDI metrics with down-

sampled data, an algorithm (Caruyer et al., 2013) that uniformly

removed directions across b values was adopted.

Briefly, the algorithm used a generalization of the electrostatic

repulsion to optimize the angular distribution of gradient

directions. Their cost function

V = αV1 + (1− α)V2 (1)

TABLE 2 List of sampled gradient directions.

ADNI3 Sherbrooke Basel

Reference 6–48–60 8–32–60 6–20–45

10% 5–43–54 7–29–54 5–18–41

30% 4–34–42 6–22-42 4–14–32

50% 3–24–30 4–16–30 3–10–23

Each column represents a different data set, while rows refer to sampling protocols, starting

from the reference sequence to 10%, 30% and 50% down-samplings. Each element of the table

shows the number of directions in the first, second, and third shells. The b0 (having b = 0

s/mm2) shells are not included as they were not down-sampled.

contained two sub-functions to be minimized through a non-

convex optimisation problem. In Equation 1, the first term V1

acted on directions in each separate shell, while V2 referred to

the whole set of directions (i.e., once all directions are projected

onto a single unit sphere). The optimisation forced, in both cases,

a uniform distribution of gradient directions. This choice is based

on literature findings (Zhan et al., 2011; Koay et al., 2012; Ye

et al., 2012), recommending to obtain sampling points as different

as possible from one shell to another, for an improved angular

resolution.

Ultimately the sub-functions depended on the number of

shells, the number of directions per shell, and the directions’

coordinates. The parameter α identified a weight to balance the

importance of global and per-shell coverage, and it was set to 0.5.

The code was implemented in scilpy (https://github.com/scilus/

scilpy).

We set 10%, 30%, and 50% for the down-sampling thresholds.

As an example, in the ADNI3 protocol, from a reference set of

three shells with 6–48–60 directions, we sampled respectively 5–

43–54 (10%), 4–34–42 (30%), and 3–24–30 (50%) points, as shown

in Table 2 and Figure 1.

2.3 Pre-processing and bundles’
reconstruction

Both the reference and the down-sampled data were run

through the same processing pipeline consisting of:

1. Denoising with dwidenoise,

2. Field inhomogeneity and eddy currents correction with

dwifslpreproc (Andersson et al., 2003; Smith et al., 2004;

Andersson and Sotiropoulos, 2015),

3. Bias field correction with dwibiascorrect ants (Avants et al.,

2011).

All these steps were performed using MRTrix 3.0 software

package (Tournier et al., 2019). Additionally, brain masks were

extracted with (HD-BET) (Isensee et al., 2019). The left/right

orientation of all the images was ensured to be the same as that of

the standard Montreal Neurological Institute (MNI) space (Evans

et al., 2012), applying a rigid registration.

Fiber tracts segmentation was performed using the TractSeg

tool (Wasserthal et al., 2018a,b, 2019, 2020), to generate streamlines
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FIGURE 1

ADNI3 data samples acquired (A) with reference sequence, (B) down-sampling at 10% rate, (C) at 30% rate, (D) at 50% rate. Green dots correspond to

b-values of 500 s/mm2, red dots to b-values of 1,000 s/mm2 and blue dots to b-values of 2,000 s/mm2.

of 40 WM bundles. For this study, we averaged metrics from the

left and right parts of the same bundles; the Corpus Callosum

was divided into five distinct parts (Anterior body, Posterior body,

Rostrum and Genu, Splenium, and Isthmus), obtaining a total of 22

distinct bundles.

Furthermore, we evaluated anatomical measures on tracts

(tractometry) through the following steps (Chandio et al., 2020):

1. Resampling of all streamlines to an equal number, i.e., 98, of

segments/points.

2. Centroid estimation for all streamlines.

3. Assignment of each segment to the closest centroid segment.

4. Evaluation of a considered metric at each segment.

5. For each centroid segment, averaging the metric for all assigned

streamline segments.

Using the library PyMed (https://github.com/gijswobben/

pymed), we accessed publications in PubMed (https://pubmed.

ncbi.nlm.nih.gov/) and screened the number of citations for a

specific bundle and a neurodegenerative disease (NDD). As shown

in Figure 2, we found the following bundles as the most relevant

for NDDs: Corticospinal Tract (CST), Inferior Fronto-Occipital

fasciculus (IFO), Inferior Longitudinal Fasciculus (ILF), Optic

Radiation (OR), Superior Longitudinal Fasciculi (SLFI, SLFII,

SLFIII) and Corpus Callosum (CC), composed by Splenium,

Rostrum, and Genu (RG), Isthmus, Anterior and Posterior Body.

2.4 Bundle average value

For each bundle, several diffusion metrics were assessed.

We generated maps for mean diffusivity (MD), fractional

anisotropy (FA), and Radial diffusivity (RD). These maps were

generated with MRTrix 3.0, by estimating the diffusion tensor

using the dwi2tensor function (https://mrtrix.readthedocs.io/

en/dev/reference/commands/dwi2tensor.html). Furthermore,

we evaluated indices of microstructural changes in brain

tissues described in the NODDI model, using the Accelerated

Microstructure Imaging via Convex Optimization (AMICO)

framework (https://github.com/daducci/AMICO/wiki)

(Daducci et al., 2015): the intra-cellular volume fraction

(ICvf), the isotropic volume fraction (ISOvf), and the

orientation dispersion (OD) (Zhang et al., 2012; Winston,

2015).

For all metrics, we estimated one value for each bundle

(averaging across segments) and calculated the L1 distance,

i.e., the absolute value of the difference, between the value

obtained from the reference and each down-sampled

sequence. Then, each distance was divided by the reference

value to obtain a relative difference, and expressed as a

percentage. To compare values in the three data sets, we

plotted their distribution across sessions, separately for

each bundle.
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FIGURE 2

Heatmap table representing number of citations of bundles (rows) relatively to various neurodegenerative diseases (columns), where: AD, Alzheimer

disease; PD, Parkinson disease; HD, Huntington disease; ALS, amyotrophic lateral sclerosis; MND, motor neuron disease; MS, multiple sclerosis; FD,

frontotemporal dementia; SZ, schizofrenia and Add for addictive disorders.

2.5 Bundle profile

Averaging metric values across segments of a bundle did not

take into account how these values were distributed along the tract

(profile). Thus, a bundle profile was reported by plotting the values

in each segment of the metric, at all sampling rates.

The distribution of bundles profiles (and average bundles

value) across subjects was evaluated with a two-sample

Kolmogorov–Smirnov (KS) test (α = 0.05) between the

original and down-sampled protocol. We considered the

metrics value on the same bundle segment across all subjects. The

resulting p-values were corrected for false discoveries rate (FDR

threshold 0.05).

2.6 Agreement and variability of sampling
methods

We investigated the agreement, i.e., the degree of concordance

between sets of measurements, and the within-subject variability

using the Bland–Altman plot (Bland and Altman, 1986, 1995,

1999).

This plot shows a solid line (estimated bias) corresponding

to the average difference between the two methods. Two dashed

lines represent the average difference ± 1.96 standard deviations

(SD), also called limits of agreement (LoA), and estimate the

variability of the differences. The authors’ recommendation is

that 95% of difference data should lie in between these two

limits so that the difference between the two methods is

normally distributed (Gaussian) (Giavarina, 2015). Furthermore,

a basic assumption of the method is that all measurements must

be independent.

Agreement and variability analyses were performed on the

average FA, MD, and ICvf values obtained on CC and CST in all

subjects and visits. Specifically, we designated values from reference

data as method A and values from each down-sampled data as

method B.

Within-subjects variability was performed using MedCalc for

Windows, version 20.112 (MedCalc Software, Ostend, Belgium;

https://www.medcalc.org; 2022) on the two most studied bundles

(CC and CST), reconstructed from Basel’s data set. Plots

of ADNI3’s and Sherbrooke’s subjects are reported in the

Supplementary material.

2.7 Total volume of bundles

A quantitative analysis of WM volume between reference and

down-sampled data was included by summing up the volume of all

22 segmented bundles. The volume of each bundle corresponded to

the number of voxels in the bundle mask, which was reconstructed

via TractSeg. We calculated the relative difference between the

WM volume of reference and down-sampled data and derived
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FIGURE 3

Average values in FA in di�erent bundles comparing our three data sets. Colors of boxes represent di�erent data sets: ADNI3 (red), Sherbrooke

(green), Basel (blue). The y-axis refers to the subject distribution of the average values for FA in the following bundles: Anterior and Posterior Body,

CST, IFO, ILF, Isthmus, OR, Rostrum and Genu, SLF, Splenium. The x-axis refers to the three adopted sampling rates.

the distribution across subjects and sessions (Macauley et al.,

2015).

Results of the most relevant metrics are shown in the

following section, including ICvf, FA, and MD. Additional

metrics, i.e., ISOvf, OD, and RD, are included in the

Supplementary material.

The impact of down-sampling on fiber tracts segmentation

was evaluated with a two-sample KS test (α = 0.05) between the

original and the down-sampled protocol. The resulting p-values

were corrected for false discoveries.

3 Results

The comparison between metrics estimated in down-sampled

and original protocols was reported here in four separate

subsections. The first focused more generally on the average value

of bundles; the second compared values in each segment of the

bundles, i.e., their profiles; the third examined the level of variability

and agreement of measurements; the fourth considered the union

of bundles to evaluate the potential WM volume loss during

bundles’ reconstruction.
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FIGURE 4

Average values in MD in di�erent bundles comparing our three data sets. Colors of boxes represent di�erent data sets: ADNI3 (red), Sherbrooke

(green), Basel (blue). The y-axis refers to the subject distribution of the average values for MD in the following bundles: Anterior and Posterior Body,

CST, IFO, ILF, Isthmus, OR, Rostrum and Genu, SLF, Splenium. The x-axis refers to the three adopted sampling rates.

3.1 Bundles’ average value

Here we reported the distribution of the L1 distance between

the average values obtained from the reference and each down-

sampled sequence for each bundle and metric. The results were

expressed as a relative difference of the reference values.

FA: Figure 3 reported that down-sampling at 50% brought the

median L1 distance up to 3.90% and a 95% CI of (1.99, 16.65)%.

The bundles with lower L1 distance were SLF, OR, Isthmus, and

RG, with a median ranging from a maximum of 2.11% and a

95% CI of (1.15, 6.79)% at 10% sampling to 3.15% and a 95%

CI of (2.30, 6.03)% at 50% sampling. The 95% CI was wider in

the Splenium, Anterior, and Posterior Body. Respectively, these

bundles reported values of (1.99, 16.65)%, (1.63, 9.56)%, and (1.80,

12,01)% in ADNI3 data set at 50% sampling.

MD: Figure 4 showed that, at a 50% sampling rate, Sherbrooke

data provided a median of 5.49% with a 95% CI of (2.14, 21.68)%

in the Posterior Body, and ADNI3 performed similarly in the

Spleniumwith 5.18% and a 95% CI of (2.03%, 17.42)%. The median

in other bundles reached around 2.61% with a 95% CI of (1.08,
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FIGURE 5

Average values in ICvf in di�erent bundles comparing our three data sets. Colors of boxes represent di�erent data sets: ADNI3 (red), Sherbrooke

(green), Basel (blue). The y-axis refers to the subject distribution of the average values for ICvf in the following bundles: Anterior and Posterior Body,

CST, IFO, ILF, Isthmus, OR, Rostrum and Genu, SLF, Splenium. The x-axis refers to the three adopted sampling rates.

19.69)% in the worst case; in SLF, the median at any sampling

rate did not go beyond 1.22%. The 95% CI of some CC sections

(Splenium, Anterior, and Posterior Body) was significantly higher,

such as (0.71, 7.26)%, compared to other bundles.

ICvf: findings in Figure 5 suggested that down-sampling up to

30% lead to a median up to 3.26% with a 95% CI of (1.75, 6.64)% in

the Posterior Body, while up to 50% rate values reached up to 3.95%

with a 95% CI of (2.39, 7.80)% in the same bundle. In the Isthmus,

SLFI, SLFII, and RG, the median was lower and, at 50% rate, RG

reached 2.44% with a 95% CI of (1.52, 4.00)%.

Statistical analysis of the average bundle values in all three data

sets and metrics showed p-values > 0.05 for all bundles.

3.2 Bundles’ profile

In the statistical analysis on all data sets, both MD and FA

showed p-values > 0.05, with the only exception of segment 195 of

OR down-sampled at 50% in Sherbrooke (please note that, since we

joined left and right parts of a bundle together, the segments range
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FIGURE 6

Heatmaps showing the amount of segments per bundle with significant p-values in the case of ICvf for ADNI3 (A) and Sherbrooke (B). The x-axis

reports di�erent bundles while the y-axis di�erentiates the sampling rates.

from 1 to 196). In the case of ICvf in Basel, p-values were lower

than the threshold on three segments of the Posterior Body and two

segments of ILF at 10%. In Sherbrooke, the same was reported on

one segment of RG, two of the Anterior and Posterior Body, five

on OR, and eight on the Isthmus, all at 50% sampling. In ADNI3

significant p-values were found in several segments of bundles at 30

and 50%, especially Posterior Body, Isthmus, CST, and SLF.

The heatmaps in Figure 6 compared the number of segments

per bundle with significant p-values in the case of ICvf for ADNI3

and Sherbrooke, and at each sampling rate. Heatmaps obtained for

other metrics and data sets did not report any visible difference

from Figure 6. The distribution of ICvf across subjects in the

Posterior Body (Basel data set) and in the SLFIII (ADNI3 data set)

was illustrated in Figure 7.

3.3 Agreement and variability of sampling
methods

FA: The Bland–Altman plot of the Basel data set (see

Figure 8) revealed a bias in the CC (difference between

methods) increasing with a down-sampling rate from

0.001 to –0.003 and –0.004. The limits of agreement (LoA)

followed the same trend growing from ±0.008 to ±0.009

and up to 0.011 when halving the directions. CST showed

no bias at 10% sampling, going up to –0.004 at 30% and

–0.006 at 50%. LoA grew from ±0.005 to 0.007, reaching

0.010 at 50%.

MD: Figure 9 showed a bias of ±3 × 10−6 in the CC

when down-sampling at a 10% rate, compared to around ±10−6

at higher sampling rates. LoA exhibited growth in accordance

with sampling rates from around 18 × 10−6 to 19 × 10−6

and 23 × 10−6. In CST, the bias seemed to be slightly higher

at 10% sampling rate, while ±1.96 SD limits rose from 13 ×

10−6 at 10% sampling to around 16 × 10−6 and 17 × 10−6 at

higher rates.

ICvf: in CC, we observed no bias at a 10% sampling rate,

while the comparison exhibited a value of 0.004 at 30% and

0.006 at 50% (Figure 10). LoA consistently widened, increasing

the sampling rate from 0.005 at 10% to 0.009 at 30% and

0.021 at 50%. In CST, we noticed a bias of 0.004 at 10%,

going slightly down at 0.002 at 30% and back up to –0.004 at

50%. LoA expanded with sampling rates from 0.005 to 0.013

and 0.022.

3.4 WM volume loss

White matter analysis in Figure 11 indicates that

removing 10% of measures from the reference sequence

induces a WM volume loss (median and 95% CI) of (0.76

± 0.13)% in ADNI3, (0.65 ± 0.17)% in Basel and (1.21

± 0.73)% in Sherbrooke. Increasing the down-sampling

at 30%, the loss in ADNI3 rises to (1.24 ± 0.27)%, in

Sherbrooke to (1.61 ± 0.54)%, and in Basel to (1.35 ±

0.68)%. When halving the directions (sampling rate of

50%), the loss stays on (1.27 ± 0.39)% in ADNI3, on

(1.09 ± 0.50)% in Basel, and reaches (2.09 ± 0.81)% in

Sherbrooke data.

Statistical analysis of the bundle volume across subjects did not

show any significant differences.
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FIGURE 7

Examples of a bundle’s ICvf profile reconstruction: (A) refers to CST in Basel at reference (red) and 10% sampling (blue), (B) refers to SLFIII in ADNI3 at

reference (red) and 50% sampling (green). The x-axis represents the segments of the left and right bundles (196) and the y-axis represents the metric.

4 Discussion

This study showed that it is possible to significantly reduce

dMRI acquisitions with little or no impact on the reliability

of the measurements. This could have an important impact on

the duration of acquisition protocols, and serve as a source of

inspiration to standardize clinical protocols. Our findings were

consistent across three data sets with differentmulti-shell protocols,

and corresponded to the acquisition of: six directions at b = 300

s/mm2, 22 at b = 1,000 s/mm2, and 42 at b = 2,000 s/mm2 in the

Sherbrooke data set, of four directions at b = 500 s/mm2, 34 at b

= 1,000 s/mm2, and 42 at b = 2,000 s/mm2 in ADNI3, and of four

directions at b = 700 s/mm2, 14 at b = 1,000 s/mm2, and 32 at b =

2,000 s/mm2 in the Basel data set.

The choice of an optimal number of diffusion-encoding

directions and/or acquisition scheme is under debate. Hasan et al.

(2001) suggested that more than six directions have no practical

advantage, and in Ni et al. (2006), a higher number of diffusion-

encoding directions presented no clear advantage to estimate FA

and the diffusion tensor. On the other hand, Wang et al. (2011)

proved a higher number of directions can improve the intersession

reliability, and Jones (2004) demonstrated that 20 and 30 diffusion-

encoding directions are needed to estimate FA and the tensor

orientation respectively. Furthermore, in Liu et al. (2014) the

authors confirmed that increasing the number of directions yields

better accuracy and reproducibility. They considered ROIs in the

CC and internal capsule and assessed DTI measurements with

a fixed number of gradient directions (6, 15, and 32). Tournier

et al. (2020) designed an optimal acquisition scheme for neonatal

diffusion MRI, maximizing the sensitivity to the information

carried by the signal. Gaviraghi et al. (2022) and the majority of

the cited works focused on the reconstruction of FA maps on the

whole WM, while our work compared two diffusion models (DTI,

NODDI) in different WM bundles. To the best of our knowledge,

only Lebel et al. (2012) extended such reproducibility study at

the level of white matter bundles. The authors reported clear

disadvantages in acquiring only six directions, such as a reduced

accuracy in the reconstruction of bundle volumes.
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FIGURE 8

Bland–Altman plots of FA average values in CC (top row) and CST (bottom row) for Basel subjects. From left to right each plot in the columns

compares data obtained from reference sequence (AVGREF) and data down-sampled at 10% (AVGM10), 30% (AVGM30) and 50% (AVGM50). The

x-axis represents the mean of values measured by the models, the y-axis their di�erence. Visits of a same subject are plotted using the same marker.

Blue solid lines correspond to the average di�erence while red dashed lines are the 95% limits of agreement.

FIGURE 9

Bland–Altman plots of MD average values in CC (top row) and CST (bottom row) for Basel subjects. From left to right, each plot in the columns

compares data obtained from the reference sequence (AVGREF) and data down-sampled at 10% (AVGM10), 30% (AVGM30) and 50% (AVGM50). The

x-axis represents the mean values measured by the models, and the y-axis their di�erence. Visits of the same subject are plotted using the same

marker. Blue solid lines correspond to the average di�erence, while red dashed lines are the 95% limits of agreement.
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FIGURE 10

Bland–Altman plots of ICvf average values in CC (top row) and CST (bottom row) for Basel subjects. From left to right each plot in the columns

compares data obtained from reference sequence (AVGREF) and data down-sampled at 10% (AVGM10), 30% (AVGM30) and 50% (AVGM50). The

x-axis represents the mean of values measured by the models, the y-axis their di�erence. Visits of a same subject are plotted using the same marker.

Blue solid lines correspond to the average di�erence while red dashed lines are the 95% limits of agreement.

FIGURE 11

Statistical distribution of WM volume relative loss in all subjects and visits, comparing our three data sets. Colors represent di�erent data sets: ADNI3

(red), Sherbrooke (green), Basel (blue). The y-axis refers to the subject distribution of the WM volume relative loss. The x-axis refers to the three

adopted sampling rates.

However, due to the clear lack of standardized approaches,

there is no consensus on the minimum number of directions and

their impact on the reproducibility of measurements. It remains

unclear whether carefully selecting fewer gradient sampling

orientations could provide a better solution than acquiring

redundant data. A limited and clear number of gradient directions

would be beneficial in terms of shorter acquisition times and

address the current lack of a standardized approach to acquisition.

In order to address this need, our findings indicated that the

acquisition of around 50–80 dMRI volumes (instead of 70–110)

was sufficient for an accurate estimate of diffusion metrics’ on all

WM tracts in two of the three data sets (Basel and Sherbrooke). The

accurate estimate of diffusionmetrics’ profile in ADNI3 was limited

to Splenium, RG, OR, ILF, IFO, and Anterior Body. The term dMRI

volume refers to any diffusion-weighted image, acquired with a

particular b-value and gradient direction.

Of note, in Edde et al. (2023) the authors showed that

the variability and reproducibility of measurements based on

tractography are bundle-specific. In line with these results,

our research suggested that the robustness of fewer sampling
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orientations could be related to the bundle under scrutiny. For

example, looking at the different components of SLF (SLFI or

dorsal, SLFII or major, and SLFIII or ventral), multi-shell results

indicated that increasing the sampling rate showed a more evident

impact on the smallest component (SLFIII). Another example is

the CC section, which often presented a distribution with higher

variance and higher median values. Along with size, a curved

and more complex configuration probably had a certain level of

relevance. Moreover, Figures 3–5 showed that some metrics can

lose more information and confidence in specific bundles, as was

already mentioned for DTI measurements in (Lebel et al., 2012).

Consequently, depending on the performance of each bundle, it

might be advisable to adjust the sampling protocol to achieve better

results.

Considering the average value across a bundle might not affect

a metric while the profile could slowly deviate from the reference.

Statistical analysis on DTI measures showed that the distribution

of bundle profiles in original and down-sampled acquisitions do

not show any significant difference. On the other hand, ICvf

exhibited other characteristics. The significant p-values in the case

of three segments of the Posterior Body (and two of ILF) in the

Basel data set at 10% sampling could be explained by a deviation

in the ICvf profile of a few subjects in that exact part of the

bundles (see segments 103–105 in Supplementary Figure S1). The

limited sample size could also be a contributing factor (Faber and

Fonseca, 2014). The significant divergence in the profiles of ADNI3

subjects (Figure 7) might be related to the fact that the data was

acquired across multiple centers (Hatt et al., 2019). Even if ADNI3

protocols were standardized, the different hardware and software

of the systems may have had an impact on the sensitivity of the

downsampled signal.

Moreover, when applying down-sampling on a data set it

is important to investigate any potential loss of WM volume

related to the sampling as a potential confounder. Indeed, the

loss of WM volume is widely reported as a valuable marker to

predict or monitor brain damage (Juhasz et al., 2007; Fletcher

et al., 2013; Andravizou et al., 2019; Conrad et al., 2022). The

volume loss quantified in our analysis is minimal. Hence, the

whole target volume where we estimate different metrics did not

change significantly when acquiring a considerably lower number

of gradient directions. This was further verified by statistical tests

across subjects, which confirmed that the distribution of bundle

volumes from down-sampled data was not significantly different to

the one derived from the reference data.

Multi-shell metrics seemed to suffer at higher sampling rates.

This is visible from both the average values and the profile

assessments. Furthermore, we know that DTI needs a consistently

smaller number of directions (Lebel et al., 2012). Two findings

confirmed this:

1. The average values and profiles analysis indicated a higher

similarity to the multi-shell reference.

2. While scores of the protocol with the lowest number of

directions (Basel) were worse in NODDI metrics, it seemed to

outperform the others in DTI.

Comparable findings were observed in Bland–Altman’s

agreement analysis. While increasing the sampling rate from 10

to 30% and to 50 led to two and four times the size of LoA (i.e.,

significant growth in variability) in multi-shell measurements, DTI

reported more robust values. On the other hand, the estimated

bias was about 2–3 orders of magnitude smaller than the absolute

values obtained for all measurements.

Furthermore, we must consider that some of the selected data

were collected across multiple centers (Stamoulou et al., 2022). This

means that protocols differed not only in terms of the number of

directions acquired but also, for example, in terms of the scanner

type and sequence parameters. Specifically, the ADNI3 data set

(adni.loni.usc.edu) was acquired with three different types of

Siemens scanners (3T Prisma, PrismaFit, and Skyra), and subjects

present an age distribution which significantly differs from that of

Data set 2 and 3. Scanner variability and age (Behler et al., 2021)

might have affected the statistical distribution of results and could

at least partially explain the higher variance of results within the

ADNI3.

It is important to acknowledge some limitations:

1. An intra-session analysis is lacking, so it is not yet clear if

dMRI could be used even more as a longitudinal biomarker

in neurodegenerative diseases by acquiring significantly fewer

directions.

2. The use of only one fiber tracts reconstruction method, since the

diffusion sampling scheme has been demonstrated to have an

impact on tractography (Schilling et al., 2021).

3. The adoption of one image pre-processing pipeline, among

many existing workflows.

4. the lack of gradient non-linearity correction. Taking this effect

into account in future studies could strengthen our results,

especially in terms of reproducibility (Bammer et al., 2003; Tan

et al., 2013).

5 Conclusions

We investigated the possibility of saving acquisition time in

dMRI protocols by concomitantly reducing the number of acquired

directions and estimating reliable metrics. Under the assumption

that sub-sampling the number of directions of a given percentage

translates into saving the same percentage in acquisition time,

our results showed that it is possible to reduce the acquisition

time by 30%, with little or no impact on the reliability of the

measurements. These findings were consistent across three data

sets with different multi-shell protocols, and corresponded to the

acquisition of around 50–80 dMRI volumes instead of 70–110.

Down-sampling seemed to impact the white matter tracts

differently, so that some bundles, such as SLF, were less affected

by down-sampling. The robustness of intra-session down-sampled

data should also be assessed in the future, to further warrant the use

of dMRI in clinical trials and research activities.
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