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The alpha7 nicotinic acetylcholine receptor (α7-nAChR) has has long been

considered a promising therapeutic target for addressing cognitive impairments

associated with a spectrum of neurological and psychiatric disorders, including

Alzheimer’s disease and schizophrenia. However, despite this potential, clinical

trials employing α7-nAChR (partial) agonists such as TC-5619 and encenicline

(EVP-6124) have fallen short in demonstrating su�cient e�cacy. We here

investigate the target engagement of TC-5619 and encenicline in the pig brain

by use of the α7-nAChR radioligand 11C-NS14492 to characterize binding

both with in vitro autoradiography and in vivo occupancy using positron

emission tomography (PET). In vitro autoradiography demonstrates significant

concentration-dependent binding of 11C-NS14492, and both TC-5619 and

encenicline can block this binding. Of particular significance, our in vivo

investigations demonstrate that TC-5619 achieves substantial α7-nAChR

occupancy, e�ectively blocking approximately 40% of α7-nAChR binding,

whereas encenicline exhibits more limited α7-nAChR occupancy. This study

underscores the importance of preclinical PET imaging and target engagement

analysis in informing clinical trial strategies, including dosing decisions.
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positron emission tomography (PET), alpha7, nicotinic acetylcholine receptors,

autoradiography, occupancy study, cognitive impairment

Introduction

The alpha7 nicotinic acetylcholine receptor (α7-nAChR) is a homopentameric ligand-

gated ion channel that is involved in the regulation of cognitive processes in normal

conditions as well as is in the pathophysiology of some brain disorders. The receptor is

composed of five identical α7 subunits, yielding an equal number of binding sites (Dani and

Bertrand, 2007; Li et al., 2011). This receptor is widely distributed in the central nervous

systems (CNS) and found with high densities in regions associated with cognitive functions

(Tribollet et al., 2004;Wessler and Kirkpatrick, 2008). Of note, there is substantial evidence
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for the presence of heteromeric α7-nAChRs in mammalian

CNS, where α7 subunits co-assemble with β2 subunits to

form functional α7β2-nAChR (Wu et al., 2016). The exact

implications of the existence of this receptor are unknown. The

homopentameric α7-nAChR has been investigated as a potential

therapeutic target for addressing cognitive impairments associated

with neurological and psychiatric diseases, including Alzheimer’s

disease and schizophrenia (Wallace and Porter, 2011). Over

the past 20 years, several compounds have been developed to

selectively target the α7-nAChR, demonstrating promising effects

in enhancing cognitive functions in animal models (Thomsen et al.,

2010). However, a significant translational challenge persists, as

these encouraging preclinical outcomes have not translated into

corresponding benefits in human clinical trials (Lewis et al., 2017).

Some notable examples are TC-5619 from Targacept (Figure 1A),

encenicline (EVP-6124) from Forum Pharmaceuticals (Figure 1B),

and SSR180711 from Sanofi (Figure 1C). In vitro, TC-5619 is a full

and potent α7-nAChR agonist reported to be effective in rodent

models of schizophrenia (Hauser et al., 2009). Initially, in an

exploratory 12-week randomized clinical phase 2 trial involving 185

subjects with schizophrenia, TC-5619 showed promising effects on

cognitive endpoints and negative symptoms compared to placebo

(Lieberman et al., 2013). However, in a clinical phase 2 trial lasting

24 weeks, TC-5619 failed to meet the primary outcome measure of

change from baseline on the Scale for the Assessment of Negative

Symptoms (SANS) compared to placebo (Walling et al., 2016).

Additionally, TC-5619 did not demonstrate improvement in the

key secondary measures of cognitive function (ClinicalTrials.gov

identifier: NCT01488929) and further development was stopped

(Targacept, 2013). SSR180711 is a partial α7-nAChR agonist (Biton

et al., 2007) that has been shown to improve long-term and short-

term episodic memory and spatial working memory in rodents

(Pichat et al., 2007). The compound was tested in a placebo-

controlled phase 2 clinical trial, spanning 4 weeks and three

different dosage regimens, in patients withmild Alzheimer’s disease

(NCT00602680). However, the trial was prematurely terminated in

2008 due to an inadequate risk-benefit ratio, as documented on

clinicaltrials.gov. Encenicline is a partial α7-nAChR agonist in vitro

and it reverses a scopolamine-induced memory deficit in vivo in

rats (Prickaerts et al., 2012). Despite encenicline showing effects in

a proof-of-concept, randomized trial in patients with schizophrenia

(Preskorn et al., 2014) and in mild-to-moderate Alzheimer’s disease

patients on functional and cognitive skills compared to placebo

(Deardorff et al., 2015), this outcome was not confirmed in two

larger global clinical phase 3 trials as the trials were put on hold due

to severe gastrointestinal adverse effects (Alzforum, 2016). Further,

encenicline is so far the only compound targeting the α7-nAChR

that has been evaluated in a large-scale clinical phase 3 trial in

schizophrenia patients, but no effect could be seen (Brannon, 2019)

[see review by Terry and Callahan (2020)]. The lack of success in

clinical trials involving α7-nAChR ligands in Alzheimer’s disease

or schizophrenia has reduced the enthusiasm for this target and

consequently, many pharmaceutical companies have discontinued

their research efforts in this field (Bertrand and Terry, 2018).

However, before discarding α7-nAChR as a viable target,

it is worth noting that despite several large clinical trials,

little information regarding the compounds’ blood-brain barrier

permeability, target involvement and the level of α7-nAChR

occupancy has been published. For these purposes, molecular brain

imaging emerges as a powerful tool capable of providing invaluable

insights into target engagement and occupancy. Several α7-nAChR

positron emission tomography (PET) radioligands have so far been

tested: 18F-ASEM was developed as an α7-nAChR antagonist with

suitable binding properties (Horti et al., 2014) and tested in 21

healthy non-smoking volunteers and in 6 males with schizophrenia

(Wong et al., 2014, 2018). We have also validated 11C-NS14492

(Figure 1D) as a selective α7-nAChR agonist PET radioligand

capable of measuring α7-nAChR occupancy of SSR180711 and

unlabelled NS14492 in the pig brain (Ettrup et al., 2011b). This

compound has been further described and validated as a tritiated

in vitro radioligand (Magnussen et al., 2015). In our study, we

chose pigs as experimental animal due to their physiological

and anatomical similarities to humans, facilitating translational

relevance. Furthermore, the presence of the nAChR in the pig

brain has been well-documented, particularly validated through

numerous PET experiments, including a recent study employing
18F-ASEM, confirming the comparability of nAChR expression

patterns between humans and pigs (Donat et al., 2020). Here,

we report the effect of TC-5619 and encenicline on 11C-NS14492

binding in the pig brain using both in vitro autoradiography

and in vivo PET imaging to elucidate the target occupancy for

these molecules.

Methods

Compounds

11C-NS14492 was produced as described previously (Ettrup

et al., 2011b). Briefly, the radioligand was produced by transferring
11C-methyl triflate in a stream of helium to a vial containing

desmethyl-NS14492 fumarate dissolved in 300 µL of acetone

and 10 µL of 1M tetrabutylammonium hydroxide in methanol

before being heated to 60◦C for 3min prior to high-performance

liquid chromatography purification. The specific radioactivity of

the radioligand was in the range of 84–152 GBq/µmol, calculated

at the end of synthesis, and the radiochemical purity was >99%

(n = 8). Encenicline, TC-5619, SSR180711, desmethyl-NS14492,

and NS14492 were synthesized at NeuroSearch A/S, (Ballerup,

Denmark). All other reagents were purchased from Sigma-Aldrich

(Brøndby, Denmark) and were of analytical grade.

Animal procedures

All animal procedures were approved by the Danish Council

for Animal Ethics (journal no. 2012-15-2934-00156). For this study,

four female Danish Landrace pigs (Sus scrofa) (mean weight ±

SD, 19 ± 3 kg) were used. The animals were sourced from a local

farm, placed in standard housing conditions, and given a minimum

acclimatization period of 1 week in the veterinary facilities. At the

day of the experiment, but before scanning, the pigs were treated

with midazolam [0.5 mg/kg intramuscular (i.m.)] and anesthesia

was subsequently induced with an i.m. injection of 1 mL/kg
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FIGURE 1

Chemical structures of (A) TC-5619 (N-((2S,3R)-2-(pyridin-3-ylmethyl)quinuclidin-3-yl)benzofuran-2-carboxamide) (B) Encenicline [(R)-7-chloro-

N-(quinuclidin-3-yl)benzo[b]thiophene-2-carboxamide] (C) SSR180711 (4-bromophenyl 1,4-diazabicyclo[3.2.2]nonane-4-carboxylate) and (D)
11C-NS14492 [2-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-5-(1-(methyl-11C)-1H-pyrrol-2-yl)-1,3,4-oxadiazole].

Zoletil veterinary mixture [6.25 Pt. xylazine (20 mg/mL) + 1.25 Pt.

ketamine (100 mg/mL) + 2 Pt. butorphanol (10 mg/mL) + 2 Pt.

methadone (10 mg/mL); Virbac, Kolding, Denmark]. Hereafter,

anesthesia was maintained with a constant propofol infusion

[10 mg/kg/h intravenous (i.v.); B. Braun, Melsungen, Germany].

During anesthesia, animals were endotracheally intubated and

ventilated. Venous access was granted through the peripheral milk

veins, and an arterial line for blood sampling was inserted in the

femoral artery after a minor incision. Vital parameters (heart rate,

body temperature, blood pressure, oxygen saturation, and end-tidal

pCO2) were continuously monitored during the scans. The pigs

were euthanized immediately after scanning with an i.v. injection

of pentobarbital.

In vitro autoradiography

In vitro autoradiography was performed on post-mortem

brain tissue from pigs. Coronal 12µm sections of pig frontal

cortex and thalamus/parietal cortex were cut on a HM500OM

Cryostat (Microm Intl GmbH, Walldorf, Germany) at −20◦C,

thaw-mounted on SuperFrost Plus glass slides (Thermo Scientific,

Hvidovre, Denmark), air-dried, and stored at −80◦C until use.

Autoradiography was conducted at room temperature with 10 nM
11C-NS14492 for total binding, and non-specific binding was

determined in the presence of either TC-5619 or encenicline or

SSR180711 (10µM) used in pre-incubation buffer (50mM tris–

HCl, 4mM CaCl2, 0.1% bovine serum albumin (BSA), 120mM

NaCl, 5mM KCl, pH 7.4). Sections were then incubated for

30min in 50mM tris-HCl buffer (pH 7.4) containing 120mM

NaCl, 5mM KCl, 1mM MgCl2, 2.5mM CaCl2, 0.1% BSA, and

10 nM 11C-NS14492 and washed 2 × 2min in ice-cold buffer

followed by 20 seconds in ice-cold distilled water. Sections were

exposed to an imaging plate (IP) (Fujifilm, Tokyo, Japan) in a

BAS-2040 cassette overnight. The IP was scanned in a BAS-2500

(Fujifilm) image reader. Image analysis was done with ImageJ

analysis software (http://rsb.info.nih.gov/ij/).

In vivo PET imaging

PET experiments were performed with a high-resolution

research tomography (HRRT) scanner (SiemensMedical Solutions,

Munich, Germany) as previously described (Ettrup et al., 2011b).

Briefly, 11C-NS14492 was given as an i.v. bolus injection (injected

dose, 458 ± 93 MBq; injected cold mass, 0.8 ± 0.4 µg, n = 8), and

the pigs were scanned at baseline for 90min in list mode. After a

baseline scan, the animals were given a bolus injection of either

TC-5619 (3 mg/kg i.v., n = 2) or encenicline (3 mg/kg i.v., n =

2) dissolved in 10mL saline and rescanned 30min later using the

same PET protocol. Whole blood radioactivity was continuously

measured for the first 30min after radioligand injection using

an ABSS autosampler (Allogg Technology, Strängnäs, Sweden).

Additionally, manual sampling of arterial whole blood (8–13mL)

occurred at intervals of 2.5, 5, 10, 20, 30, 50, 70, and 90min after

injection. Subsequently, radioactivity levels in both whole blood

and plasma were quantified using a Cobra 5,003 well counter

(Packard Instruments).

The PET data was reconstructed as previously reported (Ettrup

et al., 2011a), and the individual summed images of all counts

during the 90-min scan time were co-registered to a standardized

MRI atlas of the Danish Landrace pig brain using the software

Register, as previously described (Kornum et al., 2009). Radioactive

concentrations (Bq/mL) were extracted from specific brain regions

of both hemispheres [cerebellum, cortex, hippocampus, thalamus

(average of lateral and medial), and striatum (average of caudate

and putamen)]. Time-activity curves of radioactive concentrations

in volumes of interest were normalized to the injected dose

and adjusted for body weight. 11C-NS14492 metabolism was

measured with HPLC analysis with online radioactivity detection,

as previously described (Gillings, 2009). For kinetic modeling

purposes, an average metabolite curve for all 8 scans was generated

and used to correct plasma activity in the individual scans for

the parent compound fraction, thereby obtaining the 11C-NS14492

arterial input function. Volumes of distribution (VT) for selected

regions were calculated using PMOD software (version 3.0; PMOD
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Technologies Inc.) applying a Logan graphical analysis with arterial

input function (Logan et al., 1990). Because there is no suitable

brain reference region devoid of α7-nAChRs, occupancy was

measured using the revisited Lassen plot (Cunningham et al.,

2010). In the four blocking scans, occupancies of the receptor

by encenicline or TC-5619 were calculated as the slope of the

occupancy plot visualizing VT(baseline) – VT(blocking) as a linear

function of VT(baseline) in the specific brain regions (cortex,

thalamus, striatum, cerebellum, and hippocampus). The non-

displaceable distribution volume (VND) was determined by the

x-intercept of the regression line.

Statistical analyses

All statistical tests were performed using GraphPad Prism

version 6.0 (GraphPad Software, San Diego, USA). P-values

below 0.05 were considered statistically significant. Results are

presented as mean ± standard error of the mean (SEM) unless

stated otherwise.

Results

Regional binding and blocking e�ects of
TC-5619, encenicline, and SSR180711 in
cortical pig sections

To investigate the binding properties of TC-5619, encenicline

and SSR180711 we performed in vitro autoradiography in coronal

pig sections using 10 nM 11C-NS14492 (Figure 2). We observed

laminar binding in cortical layers and less binding in white matter.

Further, we observed an almost complete blocking with 10µM of

all three compounds: TC-5619, encenicline, and SSR180711.

Imaging in vivo binding profiles and
blocking e�ects of TC-5619 and
encenicline

After a bolus injection of 11C-NS14492, we observed

heterogeneous brain uptake of radioactivity (Figure 3) with the

highest uptake in thalamus and cortical areas, intermediate

uptake in the striatum and the lowest uptake in the cerebellum.

Pre-treatment with 3 mg/kg TC-5619 or 3 mg/kg encenicline was

associated with a lower VT in all measured regions (Figure 4A).

Whereas pre-treatment with 3 mg/kg TC-5619 resulted in an

occupancy of 38%−42% (Figures 4C, D), pre-treatment with 3

mg/kg encenicline resulted in less than in average 10% occupancy.

In one pig, the slope of the linear regression was not significantly

different from zero (Figures 4E, F). The average VND was 5.3± 1.7

mL/cm3 (n= 3).

After i.v. injection, the parent fraction of 11C-NS14492 declined

rapidly, and after 7min, approximately 50% of radioactivity in

plasma was attributable to parent 11C-NS14492 (Figure 4B). We

detected no radiolabelled lipophilic metabolites of 11C-NS14492 in

the plasma, as indicated by lack of distinct peaks in the lipophilic

range on the radiochromatograms (data not shown).

Discussion and conclusion

Here, we present in vitro receptor autoradiography and in

vivo 11C-NS14492 PET data on α7-nAChR ligands in the pig

brain. The in vitro autoradiography revealed laminar binding in

cortical layers with a clear discrimination between gray and white

matter binding, consistent with previous studies (Gotti et al.,

2006). The three α7-nAChR ligands TC-5619, encenicline, and

SSR180711 were all able to block 11C-NS14492 binding in vitro,

supporting their effectiveness as competitive ligands for the α7-

nAChR orthosteric site.

With in vivo PET imaging we find that 3 mg/kg TC-5619

given i.v. results in 40% occupancy at the α7-nAChR whereas

the same dose of encenicline results in negligible occupancy. By

using an in vitro homogenate binding assay with 3H-NS14492,

we previously found K i values for TC-5619 and encenicline of

0.063 nM and 0.194 nM respectively (Magnussen et al., 2015). That

is, given the observed occupancy of TC-5619, one could expect

to find that a dose of 3 mg/kg encenicline would result in 16%

α7-nAChR occupancy.

Several factors could explain the low in vivo occupancy of

encenicline in the pig brain. If encenicline displayed a very rapid

drug clearance it may have insufficient time to be taken up by

the brain. We know from rats that encenicline has good brain

penetration after oral administration (0.3 mg/kg), with brain-to-

plasma ratios of approximately 2 between 1 and 4 h and 5 at

8 h (Prickaerts et al., 2012), indicating that the plasma clearance

of encenicline is considerably faster than the brain uptake and

receptor equilibration. In humans, and after oral administration,

encenicline has a long plasma half-life of 50–65 h (Barbier et al.,

2015), but pharmacokinetic differences between humans and

pigs could be a factor as well as differences between oral and

intravenous administration. Another explanation could lie with the

known interspecies differences in blood-brain barrier permeability

for compounds like encenicline and TC-5619 among rats, pigs,

and potentially humans (Syvanen et al., 2009; Deo et al., 2013;

Stanimirovic et al., 2015). This theory could partially explain

the reason for encenicline’s clinical trial failure. Furthermore, an

extensive review of the existing literature and public domain

resources has revealed no documented evidence demonstrating the

ability of encenicline to cross the blood-brain barrier in humans.

Our investigation in the pig model reveals that TC-5619

effectively penetrates the blood-brain barrier and exhibits

significant binding to the α7-nAChR with a reasonable occupancy.

However, it is noteworthy that no prior studies have definitively

established an optimal range of α7-nAChR occupancy necessary for

eliciting therapeutic effects. This lack of established benchmarks

raises the possibility that the failure of TC-5619 to produce

significant pro-cognitive effects in clinical trials may stem from the

selection of suboptimal dosages. Interestingly, previous research on

selective α7-nAChR agonists, including encenicline (Keefe et al.,

2015), TC-5619 (Hauser et al., 2009), as well as other compounds

such as AZD0328 (Castner et al., 2011), DMXB-A (Olincy et al.,

2006), and PHA543613 (Yang et al., 2013) has indicated a trend

Frontiers inNeuroimaging 04 frontiersin.org

https://doi.org/10.3389/fnimg.2024.1358221
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Magnussen et al. 10.3389/fnimg.2024.1358221

FIGURE 2

In vitro autoradiography with 11C-NS14492 in 12µm coronal pig sections containing thalamus (upper panel) and frontal cortex (lower panel). Total

binding (TB) was measured with 10nM 11C-NS14492. Non-specific binding shown with TC-5619 (10µM), Encenicline (10µM) and SSR180711

(10µM).

FIGURE 3

Representative sagittal PET images of 11C-NS14492 PET scans before and after TC-5619 pre-treatment. Summed and averaged over 0–90min PET

image (top panel) overlaid MRI-based pig brain atlas (bottom panel). SUV; standardized uptake value.

where the pro-cognitive effects peak at lower doses, following

an inverted U-shaped dose-response curve. This phenomenon

suggests that while lower doses may elicit optimal cognitive

enhancement, escalating doses beyond this threshold could lead

to diminishing effect or even receptor desensitization, thereby

limiting further cognitive improvement. The implications of this

dose-response pattern are profound, particularly in the context

of human clinical trials. The absence of a clear understanding of

optimal dosing presents a considerable challenge, underscoring the

need for robust pre-clinical tools for dose finding.

Our study is not without limitations. First, it was not possible to

measure drug concentrations during the PET studies so an eventual

ultra-fast drug metabolism of encenicline cannot be excluded. As

discussed above, this could potentially result in an underestimation
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FIGURE 4

(A) Logan plot VT ’s of
11C-NS14492 in five brain regions are shown at baseline and after intervention with EVP-6124 (Encenicline) (3 mg/kg i.v.

administered 30 minutes before second scan) or TC-5619 (3 mg/kg i.v. administered 30min before second scan). Bars indicate mean ± SEM. (B)

Relative radioactive parent compound in pig plasma as a function of time after i.v. injection of 11C-NS14492. Average of measurements from 8 PET

scans is shown. Baseline scans (black, n = 4) and challenge scans (gray, n = 4) with 3 mg/kg Encenicline (n = 2) or 3 mg/kg TC-5619 (n = 2) is shown.

Solid lines (black and gray) correspond to a single exponential decay function fitted to the data. (C–F) Occupancy plots of 11C-NS14492 regional left

and right VT ’s at baseline and in intervention scan for individual pigs. Receptor occupancy by EVP-6124 (Encenicline) (C, D) or TC-5619 (E, F) is

measured as slope of regression line. 11C-NS14492 VND is found as x-axis intercept. Statistical test results (P-values) for slope not equal to zero is

shown for the individual regression lines. H = cortex; • = thalamus; N = cerebellum; � = hippocampus; � = striatum.

of its occupancy. Secondly, only 4 animals were used in total

limiting the statistical power of the study. However, each animal

served as its own control, and we measured five distinct occupancy

regions in each animal. Thirdly, we administered both TC-5619 and

encenicline at 3 mg/kg but cannot exclude that an even higher dose

of encenicline could have returned a larger occupancy.

In conclusion, we find that the two α7-nAChR ligands TC-

5619 and encenicline, when given at equal doses, display different

α7-nAChR occupancy in vivo in the pig brain. Our findings

underscore the significance of utilizing PET radiotracers in CNS

pre-clinical drug development in assessing crucial factors such

as blood-brain barrier permeability and target engagement, as

well as in aiding dose finding for potential therapeutic agents.

By proposing the establishment of target occupancy through PET

experiments prior to embarking on clinical trials, we advocate

for a more precise dosing strategy for emerging α7-nAChR

selective drug candidates. This proactive approach has the potential

to mitigate uncertainties surrounding dosing regimens, thereby

enhancing the likelihood of therapeutic success while minimizing

adverse effects.
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