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Data decomposition by Independent Component Analysis (ICA) is commonly applied

to biophysical and neurophysiological data to remove artifacts and/or separate brain source

activity, for example, in electroencephalographic (EEG) and fMRI data (Makeig et al., 1995;

McKeown et al., 1998). ICA takes a data matrix as input (EEG time courses or fMRI

maps) to extract component “activation” (component-time course for EEG or component

maps for fMRI) defined by an “unmixing” matrix. By taking the inverse of the unmixing

matrix, the original data matrix can then be expressed as a linear combination of these

component “activations.”

However, ICA, as a blind source separation method, should not be applied blindly. There

are several assumptions necessary to justify applying independent component analysis (ICA)

to given data.

• First, ICA assumes that the recorded signals are a linear mixture of source signals

that are statistically independent (for EEG, temporally independent; for fMRI, spatially

dependent). In practice, when applied to EEG or similar data, ICA can extract

components representing brain and non-brain (artifact) sources that are maximally but

not absolutely independent (Makeig et al., 1995; Delorme et al., 2012). Similarly, when

applied to fMRI data, the component voxel maps need not be perfectly independent.

• Second, successful ICA decomposition requires that the source signals (or map

weights) are not Gaussian distributed. This is usually not an issue for biological data

since physiological and neurophysiological source processes are not expected to have

perfectly Gaussian probability density distributions.

• Third, ICA can separate sources whose spatial projection patterns (for EEG) or time

courses (for fMRI) remain fixed in the data.

• Finally, most ICA algorithms expect that the number of sources contributing to the data

is at least equal to the number of channels provided as input, and that each channel is

not a linear mixture of data in other channels.

Let us provide an example for this last assumption. Suppose one has two EEG source

signals recorded in three scalp channels (each a linear mixture of the two sources). Here,

ICA decomposition will attempt to find the same number of components as the number

of channels given as input (i.e., three components), though as the input data only contains
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two sources, it will prove unable to do so. Similarly, when there are

three sources, but one of the three channels is a linear combination

of the other two channels (for example, their difference), then ICA

decomposition will also fail.

In both cases, we say that the data matrix is rank-deficient:

the activity of at least one channel is a linear combination

of the other channel. To fix that issue, one of the channels

could be dropped, or PCA could be applied to reduce the

input data dimensionality, for example, by removing the PCA

components with the smallest strengths in the data (i.e., the smallest

eigenvalues). However, without such preprocessing, most ICA

algorithms (and, in particular, the Infomax ICA algorithm used

by Kim et al., 2023) will fail, as they are not designed to handle

rank-deficient data.

However, these facts lead Kim et al. (2023) to claim that the

Infomax ICA algorithm contains a “bug,” and to claim that the

bug appears when decomposing re-referenced or interpolated EEG

data. Here, the term “ICA bug” is misleading. When the raw

data are first re-referenced or interpolated in preparation for ICA

decomposition, as described in Kim et al. (2023), they are made

rank deficient. For example, in the common average reference

procedure, at each data sample, the sum of all channels is subtracted

from each channel. The sum of all channels at any sample is thus 0,

for example, with 3 channels A, B, and C, then at each time point A

+ B + C = 0. This makes the data rank deficient, as each channel

is equal to minus the sum of all others (for example, A = –B – C),

and Infomax ICA was not designed to process rank-deficient data.

Note that this or any correctly-performed channel re-referencing

may reduce the data rank. This result is not dependent on incorrect

re-referencing, as suggested by Kim et al. (2023).

Kim et al. (2023) point out that the function that checks the

rank of the data before running Infomax ICA may give inaccurate

results, possibly leading to ICA decomposition being applied to

rank-deficient matrices This will yield what they term “ghost

components”—a fact they refer to as an ICA “bug.” However, the

function that fails to estimate the rank of the data correctly is

not a part of the ICA algorithm. As we show below, this function

may fail to detect that the data are rank deficient (or, effectively

rank deficient) because of inherent digital rounding errors and/or

MATLAB implementation issues.

Many scientific calculations require using real numbers with

high precision, but digital computers can only represent these

numbers with a finite number of bits. Single-precision floating-

point arithmetic uses 32 bits to represent a number (1 bit

for the sign, 8 bits for the exponent, and 23 bits for the

mantissa). Double-precision floating-point arithmetic uses 64

bits to represent a number (1 bit for the sign, 11 for the

exponent, and 52 for the mantissa). Double-precision arithmetic

provides higher precision and a wider range of representable

numbers than single-precision arithmetic, but requires more

computer memory and other hardware resources. Using single-

precision arithmetic can produce rounding errors, truncation

errors, and other numerical instabilities that can significantly

affect the accuracy and reliability of many scientific computations,

including digital filtering (Akbarpour and Tahar, 2007). However,

double-precision arithmetic is only less often immune to

this problem.

To assess how rank computation is affected by numerical

precision, we used publicly available data from an auditory oddball

task comprising 39 64-channel data files from 13 subjects, each

subject performing three runs [dataset ds003061 on nemar.org

(Delorme et al., 2022)]. We imported the raw data, converted it

to double precision, removed non-EEG channels and then filtered

the EEG data above 0.5Hz. Here we used the default Hamming

windowed, zero-phase, and non-causal sinc FIR filter in the Firfilt

plug-in (v2.6) in EEGLAB (Delorme and Makeig, 2004). Filter

order was 1,691 points; transition bandwidth, 0.5Hz. Next, we

converted the data to average reference by (at each time point)

subtracting the all-channels mean from each channel, thereby

reducing the data rank by 1 and thus making the matrix rank

deficient—and thereby unsuitable for ICA decomposition.

We then assessed whether it was possible to detect that the data

matrix was no longer full rank (using MATLAB, 2022b running

on the Expanse HPC resource). Applying PCA decomposition, the

smallest eigenvalue, which should theoretically be 0, was not exactly

0 because of rounding errors introduced by performing the digital

arithmetic. Across the 39 data files, the least eigenvalues were 0.057

± 0.08 for single precision data and 0.0051 ± 0.0098 for double

precision data. We then performed a parametric sign test to assess

whether these results for single and double-precision computation

differed systematically. This showed that the eigenvalues of the

double-precision data were systematically (p < 10−11) closer to 0

than for the single-precision data.

Data rank can also be determined using a second method that

applies PCA to the channel covariance matrix. In this case, the

least eigenvalues were smaller (0.023 ± 0.11 for single precision,

6∗10−9 ± 2.8∗10−9 for double precision). Again, a sign test

showed that the computed eigenvalues of the double-precision

data were systematically (p < 10−11) closer to 0 than for the

single-precision data. Thus, applying PCA to the covariance matrix

provided more accurate results, especially when applied to double-

precision data. As an important note, these numbers proved

inconsistent across platforms and MATLAB versions. While the

mean for single precision data of the first method was 0.057 on

the Expanse HPC resource (MATLAB, 2022b), it was 0.01 on a

Fedora core Xeon workstation (MATLAB, 2023a), and 0.11 on

Macbook Pro M1 (MATLAB, 2023b). Smaller differences were

also observed across the double-precision results. This highlights

the well-established fact that numerical precision varies across

platforms and numerical libraries.

Kim et al. (2023) argue that the function detecting rank-

deficientmatrices that raises an issue for EEG data decomposition is

the pop_runica function of the EEGLAB software package—which

calculates the rank of the (double precision) data and if needed

reduces its dimensionality using PCA (i.e., when the input data are

not full rank), then calls the Infomax ICA decomposition function

runica. The pop_runica function calculates rank by applying the

two methods described above to the first 3,000 samples of the data

(to reduce computation time).

In the first method using the MATLAB rank function, data

rank is computed by performing a singular value decomposition

of the data and then counting the number of eigenvalues that

exceed a threshold (the data- and computer-dependent numerical

precision of the maximum eigenvalue times the number of EEG
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data samples). This strategy often fails when applied to EEG data

recordings. For example, it fails on the 39 EEG recordings above,

returning a rank of 64 instead of 63 when the data are double

precision. Using all the data points (instead of the first 3,000 as

in the pop_runica function) returns the same result. Surprisingly,

applied to the same data in single-precision, the same rank function

returns the correct data rank (63) for 23 of the 39 datasets,

but dramatically underestimates the rank for the other 16. The

second MATLAB rank computation method, computed from the

eigenvalues of the covariance matrix, uses a fixed threshold of 10−7.

This method accurately estimated the rank (63) for all 39 EEG

recordings above in double and single precision.

In its original implementation, the EEGLAB pop_runica

function selected the maximum of the ranks computed using the

two methods described above. Kim et al. (2023) proposed the use

of the minimum of the two values, since (as for the example data

treated here) the first method tends to overestimate data rank. As

of September 2023 (EEGLAB 2021.1), the EEGLAB pop_runica

function does use this minimum to estimate data rank.

EEGLAB users should note that the EEGLAB tutorials do not

rely on the accuracy of the Matlab rank function, as problems

associated with computing the rank of EEG data have been known

for more than a decade, and users are advised to input explicitly the

rank of the input EEG matrix, as can typically be inferred from the

operations performed on the raw data (e.g., data re-referencing or

scalp channel interpolation) in preparation for ICA decomposition.

In conclusion, although Kim et al. (2023) did propose a useful

data rank estimation improvement (in pop_runica), the title of

their report is misleading to potential ICA users—this is not an

“ICA bug.”
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