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Background: Posttraumatic stress disorder (PTSD) and mild traumatic brain

injury (mTBI) share overlapping symptom presentations and are highly comorbid

conditions among Veteran populations. Despite elevated presentations of PTSD

after mTBI, mechanisms linking the two are unclear, although both have

been associated with alterations in white matter and disruptions in autonomic

regulation. The present study aimed to determine if there is regional variability

in white matter correlates of symptom severity and autonomic functioning in a

mixed sample of Veterans with and without PTSD and/or mTBI (N = 77).

Methods: Di�usion-weighted images were processed to extract fractional

anisotropy (FA) values for major white matter structures. The PTSD Checklist-

Military version (PCL-M) and Neurobehavioral Symptom Inventory (NSI) were

used to determine symptom domains within PTSD and mTBI. Autonomic

function was assessed using continuous blood pressure and respiratory sinus

arrythmia during a static, standing angle positional test. Mixed-e�ect models

were used to assess the regional specificity of associations between symptom

severity and white matter, with FA, global symptom severity (score), and white

matter tract (tract) as predictors. Additional interaction terms of symptom

domain (i.e., NSI and PCL-M subscales) and loss of consciousness (LoC) were

added to evaluate potentialmoderating e�ects. A parallel analysis was conducted

to explore concordance with autonomic functioning.

Results: Results from the two-way Score × Tract interaction suggested

that global symptom severity was associated with FA in the cingulum

angular bundle (positive) and uncinate fasciculus (negative) only, without

variability by symptom domain. We also found regional specificity

in the relationship between FA and autonomic function, such that

FA was positively associated with autonomic function in all tracts

except the cingulum angular bundle. History of LoC moderated the

association for both global symptom severity and autonomic function.
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Conclusions: Our findings are consistent with previous literature suggesting

that there is significant overlap in the symptom presentation in TBI and PTSD,

and white matter variability associated with LoC in mTBI may be associated with

increased PTSD-spectra symptoms. Further research on treatment response in

patients with both mTBI history and PTSD incorporating imaging and autonomic

assessmentmay be valuable in understanding the role of brain injury in treatment

outcomes and inform treatment design.
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1 Introduction

Posttraumatic stress disorder (PTSD) and traumatic brain

injury (TBI) are heterogenous disorders with overlapping

symptoms that are overrepresented in active-duty military

and Veteran populations. According to the 2008 Rand Report,

comorbid PTSD and TBI were seen at a rate of 7%−76% in military

members returning from Iraq and Afghanistan (Tanielian et al.,

2008), and those with a TBI were three times more likely to be

diagnosed with PTSD (Carlson et al., 2011). These conditions are

associated with similar symptoms such as memory impairment

(Dolan et al., 2012), sleep disturbance/fatigue (Gilbert et al., 2015),

emotional lability (O’Neil et al., 2017), depressed mood (Isaac

et al., 2015), increased substance use (Miles et al., 2015), and

suicidal ideation (Bahraini et al., 2013). Additionally, the triad

of depression, history of military mild TBI (mTBI), and PTSD is

associated with greater functional disability and unemployment

(Lippa et al., 2015; Amick et al., 2018). There are pathophysiological

similarities in mTBI and PTSD in that they are both linked to

neuroinflammatory, excitotoxic, and oxidative processes that are

associated with white matter changes in the brain (Kaplan et al.,

2018). With such symptom convergence, similar pathophysiology,

and high co-occurrence, it is challenging to disentangle effects of

TBI and PTSD and further whether and how TBI contributes to

the expression of PTSD. Mechanisms underlying interactions in

these conditions remain unclear.

Factor analyses of self-reported symptoms in TBI and PTSD

have underscored the difficulty in dissociating effects of co-

morbid conditions. The Neurobehavioral Symptom Inventory

(NSI; Cicerone and Kalmar, 1995), a self-report measure of post-

concussive symptoms, has been found to assess four underlying

symptom constructs (i.e., affective, cognitive, somatosensory, and

vestibular), based off best fit models from a sample of National

Guard members and Veterans with and without history of

mTBI and TBI (all severities), respectively, even when controlling

for PTSD (Benge et al., 2009; Vanderploeg et al., 2015).

However, correlations between post-concussive symptoms and

PTSD symptoms (i.e., re-experiencing, avoidance, hyperarousal,

and negative alterations in cognition or mood) are high, possibly

due to both overlapping pathophysiology and item characteristics

as−15% of items have direct crosswalks to items on common PTSD

self-report measures (O’Neil et al., 2021; Scimeca et al., 2021).

Furthermore, military service members diagnosed with both PTSD

and TBI tend to have greater PTSD symptom severity and higher

rates of disability in comparison to those with PTSD only (Lippa

et al., 2015). The overlap in symptom presentation and heightened

severity of PTSD is possibly due, in part, to commonly affected

brain networks in TBI that may contribute to similar symptoms to

PTSD as well to increased expression of symptoms of PTSD.

In mild-to-moderate TBI, the observed variability in white

matter is likely due to some combination of both premorbid

vulnerability and secondary injuries, as direct, primary injuries

(e.g., hemorrhage) are relatively less common (Blennow et al.,

2012). However, diffuse axonal injury (DAI) via shearing injury

is still possible in this population. Notably, frontolimbic pathways

responsible for executive functioning and emotion regulation are

some of the most vulnerable areas for damage (Wright et al.,

2017; Badea et al., 2018; Kulkarni et al., 2019). Following injury,

a multi-faceted neurometabolic cascade (i.e., secondary injuries)

occurs in which there is a depolarization of the neuron followed by

dysregulated glutamate release, thereby triggering a surge in energy

demand and a temporary metabolic crisis, contributing to further

axonal damage (Giza and Hovda, 2014); this is detectable in blood,

even in mTBI (Wang et al., 2021). This is the proposed substrate for

acute post-mTBI symptoms with other factors such as age, history

of prior concussion, and comorbid neurological and psychiatric

conditions moderating recovery (Bonfield et al., 2013; Karr et al.,

2014).

While PTSD is thought to be a predominately psychiatric

condition, there have been reports of white matter alteration

in PTSD, although the mechanisms for these changes are

not fully understood. In recently deployed military service

members, reduced fractional anisotropy (FA; the most common

diffusion-based indicator of underlying white matter structure)

of frontolimbic white matter tracts (e.g., the uncinate fasciculus)

was associated with startle and subthreshold PTSD symptomology

(Costanzo et al., 2016). Further, in a study comparing civilians

and Veterans with mTBI, Davenport et al. (2016) found that

environment in which mTBI occurred was not determinant

of weaker FA connections but that lifetime history of PTSD

significantly interacted with deployment mTBI. Contrasting these

findings, numerous diffusion-weighted imaging (DWI) studies of

people with comorbid PTSD and TBI found no or little difference

among common DWI metrics, Bazarian et al. (2013), Petrie et al.

(2014), Lopez et al. (2017), Yeh et al. (2017), Bolzenius et al. (2018),

and Santhanam et al. (2019), inconsistent significant regions of
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interest (ROI), and little evidence tying an association between

DWI measures and PTSD with either small effect size or low

predictive variance (Bazarian et al., 2013; Lepage et al., 2018).

However, it is widely acknowledged in the literature that the high

cooccurrence of PTSD and mTBI can exacerbate one another both

neurophysiologically and symptomatically, but the mechanisms are

not yet fully understood (Daniels et al., 2013; Davenport et al., 2016;

O’Doherty et al., 2018; Santhanam et al., 2019).

Studies investigating the neurobehavioral outcomes following

mTBI have consistently found that the presence of comorbid PTSD

is linked to poorer results on a range of assessments, including

self-reports of emotional regulation and global functioning (e.g.,

social engagement, disability) (Pietrzak et al., 2009; Macera et al.,

2012; MacDonald et al., 2014; Combs et al., 2015; Haagsma

et al., 2015; Jackson et al., 2016). Following TBI, dysfunction

within fronto-limbic pathways may impact the ability to inhibit

down-up neurophysiological reactivity (i.e., fight-flight, behavioral

immobilization) expressed in PTSD (Williamson et al., 2013). This

failure of inhibition may lead to disruptions in autonomic systems

(Shah et al., 2013), increasing the effects of chronic stress on

overall health and daily functioning. Autonomic dysregulation is

a core feature of PTSD, criterion D. Hyperarousal symptoms are

characterized by increased restlessness, startle response/stressor

reactivity, and decreased sleep quality. Chronic hyperarousal is

associated with accelerated physiological aging as evidenced by

increased DNA methylation (Wolf et al., 2016). While criterion D

is typically assessed with self-report, objective autonomic measures

are different in patients with PTSD. High frequency heart rate

variability, an index of vagal contributions to interbeat variability

of the heart, is lower in patients with PTSD (Schneider and

Schwerdtfeger, 2020), and, furthermore, responsive to successful

treatment with psychotherapy (Shah et al., 2013). High frequency

heart rate variability is associated with a variety of health

outcomes; lower heart rate variability is associated with metabolic

risk (Wulsin et al., 2015), pulmonary disease (Alqahtani et al.,

2023), cardiovascular disease, and all-cause mortality (Jarczok

et al., 2022). Parasympathetic control is also a critical system

in inhibiting sympathetic nervous system response to stress, aka

the vagal brake (Porges, 2001; Thayer and Lane, 2009). Frontally

mediated networks of critical in autonomic control (Beissner

et al., 2013) and disruption in key fronto-limbic white matter

pathways may bias autonomic mobilization toward a maladaptive

response to stressors; i.e., disrupting this system may be a critical

factor in the amplification of PTSD symptoms associated with

TBI. Understanding the relationship between symptom severity,

autonomic functioning, and symptoms domains in fronto-limbic

pathways will help to identify potential treatment targets when

dissociating the effects of potentially interacting conditions.

The primary aim of this study was to determine if there

was regional variability in the relationship between white matter

integrity in major tracts and symptom severity in a mixed sample of

Veterans with PTSD and/ormTBI (i.e., are somewhitematter tracts

more closely associated with symptom severity in PTSD and mTBI

compared to other white matter tracts?). We assessed symptom

severity as a global construct, as well as the potential moderating

effect of symptom domain (e.g., trauma-related re-experiencing,

post-concussive vestibular complaints) and initial injury severity

[i.e., loss of consciousness (LoC) following TBI]. A secondary aim

of this study was to contrast analyses of symptom severity with

objective measures of autonomic functioning [i.e., respiratory sinus

arrythmia (RSA) and baroreceptor sensitivity (BRS)], in order to

explore potentially overlapping pathophysiological mechanisms in

PTSD and TBI. Examining the discriminant associations between

tracts, autonomic functioning, and symptom severity in PTSD and

TBI will provide a better understanding of the relationship between

these two, often overlapping, conditions.

2 Methods

2.1 Participants

One-hundred and forty Veterans were screened for

participation. Ninety-four Veterans who were previously deployed

on active duty to a theater of combat operations were recruited

from the North Florida/South Georgia Department of Veterans

Affairs Medical Center and surrounding community. Eleven

participants were excluded after enrollment and 6 individuals did

not complete the MRI; 77 Veterans were included in the final

analysis. Our sample consisted of 70 men and 7 women, age ranged

from 23 to 45 years in age (M = 32.14 years, SD = 6.38), with an

average of 14.34 years of education (SD= 1.95; see Table 1).

Veterans included those with and without history of TBI, with

and without history of PTSD, and neither. mTBI diagnosis was

determined according to VA/DOD diagnostic guidelines using the

Ohio State University TBI Identification Method- Short Form

(Corrigan and Bogner, 2007). Participants were also assessed for

PTSD symptoms and coded as having a PTSD diagnosis if the

Veteran (1) reported experience of a Criterion A traumatic event

on a structured clinical interview designed for this study, and (2)

endorsed current symptoms meeting DSM-IV diagnostic criteria

on the PTSD Checklist- Military version (PCL-M; Weathers et al.,

1993). Participants’ self-report was verified via review of the VA

Computerized Patient Record System (CPRS) and military service

medical records, when available. A diagnostic consensus conference

with a licensed clinical psychologist and neuroscientist was used to

verify each participant’s diagnostic group.

Moderator analyses were completed to examine the impact

of LoC in mTBI, as a proxy variable for injury severity. All

individuals in the “LoC” group were by definition mTBI subjects.

The “no LoC” group included a mix of participants with mTBI

(but without LoC) and without any reported mTBI. This grouping

variable was chosen for two reasons. First, although individuals

with and without LOC meet VA/DOD diagnostic guidelines for

mTBI, duration of LoC is a commonly accepted marker of injury

severity. Using LoC as a categorical grouping allowed us to probe

the heterogeneity within mTBI. Due to sample size, we were unable

to fully parse the differences between mTBI with and without

LoC. Second, in this population of Veterans with combat exposure

and mTBI and/or PTSD, retrospective reports of alterations of

consciousness (e.g., feeling “dazed”) can be easily conflated with

acute stress responses. The presence of LoC reflects a “confirmed”

mTBI, as opposed to ambiguous or absent mTBI in the “no LoC”

group. Exclusion criteria were: neurological disorders other than

TBI, major medical conditions, severe psychiatric conditions other

than PTSD and likely unrelated to trauma (e.g., schizophrenia),
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TABLE 1 Two group demographic table.

Overall Sample
(n = 77)

Hx of mTBI with LOC (N
= 34)

No Hx of mTBI with
LOC (N = 43)

Group comparison

Age (M±SD) 32.14± 6.38 33.50± 6.07 31.00± 6.48 W= 539.50, p < 0.05∗

(Wilcoxon rank sum test)

Sex (% Male) 90.9% 91.2% 90.7% p= 1.00

(Fisher’s Exact Test)

Education (M±SD) 14.34± 1.95 14.4± 2.13 14.3± 1.82 W= 749.00, p= 0.85

(Wilcoxon rank sum test)

Race (%) 67.5%White

18.2% Black

14.3% Other

64.7%White

23.5% Black

11.8% Other

69.8%White

13.9% Black

16.3% Other

p= 1.00

(Fisher’s Exact Test)

Number of TBIs (M±

SD)

1.68± 1.64 2.35± 1.87 1.14± 1.21 W= 423.50, p < 0.01∗∗

(Wilcoxon rank sum test)

PTSD diagnosis (%) 48.1% 64.7% 34.9% x2(1)= 5.62, p= 0.018∗

BDI-II total 15.71± 12.45 21.60± 12.30 11.10± 10.60 W=354.00, p < 0.01∗∗∗

(Wilcoxon rank sum test)

Individuals without a history of mTBI with LOC may have reported a mTBI with only alterations of consciousness or no mTBI. LOC, Loss of Consciousness; Other, multi-racial or no response;

TBI, Traumatic Brain Injury; BDI-II, Beck Depression Inventory-II; ∗p<0.05, ∗∗p<0.01, ∗∗∗ p < 0.001.

premorbid (to trauma) sleep disorders, self-report of current

substance abuse (within the past 2 weeks for marijuana or alcohol

and within the past 2 months for other substances), current

prescription for medications that influence autonomic activity

(e.g., beta blockers, angiotensin-converting enzyme inhibitors),

pregnancy, and any contraindications to MRI scanning. All study

procedures were approved by the University of Florida Institutional

Review Board. Participants provided written informed consent and

were compensated for their time and travel.

Note, these data analyzed in the present manuscript are

from an existing dataset that includes multimodal neuroimaging,

autonomic and neurobehavioral metrics. There are prior

publications with portions of this sample (Lamb et al., 2017; Bottari

et al., 2021; Rieke et al., 2021).

2.2 Measures

2.2.1 PTSD checklist-military version
Participants self-reported PTSD symptom severity using the

PTSD checklist- military version (PCL-m; Weathers et al., 1993).

Total symptom severity scores were obtained by summing

participants’ responses across each of the 17 items. Total symptom

severity scores can range from 17 to 85 with higher scores

indicating greater PTSD symptom severity. Subscores were also

calculated for each DSM-IV PTSD symptom cluster by summing

items on the PCL-m relating to re-experiencing (items 1–5),

avoidance (items 6–12), and hyperarousal (items 13–17) (Williams

et al., 2011).

2.2.2 Neurobehavioral symptom inventory
Participants self-reported on post-concussive symptom severity

using the 22-item neurobehavioral symptom inventory (NSI;

Cicerone and Kalmar, 1995). Subscores were calculated for each

NSI factor (vestibular, somatic, cognitive, and affective) based on

the four-factor, 20-item NSI model that achieved the best fit as

described in Vanderploeg et al. (2015). This model excludes two

items (hearing problems and appetite disturbance) due to poor

fit. Higher scores on each subscale are indicative of greater post-

concussive symptom severity.

2.2.3 Neuroimaging
All participants underwent scanning with a 3-t Philips achieva

MRI. t1-weighted, t2-weighted, 3d fluid attenuated inversion

recovery (FLAIR), t2∗-weighted echo planar, and high angular

resolution diffusion imaging (HARDI) sequences were acquired.

The diffusion gradients were applied along 6 directions with a b-

value of 100 s/mm2 and along 64 non-collinear directions using

a b-value of 1000 s/mm2. One image was acquired with diffusion

weighting (b= 0).

Anatomical reconstruction was performed on each participant’s

T1-weighted image using FreeSurfer software to obtain a cortical

parcellation and subcortical segmentation for each participant

(Fischl, 2012). Diffusion tractography was performed using

FreeSurfer’s (v6.0) TRActs Constrained by UnderLying Anatomy

(TRACULA) tool, which provides an automated probabilistic

reconstruction of white matter pathways from each participant’s

DWI data (Yendiki et al., 2011). This approach has a number

of advantages including (1) the use of a probabilistic ball-and-

stick model of tractography allows for the modeling of the white

matter tract in areas of high local uncertainty (e.g., crossing

fibers, low anisotropy), (2) the reconstruction is completed in

each subject’s native space to reduce estimation errors and

(3) characterizes significant variability over the length of the

white matter tract, reducing the likelihood of spurious findings.

During pre-processing, data were corrected for head motion-

related artifacts and image distortion due to eddy currents

using eddy_correct in the FSL (v6.0) toolbox (https://fsl.fmrib.

ox.ac.uk/fsl/fslwiki). In addition, data were visually inspected
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before and after processing and no apparent issues with motion-

related artifacts were identified. The DTI parameter FA was

calculated using dtifit tools in FSL. The average FA for the

center of each major white matter tract was used for statistical

analysis to avoid non-white matter tissue partial volume effects

(Alexander et al., 2001; Roine et al., 2014). Analyses included

inferior longitudinal fasciculus (ILF), uncinate fasciculus (UNC),

anterior thalamic radiations (ATR), cingulum-cingulate gyrus

(supracallosal) bundle (CCG), cingulum-angular (infracallosal)

bundle (CAB), superior longitudinal fasciculus-parietal bundle

(SLFP), superior longitudinal fasciculus-temporal bundle (SLFT),

forceps major (Fmajor), and forceps minor (Fminor).

2.2.4 Autonomic functioning
Respiratory sinus arrhythmia (RSA) was calculated from

data collected during a posturally-modulated (standing to laying

face up at an angle) autonomic assessment using a tilt table.

Heart variability statistics were derived using the Porges–Bohrer

method (Lewis et al., 2012) using customized software (Brain-

Body Center, 2007; Brain-Body Center for Psychophysiology

and Bioengineering, 2016). Heart rate, recorded with a 3-lead

electrocardiogram, and continuous arterial blood pressure were

collected for 3min in each position-−90◦ (standing/upright), 60◦,

30◦, 60◦, and 90◦–with slow transitions in between (∼2◦s/s).

The primary metric used in analysis was the difference in RSA

from 30◦ tilt to the second 90◦ tilt (returned to upright), as this

represents the largest positional shift from supine. A difference

score for baroreceptor sensitivity (BRS) was calculated using the

same method, for a subset of individuals (n= 37).

2.3 Statistical analysis

2.3.1 Pre-analysis
Descriptive statistics were used to report participant

demographics and scores for symptom scales (i.e., PCL-m

and NSI). PCL-m and NSI scores were z-scaled within this sample,

with more positive scores representing more severe reported

symptoms. The average FA for each tract was z-scaled within tract,

with more positive scores representing increased FA.

2.3.2 Mixed-e�ects modeling
Statistical analysis was conducted in r 4.1.2, modeled on the

approach used by Mace et al. (2019). Mixed effects models were

conducted with the lme4 package (Bates et al., 2015). Mixed-

effects models have a number of advantages over traditional

linear regression (Baayen et al., 2008), and are ideal for high-

dimensional neuroimaging data with multiple measurements per

subject (e.g., FA for each tract). Values from each participant

can be imputed with no prior aggregation; thus, both by-item

and by-participant variation are accounted for in a single model

(Winter, 2013) through both fixed and random effects. Mixed-

effects modeling allowed us to simultaneously quantify which tracts

were most related to both total symptom severity and specific

sub-domains of symptomatology. Principal components analysis

(Varimax rotation) of NSI and PCL-m subscales, in addition to T
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prior literature (Hoover et al., 2022), provided support for testing

global symptom severity via mixed-effects models (KMO = 0.86;

Bartlett’s test, p < 0.001; standardized factor loadings 0.72–0.93;

variance explained 74.0%).

Linear mixed-effects models included symptom subscales on

the NSI and PCL-M (Domain; factor, 7 levels), symptom severity

scores agnostic to domain (Score; continuous), white matter

tract (Tract; factor, 9 levels), and LoC (factor, 2 levels), as

predictors of tract FA (continuous criterion). Random intercepts

were included for inter-subject and hemispheric variability. Age

and sex were entered as covariates of non-interest. Akaike

information criterion (AIC) and F-tests of the variance ratio

were compared between nested models. The Score × Tract

interaction was used to assess the regional specificity of associations

between global symptom severity and white matter. The Score

× Tract × Domain interaction was used to determine if the

Score × Tract relationship varied by symptom subscales, which

aids in differentiating between PTSD and TBI pathophysiology.

The Score × Tract × LoC interaction examined whether there

was a moderating effect of TBI. A planned, parallel analysis

was conducted with measures of autonomic function (RSA;

continuous), testing the RSA × Tract × LoC interactions. An

exploratory analysis with BRS (continuous) was also conducted

to parallel the model used with RSA. Predicted marginal means

(i.e., slopes) for the relationship between FA and predictors

were estimated with the lsmeans, with 95% confidence intervals

(CI) generated using 1000 bootstrapped samples, in order

to more comprehensively quantify the strength and reliability

of findings.

3 Results

3.1 Pre-analysis

In our study of Veterans who had been deployed in combat,

we observed a wide spectrum of symptoms related to PTSD and

a history of mTBI. We divided the sample into those with and

without a history of LoC. Demographic characteristics of our

sample were largely representative of the local veteran population,

which is predominantly White, male, and has some college

education on average. Groups (LoC vs. no LoC) differed on age (W

= 539.5, p = 0.0497), number of TBIs (W = 423.5, p = 0.0012),

alteration of consciousness (AoC) (p < 0.001), and PTSD diagnosis

(x2 = 5.62, p = 0.018) (see Table 1). Those with history of LoC had

an average raw NSI score of 31.9 (SD= 20.8) compared to 14.2 (SD

= 12.6) for those without LoC. History of LoC was positively and

strongly associated (p < 0.001) with total scores and all domains

of the PCL-M and NSI, except for the Cognitive domain of the

NSI (p < 0.01) (see Supplementary Table 1). On the PCL-M, a

similar pattern was seen with those with history of LoC having

a higher average raw score (M = 49.4, SD = 18.8) than those

without (M = 31.7, SD = 13.4). Correlations between symptom

subscales were high, ranging from 0.54 to 0.94, with all reaching

significance (see Table 2). There were no significant correlations

between RSA Difference Score and the PCL-M and NSI (p > 0.05)

(see Table 2).

3.2 Mixed e�ects modeling

3.2.1 Predictors of global FA
Mixed effects modeling of single predictors (see Table 3)

suggested that that there was no relationship between global FA

and global symptom severity [score; F(1,8192) = 0.00, p = 0.950],

injury severity characteristics [LoC; F(1,71) = 2.35, p = 0.130],

or autonomic functions [BRS, F(1,33) = 2.50, p = 0.123; RSA,

F(1,58) = 1.40, p = 0.242]. FA also did not significantly vary

between tracts [F(8,1999) = 0.00, p > 0.999], as would be expected

following z-scaling. A post-hoc analysis examining the raw FA

values demonstrated some variability between tracts, with the CAB

having the lowest average FA and the FMajor having the highest

(see Supplementary Table 2).

3.2.2 Tract specificity for global symptom burden
and autonomic burden

Results from mixed effects modeling of two-way score ×

tract interaction (see Table 3) suggested that there was regional

specificity in the relationship between FA and global symptom

severity [F(8,5071) = 6.41, p < 0.001]. Bootstrapped estimates of

slopes (see Table 4) revealed that the global symptom severity was

significantly associated with FA in 2 tracts. For every 1 SD increase

in global symptom severity there was a 0.07 SD increase in FA

within the CAB (95% CI [0.01, 0.12]) and a 0.09 SD decrease in FA

within the UNC (95% CI [−0.05,−0.13]). However, the addition of

symptom subscale (score × tract × domain interaction) did not

improve overall model fit, suggesting that the effects seen in the

UNC and CAB did not vary by symptom domain (TBI vs. PTSD).

Results from the RSA × Tract interaction (see Table 3) also

suggested there was regional specificity in the relationship between

FA and autonomic function [F(8,1602) = 16.06, p < 0.001; see

Figure 1]. Bootstrapped estimates of the slopes (see Table 4),

revealed that RSA was positively associated with FA in all tracts,

except the CAB (95% CI [−0.04, 0.07]). For significant tracts,

the estimated slopes ranged from 0.06 to 0.28, with the strongest

relationships observed in the ATR (95% CI [0.25, 0.30]) and the

UNC (95% CI [0.16, 0.22]). A similar pattern was seen for the

exploratory BRS × Tract interaction [F(8,967) = 16.18, p < 0.001],

despite the reduced sample size, with positive relationships between

FA and BRS in all tracts, except the CAB (95% CI [−0.07, 0.08]).

3.2.3 Moderating e�ect of TBI with LoC
The moderating effect of LoC in TBI was estimated using two,

three-way interaction terms in parallel models: Score × Tract ×

LoC and RSA × Tract × LoC. Results (see Table 3) suggested that

LoC moderated the association for both global symptom severity

[F(8,5862) = 6.31, p < 0.001] and RSA [F(8,1595) = 3.51, p < 0.001].

Bootstrapped estimates of slopes suggested that, for individuals

without LoC, there was no significant relationship between FA and

Score across tracts. For individuals with LoC, there was a significant

relationship between FA and global symptom severity in 4 tracts

(see Figure 2 [Interaction Line plots]). For every 1 SD increase in

global symptom severity, there was a 0.10 and 0.08 decrease in SD of

FA of the UNC (95% CI [−0.05,−0.17]) and ATR (95% CI [−0.03,
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TABLE 3 Results frommixed e�ects models including main e�ects and interactions.

Predictor Nparameters AIC F X
2

1. Tract 14 15112 0.00 —

2. Score 7 15098 0.00 —

3. Domain 12 15108 0.00 —

4. LoC 7 15096 2.35 —

5. Score× Tract 23 15079 6.41∗∗∗ 51.29A∗∗∗

6. Score× Tract× Domain 131 15285 0.22 10.42B

7. Score× Tract× LoC 41 15022 6.31∗∗∗ 93.33B∗∗∗

8. RSA 7 12436 1.40 —

9. RSA× Tract 23 12270 16.06∗∗∗ 150.40C
∗∗∗

10. RSA× Tract× LoC 41 12237 3.51∗∗∗ 69.49D∗∗∗

ATwo-way interactions were compared to model 1. BCompared to model 5. CCompared to model 8. DCompared to model 9. ∗∗∗p < 0.001.

TABLE 4 Bootstrapped (B = 1,000) slope estimates and 95% confidence intervals (CI) from the two-way Score × Tract and RSA × Tract interactions.

Score × Tract RSA × Tract

Tract Slope Lower CI Upper CI Slope Lower CI Upper CI

Anterior thalamic radiation −0.03 −0.07 0.01 0.28 0.25 0.30

Cingulum angular bundle 0.07 0.01 0.12 0.02 −0.04 0.07

Cingulum cingular bundle 0.02 −0.02 0.06 0.06 0.02 0.09

Forceps major −0.02 −0.07 0.04 0.09 0.05 0.13

Forceps minor 0.04 −0.01 0.10 0.06 0.02 0.09

Inferior longitudinal fasciculus −0.02 −0.05 0.02 0.09 0.06 0.11

Superior longitudinal fasciculus– parietal

endings

0.03 −0.01 0.07 0.16 0.12 0.19

Superior longitudinal fasciculus– temporal

endings

0.00 −0.04 0.04 0.14 0.11 0.17

Uncinate fasciculus −0.09 −0.13 −0.05 0.19 0.16 0.22

Significant levels (p < 0.05) were bolded.

FIGURE 1

The relationship between FA and RSA (z-standardized scores), separated by white matter tract for the full sample.
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FIGURE 2

The relationship between FA and global symptom score (z-standardized scores), for select white matter tracts, separated by group (LoC vs. no LoC).

FIGURE 3

The relationship between FA and RSA (z-standardized scores), separated by white matter tract and group (LoC vs. no LoC).

−0.13]) respectively, but a 0.13 increase in both the CAB (95% CI

[0.05, 0.20]) and Forceps Minor (95% CI [0.06, 0.19]).

Regarding autonomic functioning, for individuals with LoC,

bootstrapped estimates of slopes mirrored the findings from the

two-way interaction; RSA was positively associated with FA in

all tracts, with the weakest relationship observed in the CAB

(95% CI [0.01, 0.11]) and the strongest relationships in the ATR

(95% CI [0.30, 0.35]) and the UNC (95% CI [0.17, 0.23]). For

individuals without LoC, there was a weaker, but still significant,

positive relationship in the ATR, SLFP, and UNC only, with slopes

ranging from 0.02 to 0.16. The relationship between RSA and

both interhemispheric pathways (FMajor and FMinor) was not

meaningfully different between those with and without LoC. There

was a significant negative relationship between FA and RSA in

the CCG (95% CI [−0.07, −0.21]) [see Figure 3 (Visualization of

bootstrapped CIs, grouped by LoC and no LoC for the RSA ×

Tract × LoC interaction)]. For the exploratory analysis with BRS,

the results remained consistent in the limbic pathways (ATR, UNC,

and CCG), despite the reduced sample size.

4 Discussion

This study demonstrated regional specificity in the relationship

between white matter integrity and global symptom severity, as

well as between white matter and autonomic functioning in combat

exposed Veterans with and without history of mild TBI and PTSD.

These relationships were further moderated by LoC in those with

mTBI, suggesting that injury severity during TBI may interact with

chronic stress via impact on critical structures in regulating stress

(although causality cannot be determined by this study). Consistent

with the growing body of literature surrounding symptom typology
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in PTSD and TBI, our findings did not suggest that symptom

domain (i.e., NSI vs. PCL-M) explained additional variance in white

matter. These findings may have important implications for the

clinical management of PTSD and TBI in Veterans.

Across the full sample, global symptom severity was positively

associated with FA in the CAB and negatively associated with FA

in the UNC. It is possible that the positive association between

symptom severity and FA in the CAB reflects the loss of a

sub-section crossing fibers (Bazarian et al., 2007), resulting in

a paradoxical increase in FA as white matter degrades. Within

the ventro-limbic system of the brain, the CAB and UNC are

two pathways implicated in emotional regulation, memory, and

autonomic feedback, that may play a role in the maintenance of

symptoms (Williamson et al., 2013; Averill et al., 2018; Bottari et al.,

2021). However, it is important to note that there did not appear to

be regional specificity for symptom domain. This is consistent with

previous literature suggesting that “post-concussive” symptoms

are not specific to mild TBI (Lagarde et al., 2014; Santhanam

et al., 2019) and that PTSD and mild TBI may share common

pathophysiological mechanisms (Kaplan et al., 2018), underscoring

the difficulty in symptom attribution. Mild TBI, particularly with

LoC, may interact with the expression of symptoms of PTSD. Thus,

comprehensive assessment and treatment of TBI, particularly in

Veteran populations, should include assessment of PTSD.

There was also a strong positive relationship between FA and

RSA and BRS difference scores (supine 30◦ minus standing 90◦),

in all tracts but the CAB, across the full sample. It is typical for

RSA and BRS to increase in the supine position compared with

standing (90◦), reflecting greater parasympathetic control (Lellamo

et al., 1996; Laude et al., 2004). In our sample, lower values of

FA in a key fronto-limbic pathway (the UNC), were associated

with an abnormal autonomic response (lower RSA and BRS in

the supine position). Increased BRS, as a measure of autonomic

functioning, is associated with dampening of the locus-coeruleus-

noradrenergic pathway, as would be expected in a relaxed state (e.g.,

when lying down). Dysfunction in this pathway is critical in the

neurophysiology of anxiety related disorders. The locus-coeruleus

projects to the basolateral amygdala, an important structure in

the expression of PTSD and is within the same circuit regulated

by prefrontal cortical-limbic projections (Daviu et al., 2019). Our

findings suggest that this autonomic dysfunction is associated

with reduced FA, possibly reflecting the effects of chronic stress

on the brain due to poor management of allostatic load within

the autonomic system. While the exact mechanisms underlying

the relationship between white matter changes and chronic stress

remain unclear, animal models suggest that chronic stress may

alter the expression of genes responsible for pre-programmed

cell death in oligodendrocytes due to changing cellular energy

demands (Antontseva et al., 2020). Longitudinal investigations

of the interaction between autonomic function and variability in

white matter after TBI are necessary to draw conclusions about

potential directionality and identify possible treatment targets.

Increased stress after TBI may exacerbate physiological effects of

injury with increased blood brain barrier permeability, amplified

autonomic response to stressors, and poor sleep whichmay prolong

recovery or perhaps increase the likelihood of chronic symptom

presentation. It has been previously demonstrated that indicators

of reduced autonomic function prior to exposure to a criterion A

event (e.g., combat environments) are predictive of development of

PTSD (Minassian et al., 2015).

It is notable that the strongest relationships between FA and

stress measures (i.e., both global symptom severity and RSA/BRS

difference scores) were found in the ATR and UNC across the full

sample. Connecting orbitofrontal cortex to anterior temporal lobes,

the UNC is particularly vulnerable to shearing injuries in TBI (Seo

et al., 2012), and has been identified as a potential treatment target

for deep brain stimulation treatment of PTSD (Hamani et al., 2022).

The ATR, part of the anterior limb of the internal capsule, connects

dorsolateral prefrontal cortex to the thalamus. Reduced white

matter integrity within the fronto-subcortical pathways (ATR and

UNC) may impair the ability to regulate emotional and autonomic

functions (disinhibition of the amygdala), leading to increased

overall stress burden (Williamson et al., 2013). Furthermore, the

association between FA in the ATR/UNC and stress measures

was strengthened in individuals with LoC in TBI, suggests that

severity of TBI (LoC, compared with AoC) has an effect, as

postulated by Williamson et al., 2013. Our findings underscore

the importance of these limbic pathways in understanding the

mechanisms underlying possible interactions between PTSD and

TBI. Addressing this interaction with differential approaches to

treatment is an important area of future research.

There also appeared to be a dissociation between stress

measures and FA in the CAB. Global symptom severity was

positively associated with FA in the CAB (possibly related to

the loss of crossing fibers) in the LoC group and negatively

associated with FA in the group without LoC. In contrast,

there was no relationship between the CAB and autonomic

functioning across both groups. This may reflect the relatively

smaller role that parahippocampal cingulate projections play in

autonomic regulation, despite their importance in maintenance of

anxiety-avoidance learning, although the differing contributions of

subdivisions within the cingulum remain unclear (Jones et al., 2013;

Bubb et al., 2018).

The findings in the FMinor, the major interhemispheric

connection between the frontal lobes, aremore difficult to interpret.

While the relationship between FA in the FMinor was significant

in the group with LoC across both stress measures, the direction

of effects is in contrast to the pattern observed in the UNC

and CAB; higher values of FA were associated with both higher

global symptom severity and more positive RSA/BRS difference

scores (i.e., higher RSA/BRS during the 30◦ position). This is

counter intuitive. On the one hand, it makes sense that higher

FA is associated with normalized autonomic responses between

standing and supine positions. On the other hand, greater severity

of global symptoms is not consistent with this interpretation.

It is possible that these findings represent different portions of

variance across tracts and stress measures, reflecting heterogeneity

in the manifestation of anxiety symptoms and non-emotional

elements of autonomic control. However, this may reflect reduced

interhemispheric coordination of frontal-limbic and autonomic

regions (Xavier et al., 2018), and further research is needed to fully

explore this possibility.

There are several important limitations to consider. Our sample

is predominantly male, reflecting the demographics of the Veteran
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population in combat roles during the conflicts experienced by our

cohort. Therefore, our findings may have limited generalizability

for other populations, particularly for women with co-occurring

TBI and PTSD, as is commonly seen in the context of inter-

personal violence. This population is understudied and represents

an important target of future research. An additional limitation

is in our method for categorizing participants in mTBI and

PTSD diagnostic groups. While the PCL-M has demonstrated high

levels of diagnostic sensitivity, we did not use the gold-standard

CAPS interview to assess for PTSD symptomatology due to time

constraints, instead using a custom interview to establish criterion

A occurrence. Similarly, while the OSU-TBI Identification method

has been shown to have strong validity and reliability, there are

many challenges to accurately diagnosing TBI using retrospective

self-report particularly in military samples (Davenport et al., 2016).

This issue is also true in civilian contexts as many people who

experience mild TBI do not seek treatment. Third, like most

studies of TBI and PTSD in humans, we have limited ability to

determine the relative contributions of pre-morbid vulnerability,

injury-related, and trauma-related factors, due to the lack of pre-

injury assessment. In particular, pre-morbid characteristics such as

cardiovascular disease burden and lifetime substance use history

have been shown to impact the characteristics of white matter

and is an important source of inter-subject variability in this

sample. Longitudinal investigations are necessary to disentangle

multifactorial contributions, including possible interactions with

cerebrovascular risk factors and substance use, as well as possible

sources of resiliency (e.g., social support), which would be salient

to the Veteran population. Fourth, because FA is observed on the

tract level for specific tracts, there may be more granular variations

in microstructure within tract that were not explored, including

other metrics of variability such as mean diffusivity, that could

explain some of the counter-intuitive relationships observed in this

study. The use of a pre-existing dataset (and older DWI sequence)

precludes our ability to examine this more closely. The possibility of

reduced crossing fibers contributing to higher values of FAwarrants

additional investigation, and has been previously reported (Figley

et al., 2022). Finally, sample size, though relatively large given

the integration of neuroimaging, autonomic, and neurobehavioral

symptoms, is limited and replication of these findings is necessary.

Though, it should be noted that others have previously reported

differences in ventral-limbic pathway integrity in mild TBI and

PTSD (Santhanam et al., 2019). In particular, our sample size limits

our ability to fully parse the differences between mTBI with LoC,

ambiguous mTBI (mTBI with alterations of consciousness alone),

and those without a history of head strikes. Future research further

probing heterogeneity within mTBI is necessary.

In conclusion, although this study cannot make determinations

regarding causality, our findings add to the growing body of

literature suggesting that history of TBI may interact with the

symptoms of PTSD, regardless of the type of symptom (e.g., PTSD-

related or post-concussive). Furthermore, we found evidence

to suggest autonomic dysfunction and variability in ventral-

limbic white matter pathways play a role in this relationship.

Future research should explore autonomic functioning within

this population to identify possible targets for intervention,

public health strategies, and increase our understanding of the

underlying mechanisms.
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