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Inhalation-modulated detection
of olfactory BOLD responses in
the human brain
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Introduction: In contrast to other sensory domains, detection of primary olfactory
processes using functional magnetic resonance imaging has proven to be notably
challenging with conventional block designs. This di�culty arises from significant
habituation and hemodynamic responses in olfactory areas that do not appear
to align with extended boxcar functions convolved with a generic hemodynamic
response model. Consequently, some researchers have advocated for a transition
to event-related designs, despite their known lower detection power compared
to block designs.

Methods: Here, we conducted a block design experiment with 16s of continuous
odorant stimulation alternating with 16s of continuous odorless air stimulation in
33 healthy participants. We compared four statistical analyses that relied either on
standard block designs (SBD1-2) or on block designs that were modulated by the
participants’ individual breathing patterns (MBD1-2).

Results: We found that such modulated block designs were comparatively
more powerful than standard block designs, despite having a substantially lower
design e�ciency. Using whole-brain e�ect size maps, we observed that the right
insular and medial aspects of the left piriform cortex exhibited a preference for a
breathing-modulated analysis approach.

Discussion: Research in olfaction that necessitates designs with longer-
lasting blocks, such as those employed in the investigation of state-dependent
processing, will benefit from the breathing-modulated analyses outlined in this
study.

KEYWORDS

olfaction, functional magnetic resonance imaging, breathing-modulated analysis, design

e�ciency, block designs, habituation, e�ect size maps

1 Introduction

The processing of olfactory information is intrinsically linked to the rhythmic

process of breathing. We perceive odorants in the environment through two types of

olfactory stimulation. In orthonasal stimulation, odorous molecules are transported to the

cilia of the olfactory mucosa during inhalation and sniffing. In retronasal stimulation,

gaseous molecules, for example, those from foods, reach the mucosa through the

nasopharynx as we breathe during mastication or exhalation. From the mucosa, olfactory

information is transmitted to the olfactory bulb and cortex (Price, 2004). Thus, both

orthonasal and retronasal stimulation lead to discrete breathing-related sampling events that
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underlie olfaction. Previous electrophysiological studies in rabbits

(Adrian, 1950) and humans (Haehner et al., 2011) have

demonstrated that there is a greater responsiveness of the olfactory

system to orthonasal stimuli during inspiration.

The temporal variability of breathing is a challenge for

constructing accurate and precise predictors for estimating the

amplitude of the Blood Oxygenation Level-Dependent (BOLD)

response (Friston et al., 1994; Lindquist et al., 2009; Huettel,

2012) in task-based functional magnetic resonance imaging (task-

fMRI). In other sensory modalities, such as vision, temporal

information regarding the expected neural and hemodynamic

response to a stimulus can be derived with sufficient accuracy

if stimulus delivery and the acquisition of functional images

are synchronized. In olfaction, breathing adds a non-stationary

physiological source of temporal variability to the signal to be

detected. Early olfactory neuroimaging studies employed block

designs that ignored respiration (Sobel et al., 1997, 1998; Yang

et al., 1997; Yousem et al., 1997), followed by slow event-related

designs in which explicit computer-controlled instructions to sniff

were synchronized with stimulus delivery and image acquisition

(Gottfried et al., 2002; Anderson et al., 2003). Later on, the

development of respiration-contingent stimulus delivery (Wang

et al., 2014) allowed the measurement of olfactory brain activity

synchronized with respiration. Respiration-contingent stimulus

delivery yields a clear gain in statistical sensitivity, but it requires

real-time processing of the participants’ respiratory data and real-

time control of stimulus delivery, which may not be available

in non-specialized laboratories. Furthermore, explicitly instructing

participants to sniff (i.e., inhale) at predetermined timesmay reduce

participant comfort or interfere with other experimental goals, such

as inducing certain longer-lasting mental states. Taken together,

the burden of real-time control, design efficiency considerations

from other stimulus modalities (Friston et al., 1999) that favor

block designs, or the researchers’ goal to induce longer-lasting

mental or emotional states may be the underlying reason for

why block designs are still commonly used in fMRI studies

aimed at mapping the human olfactory system (Donoshita et al.,

2021). Several recent studies that have aimed at increasing the

sensitivity of block designs in olfaction have found that using

rather brief stimulation periods of 3–6 s substantially increased

the sensitivity of olfactory mapping experiments (Georgiopoulos

et al., 2018; Schäfer et al., 2019) in designs that do not control

for respiration. It has been argued that habituation attenuates

olfactory signals in the brain, therefore requiring short stimulation

periods with long intermittent pauses (Georgiopoulos et al.,

2018; Schäfer et al., 2019), which amounts to slow event-

related designs that are known to have low statistical detection

power (Friston et al., 1998, 1999).

Here, we explore the extent to which brain activity can be

efficiently detected in response to longer-lasting experimental

blocks by taking into account temporal information about naturally

occurring inhalation. To this end, we continuously presented

odorants in a block design (16s stimulus on followed by 16s

stimulus off) to 33 healthy volunteers who were tasked with

breathing normally. We compared two types of standard block

designs, representing neural boxcar functions throughout the

stimulation periods, convolved with a hemodynamic model with

two variants of respiration-modulated analyses (Figure 1), in

which we used offline data from a breathing belt to construct

respiration-related events in terms of design efficiency and actual

detection power.

2 Materials and methods

The study was approved by the Institutional Review Board

of the University of Regensburg, and all subjects signed an

informed consent form. We acquired data from N = 33 (19

female) participants.

2.1 Data acquisition

All imaging data were acquired on a 3T Siemens Prisma

(Siemens Healthcare, Erlangen, Germany) using a 64-channel

receiver head coil (Siemens Healthcare) and multiband sequences

(epfid2d1_64) provided by the Center for Magnetic Resonance

Research (CMRR, Minneapolis, Minnesota, USA). Twelve

functional sequences of 104 volumes (total duration 12∗3 min:28 s)

covering the whole brain with 88 slices of 2 × 2 × 2mm isotropic

voxels, repetition time (TR) = 2,000ms, echo time (TE) = 30ms,

flip angle (FA) = 75◦, excitation pulse duration = 9ms, echo

spacing= 0.58ms, bandwidth= 2,368 Hz/pixel; acquisition matrix

(AM) = 96 × 96; field of view (FoV) = 192 × 192mm; partial

Fourier = 7/8 and a multiband acceleration factor of 4 in order to

maximize the temporal signal-to-noise ratio (Seidel et al., 2020).

Field map imaging was performed with a double-echo spoiled

gradient echo sequence (TR = 715.0ms, TE = 5.81/8.27ms, voxel

size: 3× 3× 3mm, FA= 40◦), which generated a magnitude image

and two phase images. The field map image was computed from the

two-phase images.

A T1-weighted Magnetization-Prepared Rapid Gradient-Echo

(MPRAGE) structural scan was used for co-registration and surface

reconstruction (TR= 1,910ms; TE= 3.67ms; FA= 9◦; FoV= 250

mm2; AM= 256× 256).

Participants were fitted with a stretch-sensitive breathing belt

that was wirelessly connected to the scanner’s built-in physiological

measurement unit (PERU 098, Rev. 10, Siemens, München,

Germany). Respiratory data were sampled at 400 Hz.

2.2 Design and task

We acquired 12 runs with one odorant per run, consisting of

six stimulation blocks of 16s alternating with six blocks without

odorant (16s), with each run beginning with 16s without odorant

(Figure 1). The order of odorants was pseudorandomized and

counterbalanced across participants. Participants were instructed

to breathe normally through the nose.

2.3 Olfactory stimulation

Odorants (Takasago Europe Perfumery Laboratory S.A.R.L.)

and odorless air were presented under computer control at a flow

rate of 2.5 L/min using a portable olfactometer (Sommer et al.,

2012) that operated outside of the scanning room and which

delivered odorized or odorless air through TeflonTM tubes with an
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FIGURE 1

(A) The design matrix for the standard block designs (SBD1-2) consists of boxcar functions convolved with a hemodynamic response model. The
design matrix of SBD1 contains only one predictor for stimulation with an odorant. The design matrix of SBD2 contains two predictors: stimulation
with odorless air and stimulation with an odorant. (B) Design matrices for inhalation-modulated block designs (MBD1-2) are constructed by
convolving boxcar functions for stimulation periods with inhalation events (identified in the respiratory signal) and with a hemodynamic response
function. MBD1 contains the predictor i_odorant, and MDB2 contains the predictors i_air and i_odorant. (C) Normalized amplitude of breathing
measured with a breathing belt (blue line). Inhalation events (gray patches) were determined as the 2-s periods that preceded a peak (blue triangles)
of the respiratory signal. Blocks during which odorants were presented are shaded in red. Inhalation events were assigned to the condition “i_air” if
they fell entirely in the phase in which no odorants were presented. Inhalation events were assigned to the “i_odorant” condition if they fell entirely in
the phase in which odorants were presented (red patches). (D) We compared four di�erent analysis strategies (SBD1-2 and MBD1-2 for which the
table contains the predictors and respective contrasts).

inner diameter of 4mm. In each run, we presented one out of 12

odorants, which were selected to have similar intensities covering a

wide range of valences (Table 1).

2.4 Processing of respiratory data

Respiratory data were extracted from dicom files using

extractCMRRPhysio (https://github.com/CMRR-C2P/MB/blob/

master/extractCMRRPhysio.m). We applied a one-dimensional

median filter to the respiratory data using Matlab’s medfilt1 with an

order of 40 (i.e., with a window of 100ms) before down-sampling

the data to a temporal resolution of 1Hz and finally standardizing

(z-transforming) it. Because the physiological monitoring unit

of our scanner occasionally recalibrates itself at unpredictable

times during a run, there can be large amplitude differences in

the breathing data over the course of a few minutes. Since we

were interested in the timing of breathing events, i.e., local peaks,

but not the amplitudes, we applied an iterative filter (with four

iterations) to the filtered and z-transformed respiratory data (y) of

each run, with the goal of boosting small signal amplitudes and

attenuating large ones:

ypreprocessed =
y

∣

∣y
∣

∣

1
p

(1)

with p= 2 (details on the normalization of respiratory data can

be found in Supplementary material S1).

This procedure yielded range-limited (approaching −1 < y <

1) transformed respiratory data in with clearly identifiable peaks as

shown in Figure 1C for all subjects and runs. We then usedMatlab’s

findpeaks function with a threshold of 0.75 for prominence and a

separation of at least 2 s to automatically detect the peaks in the

respiratory data. We determined inhalation events as the 2 s that

precede each peak and stored this timing information per subject

per run.

2.5 Processing of imaging data

Functional and structural data were preprocessed with

fMRIPrep (Esteban et al., 2019) (version 20.2.4). Preprocessing

included automatic segmentation and transformation of T1-

weighted images into MNI space (MNI152NLin2009cAsym),

bias field correction, motion correction, and slice scan time

correction of functional images. The complete, automatically

generated description of the fMRIPrep steps can be found in

the Supplementary material S2. Additionally, we applied spatial

smoothing to the functional images with a Gaussian kernel of 8mm

at FWHM.

Statistical parameter estimation was conducted with custom

code in Python that used NI-learn (Abraham et al., 2014) and

Matlab code that used functions from CoSMoMVPA (Oosterhof

et al., 2016). Forty-eight first-level maps (12 runs × four analysis

strategies) were computed per subject.

Since differential processing of different odorants was beyond

the scope of this paper, we computed second-level statistics (subject
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TABLE 1 Odorants employed in this study.

Number Odor ID Concentration (%) Valence profile Typical description

1 Phenyl ethyl alcohol (PEA) 10 Pleasant Rose

2 Pentadecanolide 10 Pleasant Fruity

3 Trans-2-hexenyl acetate 10 Pleasant Citrus

4 4-decanolid 10 Ambivalent Apricot fruit

5 Citronella 10 Ambivalent Lemony

6 1-undecanol 10 Ambivalent Floral

7 Acetophenone 10 Ambivalent Almond oil

8 Menthyl Isovalerate 100 Ambivalent Menthol

9 1-benzyl acetate 1 Ambivalent Gas

10 1-octen-3-ol 10 Unpleasant Nature

11 Anisole 1 Unpleasant Anise, fennel

12 3-hexanol 10 Unpleasant Cut grass

Odorants were diluted with dipropylene glycol.

maps) across runs, thereby collapsing results across odorants,

leaving 4 s-level maps per subject (SBD1, SBD2, MBD1, and

MBD2). Finally, we computed a group-level map (SBD1, SBD2,

MBD1, and MBD2) for each analysis strategy.

2.6 Design e�ciency

We computed the design efficiency (Friston et al., 1999; Liu

et al., 2001) for the standard block design and for two versions of the

breathing-modulated block design (inhale odorant vs. mean, inhale

odorant vs. inhale without odorant)

efficiency =
1

c(XTX)
−1

cT
(2)

with (XTX)−1 is the inverse of the variance-covariance matrix

of the design X and c is the contrast vector. Note that for computing

efficiency we ignored nuisance variables. Efficiency calculations

were performed with custom code in Matlab (version R2021b).

A detailed description of how to compute design efficiency can

be found at https://lukas-snoek.com/NI-edu/fMRI-introduction/

week_3/design_of_experiments.html?highlight=efficiency. In the

standard block design (Figure 1A), the design matrix consisted of

the predictor s for odorant stimulation. The contrast of interest

was cSBD = [1]. It should be noted that all design matrices

contained a constant term to model the mean, which we have

omitted here in our description of the contrast vectors. For the first

variant of the breathing-modulated block design MBD1 (“inhale

odorant vs. mean”), the design matrix X was constructed as

depicted in Figure 1B with the predictors i_air and i_odorant. The

corresponding contrast vector was cMBD1 = [1]. The second variant

of the breathing-modulated block design MBD2 (“inhale odorant

vs. inhale without odorant”) used the same design matrix as MDB1,

but a contrast vector cMBD2 = [−1 1]. Since we used the same

stimulus timing in all blocks, efficiencySBD only had to be computed

once. The efficiencies for the breathing-modulated designs MBD1

and MBD2 were computed subject by subject and run by run,

and finally averaged across runs, yielding one efficiency score per

subject and design variant, respectively.

Voxel-wise effect sizes (Hedge’s g) were computed with the

Matlab Toolbox “Measures of Effect Size” (version 1.5) (Hentschke

and Stüttgen, 2011) for the SBD1-2 and MBD1-2 models. From

these four effect size maps, each thresholded at g > 0.4, we

computed a “winner” map (Figure 4), indicating at each voxel

which model yielded the highest effect size.

3 Results

Respiration rates did not differ [t(32) = 0.508, p = 0.615]

between blocks without odorants (mean = 14.55 inhalations per

min, std = 3.468) and blocks with odorants (mean = 14.47

inhalations per min, std= 3.061).

3.1 Statistical parameter maps

Figure 2 shows the group results from the analysis of the

standard block designs (SBD1-2) and the inhalation-modulated

analyses (MBD1-2) using the respective design matrices and

statistical contrasts depicted in Figures 1A, B, D. All four statistical

parameter maps contained bilateral clusters of increases in BOLD

amplitude in primary olfactory areas, namely the orbitofrontal

gyrus (OFG) and the frontal (anterior) and temporal (posterior)

piriform cortices.

Using regions of interest from an olfactory atlas derived from

diffusion imaging (Echevarria-Cooper et al., 2022), we computed

statistical parameter estimates of our four analysis strategies in the

left and right orbitofrontal gyri (OFG) and anterior and posterior

piriform cortices. Figure 3 shows the corresponding t-values and

their standard deviations. Across all investigated ROIs, it appears

that SBD2 yields the strongest effects, followed by MBD2.

To assess whether there were finer spatial differences in

sensitivity for different types of analyses, we computed whole-brain
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FIGURE 2

Statistical Parameter Maps for the group analyses of the four compared analysis approaches, all of which yielded bilateral hot spots in piriform and
orbitofrontal cortices (FDR-thresholded with q < 0.05, z = −18). SBD1 and MBD1: positive z values denote BOLD amplitudes above the mean, and
negative z values denote BOLD amplitudes below the mean. SBD2 and MBD2: positive values denote that i_odorant—i_air yields positive di�erences
in estimated BOLD amplitudes, while negative values denote that i_odorant—i_air yields negative di�erences in estimated amplitudes. SBD2 and
MBD2 revealed the highest detection power.

FIGURE 3

ROI-wise t-values and their standard deviations for the statistical contrasts that underlie analyses SBD1-2 and MBD1-2 (the corresponding design
matrices and contrasts are found in Figure 1D). Contrasting odorant vs. non-odorant (SBD2 and MDB2) outperformed models that only took
stimulation with an odorant (SBD1 and MBD1) into account.

effect size maps for SBD1, SBD2, MBD1, and MBD2 using the

MES toolbox (Hentschke and Stüttgen, 2011). Subsequently, we

determined for each voxel which model yielded the highest effect

size. Figure 4 shows the “winner map” across all four analysis types.

Overall, voxels in which any of the models exceeded a threshold

of g > 0.4 were best explained either by model SBD2 or MBD2,

both of which contrast presenting an odorant with presenting

odorless air. The right insular cortex and medial aspects of the left

piriform cortex exhibited a preference for a breathing-modulated

analysis approach.

3.2 Design e�ciencies

Design efficiency is a relative metric of how good a design

is compared with other designs that have the same number of

time points (Henson, 2007). Design efficiency increases with the

design-induced variability of the predictors and decreases as more

predictors co-vary. Figure 5 illustrates the predictor time courses

for our four analysis approaches. SBD1, which relies only on the

predictor for presenting an odorant, shows a design efficiency

close to the maximally possible value given the amplitude and

shape of the hemodynamic response function. MBD2, which relies

on the predictors for inhalation-modulated odorant presentation

(i_odorant) and inhalation-modulated non-odorant presentation

(i_air), yields a substantially lower efficiency because the predictor

amplitudes are substantially lower since the underlying inhalation

events are much shorter than the accumulated block durations,

and the variance of the predictors is lower. In both cases, SBD

and MBD, adding a second predictor and the fact that the

predictors show some covariance reduce the design efficiencies of

SBD2 compared to SBD1 and of MBD2 compared to MBD1. The

corresponding numerical results for the entire sample are depicted

in Figure 6.

Modulating the blockwise predictors with inhalation events

increased the design variance and therefore reduced the design

efficiency. Figure 6 illustrates the design efficiencies of each single

run for the four analysis strategies investigated here (SBD1-2,
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FIGURE 4

Winner map. Voxel colors denote the model with the maximum g-value for all four analysis types (light blue for SBD2, yellow for MBD2; SBD1 or
MBD1 never turned out to be winning models). Winners were only computed for Hedge’s g > 0.4. Anatomical ROIs (insula-red, anterior and posterior
piriform cortex-copper, and amygdala-pink) are shown for reference. The cutout reveals that there were regional preferences for model SBD2 in the
right piriform cortex, whereas MBD2 showed higher power in medial aspects of the left piriform cortex. The sagittal and coronal sections reveal that
MBD2 yielded the highest power in the right insular cortex, with a small spot at the inferior border that preferred SBD2.

FIGURE 5

Predictor time courses for standard block designs (SBD) and one instance of inhalation-modulated block designs (MBD, for subject 2, run 1). In SBD1,
design e�ciency is exclusively determined by the variability (sum of squares) of the predictor “odorant”, and in SBD2, by the variability of the
predictors “odorant” and “air” and their respective covariations. Similarly, in MBD1, design e�ciency is exclusively determined by the variability (sum
of squares) of the predictor “i_odorant”, and in MBD2, by the variability of the predictors “i_odorant” and “i_air” and their respective covariations (the
computation of design e�ciency is presented in Section 2.6). MBD predictors vary between participants and runs due to individual breathing patterns
and fluctuations.

MBD1-2), yielding the order efficiencySBD1 (mean = 58.036) >

efficiencySBD2 (mean = 33.614) > efficiencyMBD1 (mean: 9.747,

std = 3.706) > efficiencyMBD2 (mean: 8.554, std = 3.575). The

design efficiencies for SBD1 and SBD2 were constant for all runs in

all subjects (dashed-dotted horizontal lines). Efficiency values are

listed in Table 2.

3.3 Habituation

In each experimental run, there were six blocks of continuous

odorant presentation interspersed with 16s of presentation with

odorless air. Since the odorants were kept constant in a given

run, we investigated the degree of habituation in the piriform
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FIGURE 6

Design e�ciencies for four di�erent analysis strategies. (A) The design e�ciency of the standard block designs (SBD1: horizontal dashed line; SBD2:
horizontal dotted line) was only computed once because the timing of stimulation blocks was identical for all subjects and runs. Violin plots depict
the design e�ciencies for the breathing modulated block designs (MBD1: blue, MBD2: orange; the corresponding design matrices and contrasts are
found in Figure 1D) for all subjects across runs. Design e�ciencies di�ered between analysis strategies with e�ciencySBD1 > e�ciencySBD2 >

e�ciencyMBD1 > e�ciencyMBD2 (Supplementary material S3 contains the statistical comparisons of design e�ciencies). (B) In each participant, the
average design e�ciency (per subject across runs) was higher for MBD1 than for MBD2.

TABLE 2 Design e�ciencies for standard block designs (SBD1-2) and

breathing-modulated block designs (MBD1-2).

N Mean Std.
Deviation

effSBD1 - 58.036 -

effSBD2 - 33.614 -

effMBD1 33 9.747 3.706

effMBD2 33 8.554 3.575

It should be noted that the design efficiency for SBD1 and SBD2 was constant for each subject.

cortex and the extent to which such habituation was picked up

by our four analysis strategies. Figure 7 shows the z-transformed

BOLD signal of all subjects and runs (Figure 7A) and its respective

group-averaged time course (Figure 7B). Figure 7C depicts the

amplitude estimates yielded by MBD1 and SBD1 (which model

only periods of stimulation with an odorant). Figure 7D depicts the

differential amplitude estimates (odorant—air) yielded by MBD2

and SBD2 (which model periods of stimulation with an odorant

and periods of presentation with odorless air). We compared our

analysis strategies in a repeated-measures design with three within-

subjects factors [(A) model type: without (1) or with (2) modeling

odorless stimulation, (B) with (MBD) or without (SBD) inhalation-

modulation regressors, and (C) presentation block (1–6)]. This

design reflects the codes MBD1, SBD1, MBD2, and SBD2 used

throughout the study and the block numbers used in Figure 7.

All four variants (MBD1, SBD1, MBD2, and SBD2) exhibited

a decrease in BOLD signal as a function of block [block: F(5,160)
= 3.52, p < 0.0048 also after Greenhouse-Geisser correction pGG

< 0.0132; all interactions of block with type, modulation, or type

x modulation where n.s. at a level of 0.05]. Inhalation-modulated

predictors yielded higher amplitude estimates than non-modulated

predictors [modulation: F(1,32) = 11.0, p< 0.0023] without showing
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FIGURE 7

Z-transformed data (A) and a simple average time course (B) for the piriform cortex (PC) show a clear signal increase during the first block of
presenting odorants, which quickly habituates with subsequent presentations. (C, D) Depict the amplitude estimates for the average time course data
in the piriform cortex generated by our four analysis strategies.

interaction effects [type x modulation, F(1,32) = 3.18, p < 0.0839,

n.s.]. Model type, i.e., including regressors for stimulating with

odorless air, did not yield any differences in estimated BOLD

amplitudes [type: F(1,32) = 0.016, p < 0.899].

4 Discussion

We measured the blood oxygenation level-dependent response

in 33 healthy subjects in a 3T MRI scanner whom we exposed to 12

different odorants (one odorant per run) in a design in which six

16-s epochs of stimulation with the respective odorant alternated

with 16-s epochs of stimulation with odorless air. We investigated

the respective sensitivities and design efficiencies of four different

analysis strategies (the definition of design matrices and statistical

contrasts is presented in Figure 1) that either ignored (standard

block designs 1–2) or accounted for (inhalation-modulated block

designs 1–2) the participants’ breathing patterns.

We found that all four analysis approaches were able to identify

core areas of the human olfactory system, namely the bilateral

piriform and orbitofrontal cortices, which is in good agreement

with the existing literature (Gottfried, 2015; Torske et al., 2022).

However, the four analysis approaches differed substantially in

their ability to detect olfaction-related brain activity. SBD2 and

MBD2, i.e., those designs that contrasted stimulation with an

odorant with stimulation with odorless air, emerged as the most

powerful designs (Figures 3, 4). The breathing-modulated design

MBD2 [which modeled the BOLD time courses as a convolution

of experimental blocks (odorant, no odorant), inhalation events (i),

and a hemodynamic response function, and which contrasted the

two resulting predictors (i_odorant vs. i_air), Figure 1] exhibited

the highest power of all tested models in parts of the left piriform

cortex and the right insula (Figure 4).

It should be noted that inhalation-modulated designs were

comparable to, and in some parts of the brain, even more

sensitive than, standard block design (SBD) analysis, despite having

substantially lower detection power from a pure design perspective

(Figures 5, 6). It should also be noted that design efficiency is a

relative metric of how good a design is compared with other designs

that have the same number of time points (Henson, 2007). From a
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Alahäivälä et al. 10.3389/fnimg.2023.1260893

purely mathematical standpoint, design efficiency is proportional

to power, i.e., as design efficiency increases, power increases, unless

there are differences in how well the different models reflect the

underlying physiology.

This may seem surprising at first, but this finding points

to the fact that assuming a box car function, i.e., a period of

constant neural activity across blocks of constant stimulation with

an odorant, is a poor reflection of the dynamics of olfaction, which

consists of sampling events that are time-locked to sniffing or

inhaling. Thus, taking such inhalation events into account proves

to be highly beneficial despite the loss in design efficiency due to

increased predictor variance (Friston et al., 1999). Georgiopoulos

et al. (2018) observed that longer stimulation periods led to

oscillatory signals, which they found hard to capture with a

boxcar function, and therefore argued for short stimulation periods

of 6 s for imaging the olfactory system. A similar finding and

conclusion were reported by Schäfer et al. (2019), who found that

6-s stimulation blocks resulted in higher statistical sensitivity than

longer block durations (also in Han et al., 2020). These studies

used an analysis strategy akin to our SBD. We argue that breathing

makes the olfactory signal oscillatory and is difficult to detect with

such standard analyses of block designs that use a boxcar function

over the entire stimulation block, but that such difficulties can be

overcome by using inhalation-modulated block designs (our MBD

designs) that model the sampling process of olfaction using the

readily available information from a breathing belt.

Another benefit of MBD2, which may explain its slightly higher

detection power than MBD1, is that MBD1 models the BOLD time

courses with the predictor i_odorant only, thereby confounding

olfaction and inhalation. It has been shown that inhalation alone

can result in the activation of olfactory brain structures (Sobel et al.,

1998). MBD2 instead models inhalation plus odorant (i_odorant)

and inhalation of odorless air (i_air) and contrasts these two

predictors. Following Donder’s subtraction logic (Donders, 1969;

Sternberg, 1969), this yields (inhalation + odor processing) –

inhalation= odor processing if pure insertion applies, but a critique

of the assumption of pure insertion is in Friston et al. (1996).

Therefore, despite the further reduction in design efficiency due to

increased predictor variance and correlated predictors (i_odorant

and i_air), there is a benefit in the sensitivity of modeling and

contrasting the two processes.

Presenting the same odorant repeatedly over the course of a

run yielded substantial habituation effects in the piriform cortex

(Figure 7), which is in line with previous findings in human (Sobel

et al., 2000; Poellinger et al., 2001) and rat (Zhao et al., 2016)

imaging. These habituation effects were picked up by all four of our

analysis approaches (MBD1, SBD1, MBD2, and SBD2). Inhalation-

modulated imaging appeared to yield higher estimates of BOLD

amplitudes, but habituation results did not differ significantly

from standard block designs. Similarly, including stimulation

with odorless air in the model (MBD2, SBD2) did not lead to

statistically different estimated habituation effects. Despite this

statistical equivalence of the four analysis approaches, it appears

that SBD models (SBD1 and 2) were unable to detect olfaction-

induced BOLD signals after the first block (∼4 sniffs of the same

odorant), whereas the inhalation-modulated approaches started to

fail after ∼8 sniffs or two blocks (MBD 1) or ∼12 sniffs or three

blocks (MBD2), respectively.

4.1 Limitations

The BOLD signal in the primary olfactory cortex (POC)

only persists for a few seconds (Sobel et al., 2000; Poellinger

et al., 2001; Tabert et al., 2007). Furthermore, our findings are

in agreement with reports that primary olfactory regions show

substantial habituation with repeated presentation of the same

odorant using electrophysiological methods in rats (Wilson, 1998)

and neuroimaging in humans (Sobel et al., 2000). Because of

such habituation, our design appears to be ill-suited to accurately

estimate the shape of the hemodynamic response function, which

could have improved the sensitivity of our inhalation-modulated

models to detect odor-evoked BOLD responses. Here, we used

a standard dual-gamma model that has been developed using

responses of the early visual cortex to simple visual patterns

(Glover, 1999), which also appears to provide a reasonable fit to

olfactory responses in event-related paradigms (Anderson et al.,

2003).

4.2 Outlook

In general, block-design paradigms have been considered

relatively ineffective for olfactory fMRI studies (Wang et al., 2014),

and an optimal strategy for investigating primary olfactory cortex

most likely consists of rapid event-related designs that a) are timed

using explicit instructions (“sniff now”) (Anderson et al., 2003)

or using inhalation-triggered stimulus presentation11, and b) that

switch between different odorants to avoid habituation.

However, depending on the scientific question, block designs

with stimulation periods that extend beyond a few seconds may

still be the optimal choice when trying to investigate mental states

that either need time to build up or that are used as contextual

factors that modulate ongoing cognitive and emotional processes.

We expect that the latter designs will profit from the breathing-

modulated analyses described here when it comes to separating

sensory from higher-level processing.
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