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Pseudo-Label Assisted nnU-Net
enables automatic segmentation
of 7T MRI from a single
acquisition
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Introduction: Automatic whole brain and lesion segmentation at 7T presents
challenges, primarily from bias fields, susceptibility artifacts including distortions,
and registration errors. Here, we sought to use deep learning algorithms (D/L) to do
both skull stripping and whole brain segmentation on multiple imaging contrasts
generated in a single Magnetization Prepared 2 Rapid Acquisition Gradient Echoes
(MP2RAGE) acquisition on participants clinically diagnosed with multiple sclerosis
(MS), bypassing registration errors.

Methods: Brain scans Segmentation from 3T and 7T scanners were analyzed
with software packages such as FreeSurfer, Classification using Derivative-based
Features (C-DEF), nnU-net, and a novel 3T-to-7T transfer learning method,
Pseudo-Label Assisted nnU-Net (PLAn). 3T and 7T MRIs acquired within 9 months
from 25 study participants with MS (Cohort 1) were used for training and
optimizing. Eight MS patients (Cohort 2) scanned only at 7T, but with expert
annotated lesion segmentation, was used to further validate the algorithm on a
completely unseen dataset. Segmentation results were rated visually by experts in
a blinded fashion and quantitatively using Dice Similarity Coe�cient (DSC).

Results: Of the methods explored here, nnU-Net and PLAn produced the best
tissue segmentation at 7T for all tissue classes. In both quantitative and qualitative
analysis, PLAn significantly outperformed nnU-Net (and other methods) in lesion
detection in both cohorts. PLAn’s lesion DSC improved by 16% compared to
nnU-Net.

Discussion: Limited availability of labeled data makes transfer learning an
attractive option, and pre-training a nnUNet model using readily obtained 3T
pseudo-labels was shown to boost lesion detection capabilities at 7T.
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Introduction

Volumetric segmentation of brainmagnetic resonance images (MRI) is now a commonly
used post processing step enabling noninvasive quantitative analysis of disease progression
in various neurological and neuropsychiatric diseases such as multiple sclerosis (MS),
Alzheimer’s disease, human immunodeficiency viral infection, and depression (de Leeuw
et al., 2005; Traboulsee et al., 2016; Espinoza Oyarce et al., 2020; Mina et al., 2021). Since
manual annotation of 3D MRI data is extremely tedious and time-consuming, automated
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segmentation methods are of great interest for both clinical and
research applications. There is a dearth of brain segmentation
algorithms from 7T images compared to 3T and lower fields,
especially ones that can efficiently segment tissue classes in the
whole brain.

High magnetic field strengths have enabled a more detailed
understanding of the underlying pathology of MS. Compared to
3T, 7T MRI offers a higher signal-to-noise ratio enabling sub-
millimeter resolution, allowing for more sensitive analyses than
were previously possible (Pohmann et al., 2016). This has led
to a better detection of MS lesions at 7T compared to 3T as
well as a greater understanding of the underlying mechanisms
of MS, including the role of cortical lesions in cognitive decline,
iron deposition and tissue in disease progression (Harrison et al.,
2015). The greater structural detail enabled by 7T imaging also
allows more nuanced stratification of pathologies such as MS
lesions or glioblastomas (Ladd et al., 2018). However, higher
magnetic fields present particular challenges for post-processing
due to more pronounced radio-frequency field nonuniformities,
more susceptibility artifacts (Haast et al., 2018) and larger
spatial distortion near air-tissue interfaces. These complicate co-
registrations, and any misregistration can adversely affect multi-
contrast segmentation efforts (Peerlings et al., 2019).

Multi-contrast segmentation methods developed for lower field
strengths, such as FreeSurfer (Fischl et al., 2002) and Classification
using DErivative-based Features (C-DEF) (Selvaganesan et al.,
2019), may be degraded in their effectiveness when applied to
7T MRI data (Spini et al., 2020). FreeSurfer is a widely used
probabilistic atlas-based segmentation tool that performs well
on normal appearing brain scans. C-DEF has been shown to
outperform FreeSurfer’s segmentation in cases with high MS lesion
load or brain atrophy but relies on AFNI tools for skull stripping
(Cox, 1996). Instead of relying on an atlas, C-DEF uses a logic
regression model trained on image features extracted from MRI
intensity derivatives to classify tissue types (Selvaganesan et al.,
2019). Fluid-attenuated inversion recovery (FLAIR) images are
typically valuable for detecting lesions at 3T and lower field
strengths. However, they are less useful at 7T due to generally less
lesion conspicuity and stronger bias fields from multiple RF pulses
(Zwanenburg et al., 2010; Spini et al., 2020).

Deep learning (D/L) methods, especially convolutional neural
networks (CNNs) derived from the U-Net framework, have
become state-of-the-art for brainMRI segmentation in recent years
(Svanera et al., 2021). These methods rely on layers of automatically
optimized filters and nonlinear activations that enable learning
sophisticated image features from an annotated training dataset,
which are then applied to predict on unseen data. A few prior
studies have attempted to apply CNNs to segment high-field MRI
data. CustomCNNs have been used for cortical lesion segmentation
(La Rosa et al., 2021) and multi-class whole-brain segmentation
(Svanera et al., 2021) on 7T data with varying success. Recently, the
nnU-Net method introduced by Isensee et al. (2021) has become
the de facto baseline segmentation method for a wide range of
medical segmentation tasks. The nnU-Net is a self-configuring,
deep learning framework designed to tackle image segmentation
tasks from diverse biomedical datasets. The algorithm follows a
standard U-Net architecture (Ronneberger et al., 2015) consisting

of an encoder and a decoder which are linked by skip connections.
The nnU-Net extracts dataset properties, such as image size, voxel
spatial information, and category proportion, to automatically tune
hyperparameters, guiding the construction and data manipulation
of the neural network. After 5-fold cross-validation, nnU-Net will
select the model with best configuration of overall performance
from three different U-Net configurations: a 2D U-Net, a 3D U-
Net running at full image resolution, and a 3D U-Net cascade.
We therefore hypothesized that the capabilities of nnU-Net,
perhaps boosted by domain-specific adaptation, may reduce the
dependence on auxiliary image contrasts or a priori information
by relying instead on contextual information extracted from the
training dataset.

This manuscript presents a deep learning method for atlas-
free, automatic, skullstripping and whole-brain segmentation of
7T MRI, integrating the interdependent tasks of skull stripping
and lesion segmentation. The novel method, Pseudo-Label Assisted
nnU-Net (PLAn), entails pre-training an nnU-Net model with
readily obtained pseudo-label data derived from scans at a lower
field strength (3T), then fine-tuned with limited 7T expert-
drawn labels (transfer learning) to optimize lesion segmentation
performance. The performance of this method was compared
against commonly available methods on 3T and 7T data and
manually drawn lesion masks in patients clinically diagnosed
with MS.

Methods and materials

The Natural history of MS study protocol was approved by the
institutional review board of our institute (NCT00001248), and all
participants provided written informed consent.

Cohorts

In this retrospective study, 33MS patients were included in
two cohorts to train and evaluate nnU-NET, PLAn, and C-DEF-7T.
Cohort 1 consists of 25 patients (15 with relapsing-remitting MS, 8
with secondary progressiveMS, 1 with primary progressiveMS, and
1 with MS-mimicking brain lesions). Inclusion criteria for Cohort
1 was available 3T and 7T scans within 9 months of each other;
no clinical disease progression or new lesions between their 3T and
7T scans (median time between 3T and 7T scan: 36 days, range:
1–196 days). 3T and 7T scans from this cohort will be referred to
as Cohort 1-3T and Cohort 1-7T. Cohort 2 included 8MS patients
(5 with relapsing-remitting MS, 1 with secondary progressive MS,
and 2 with clinically isolated syndrome) scanned only at 7T (mean
age: 60.5 years, female = 4), and was mainly used to validate the
segmentation technique.

MRI acquisition

3T images, acquired on a Skyra system with a 32-channel head
coil, included 3D T1-weighted (T1w) images (MP2RAGE,
TR/TE/TI1/TI2 = 5,000/2.26/700/2,500ms, flip angle =
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4.5◦, 1-mm isotropic resolution), 3D FLAIR (TR/TE/TI =

5,000/393/1,800ms, 1-mm isotropic resolution), and 2D PD/T2
(FSE, TR/TE1/TE2 = 3,630/9.6/96ms, resolution = 0.7 × 0.7
× 3mm). 7T images were acquired on a Magnetom system
equipped with a 1-channel transmit/32-channel receive coil (Nova
Medical and included T1w images) and T1 maps (MP2RAGE,
TR/TE/TI1/TI2 = 4,000/4.6/350/1,350ms, flip angle = 4, 0.5◦,
0.7-mm isotropic resolution).

Reference masks for training and validation

Cohort 1 was randomly split into a training/validation group
(n = 5) and a testing group (n = 20). Segmentation labels for
training/validation were created for cohort 1-3T using C-DEF as
previously described (Selvaganesan et al., 2019). For cohort 1-
7T, segmentation labels for training/validation were created using
FreeSurfer on MP2RAGE T1w image as a first pass for gray
matter (GM), white matter (WM), and cerebrospinal fluid (CSF).
These masks were then heavily edited for errors, and a manually
drawn lesion mask and skull stripping mask were added to it
(C.D, H.D). The final brain segmentation masks were validated by
trained and experienced neurologists (E.S.B or M.I.G). For cohort
2, manual lesion segmentations were drawn on the MP2RAGE
T1w image using ITK-Snap (C.D) and validated by a neurologist
(E.S.B, M.I.G).

Segmentation algorithms

Reference volumes to evaluate whole-brain and lesion
segmentations quantitatively were obtained using C-DEF on
3T scans (referred to as C-DEF 3T) as described elsewhere
(Selvaganesan et al., 2019). This was done to allow for detailed
comparison and a reliable reference point without large-scale
manual annotation. Briefly, the method involves using multi-
contrast MRI images (MP2RAGE: uniformized-denoised T1w,
inversion 1, inversion 2 and FLAIR), registered and bias-field
corrected using a sliding percentile filter. This algorithm generates
image features using Gaussian blur and Gaussian gradient filters of
various kernel sizes. These features are then used to train a logistic
regression classifier with L2 regularization. This was followed by 5-
fold cross-validation on themanually annotated training/validation
group and ensembled inference using majority voting.

C-DEF segmentations were obtained from 7T MP2RAGE
images (T1 map, inversion 1, and inversion 2) as well for
comparison (C-DEF 7T). The only changes made to the original
pipeline were that the percentile filter bias correction (Vovk et al.,
2011; Selvaganesan et al., 2019) was omitted in favor of the N4
bias correction (Tustison et al., 2010), and per-image z-score
normalization was applied during preprocessing.

FreeSurfer segmentations on 7T (FreeSurfer 7T) were obtained
by down-sampling 7T T1w MP2RAGE scans to 1.0 mm3,
processing by recon-all, then up-sampling back to 0.7 mm3

space. FreeSurfer automatic subcortical segmentation outputs
were converted into NIfTI format, then mapped from various

anatomical labels to one of four tissue classes: CSF, GM, WM,
and lesions.

An nnU-Net segmentation model (nnU-Net 7T) was trained
using cohort 1-7T’s training/validation group (n = 5) utilizing the
publicly available nnU-Net package (Isensee et al., 2021) with the
T1 map, inversion 1, and inversion 2 images from 7T MP2RAGE
scan as inputs. nnU-Net 7T segmentations were obtained after
running the full cross-validation, model selection, and ensembled
inference routine as described in the nnU-Net documentation
(https://github.com/MIC-DKFZ/nnUNet). The only significant
modification made to nnU-Net 7T was to disable largest-
connected-component post-processing, which was not helpful for
this task.

Finally, a 3T to 7T transfer learning model was trained for
7T segmentation (PLAn 7T). The C-DEF 3T model segmentation
labels (referred as pseudo-labels for this purpose) and 3T
MP2RAGE scans were used to pre-train an nnU-Net model using
the 3D full-resolution U-Net configuration and default settings.
Transfer learning was achieved by loading the pre-trained model
weights and preprocessing settings (except for the final softmax
layer), then fine-tuning the network with the manually edited 7T
labels and 7T MP2RAGE scans from cohort 1-3T training group
(n = 5). Fine-tuning was conducted for 125 epochs (default =
1,000) as preliminary analysis found it to be the shortest training
regime that remained stable. The initial learning rate was 1 ×

10 – 4 (default = 1 ×10 – 2), which was determined by cross-
validation to be the best compromise between preserving the pre-
trained weights and learning new information from the 7T data.
No other settings were altered, and no model layers were frozen
during fine-tuning. The fine-tuned model was then applied to the
7TMP2RAGE scans of the remaining unseen participants to obtain
cross-validation results.

Evaluation of segmentation methods

For qualitative analysis, segmentation outputs were randomly
scrambled, and the method to generate each segmentation method
was hidden. Two experienced neurologists (M.I.G, H.T) rated the
quality of segmentation for each tissue class and skull stripping for
each participant scan. A subjective rating scale from 1 to 5 was used,
with the best segmentation being ranked as a 5 (Table 1). The mean
tissue scores and 95% confidence interval from all participants for
each method was then calculated and compared.

An extensive quantitative analysis was performed on
volumetric agreement between C-DEF-3T segmentation outputs
and the 7T segmentation algorithms on the 20 participants from
cohort 1’s testing group. Tissue volumes were calculated using the
fslstats utility from FSL (Jenkinson et al., 2012). Skull stripping
between all methods was also evaluated using Bland-Altman
analysis to determine mean bias and 95% limits of agreement
between methods, as it has large implications in tissue volumes.
Importantly, C-DEF 3T and C-DEF 7T use AFNI’s 3dSkullStrip
tool (shrink_fact_bot_lim = 0.7, AFNI toolkit) (Cox, 1996) on the
3T (AFNI 3T) and 7T (AFNI 7T) MP2RAGE second inversion
images. Relationships between tissue segmentation volumes
between methods were calculated using Pearson’s correlation
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TABLE 1 Criteria for subjective rating scale used to rank tissue

segmentation.

Rating White matter lesion WM/GM/CSF/skull-
stripping

1 0–25% segmented,
100–75% not segmented or
segmented as other structure

Most tissue misclassified

2 25–50% segmented,
75–50% not segmented or
segmented as other structure

Tissue class defectively
segmented, substantially
misclassified

3 50–75% segmented,
50–25% not segmented or
segmented as other structure

Tissue is mostly segmented,
and scarcely misclassified

4 75–100% segmented,
25–0% not segmented or
segmented as other structure

Tissue is completely
segmented, and scarcely
misclassified

5 All lesions segmented, well
defined and matching the
exact shape of the lesions

Tissue is mostly segmented,
without misclassification

coefficient and Dice similarity coefficient (DSC) was calculated for
each tissue class as previously described (Zou et al., 2004) with
C-DEF 3T reference images. Finally, PLAn 7T and nnU-Net 7T
lesion segmentation was further evaluated by comparing volumes
to manually drawn lesion segmentations in cohort 2.

Statistical analysis was performed using PRISM version 9.3.1.
After checking the normality assumption using the Shapiro-Wilk
test, we employed repeated-measures ANOVA using Dunnett’s
method to compare mean metric differences of segmentation
methods to either the 3T reference or PLAn (as appropriate),
corrected for multiple comparisons. A corrected p-value of 0.05
or lower was considered statistically significant. Unless otherwise
noted, all statistics are given in terms of their mean value and 95%
confidence intervals (CI), and all data reported are in the form of
mean± standard deviation.

Results

Skull stripping

First, skull stripping performance was evaluated using
qualitative ratings and Bland-Altman plots, which compared total
intracranial volumes (TIV) to the reference AFNI 3dSkullStrip
performed on 3T MP2RAGE (AFNI 3T). The nnU-Net 7T
and PLAn 7T methods produced excellent skull stripping
results throughout the brain (Figures 1A–D). Bland-Altman
analysis (Figure 1E) showed that both methods had very low
mean TIV biases, with 0.88% (CI: −3.8, 5.6) for nnU-Net
7T and 0.89% (CI: −3.7, 5.5) for PLAn 7T. The qualitative
evaluation revealed that deep learning methods offered slight
improvements over AFNI at 7T, particularly in dorsal (Figure 1A),
retro-orbital (Figure 1B), and cerebellum (Figure 1C), and
near the superior sagittal sinus and brainstem (Figure 1D)
regions. Indeed, Bland-Altman analysis comparing AFNI
7T to AFNI 3T (Figure 1E) produced a mean TIV bias of
−3.5% (CI: −8.2, 1.1). Expert ratings (Table 2) confirmed these
observations, with mean skull stripping scores of 4.42 (CI:

4.33, 4.51) for nnU-Net 7T and 4.4 (CI: 4.3, 4.5) for PLAn
7T, respectively, compared to 4.03 (CI: 3.7, 4.2) for AFNI 7T
skull stripping.

While AFNI 7T and AFNI 3T produced similar skull
stripping boundaries in some brain regions, such as dorsal
regions (Figure 1A), other regions, such as the cerebellum,
showed significant degradation at 7T compared to 3T (Figure 1C).
FreeSurfer 7T, on the other hand, was prone to overestimation
of intracranial volumes, including extracranial areas abutting the
anterior temporal lobe (Figure 1D) and cerebellum (Figure 1C).
This resulted in a mean TIV bias of 10% (CI: 3, 19) (Figure 1E).
These errors were more detrimental than those displayed by
AFNI 7T, as expert ratings of skull stripping quality produced
a mean score of just 1.82 (CI: 1.6, 2.1) for FreeSurfer 7T
(Table 2).

Comparison of tissue segmentation
methods

All volumetric comparisons are in reference to the 3T
segmentation outputs. The D/L methods (nnU-Net 7T and PLAn
7T) significantly outperformed both C-DEF 7T and FreeSurfer 7T
for all tissue segmentation classes from cohort 1 (Figure 2). They
successfully captured detailed cortical boundaries (Figures 2A, B)
and white matter lesions (Figures 2A–C) as well as cerebellum and
brainstem borders (Figure 2D). Cerebrospinal fluid (CSF) volume
from D/L methods showed the strongest correlations with C-DEF
3T (Figure 3A, r = 0.92, CI: [0.91, 0.97], p < 0.001, slope =

1.2). This is consistent with prior observations that C-DEF 3T
under-strips the skull in dorsal regions, leading to slightly lower
CSF volumes than expected. FreeSurfer 7T produced degraded
temporal lobe and cerebellum segmentation,mislabeling sulcal gray
matter (GM) as CSF throughout the ventral regions (Figures 2C,
D). This resulted in highly inflated and unreliable CSF volumes,
with a mean bias of 63% (CI: 30, 96) along with a comparatively
low correlation coefficient (r = 0.50, CI: [0.02, 0.79], p > 0.05,
slope = 0.78). C-DEF 7T had much better CSF segmentations
due to good cortical boundaries (Figures 2A, B), although it still
presented a modest mean CSF volume bias of −4.7% (CI: −29,
20). While this bias did have a significant effect, resulting in
a mean CSF DSC of 0.70 (CI: 0.67, 0.73), compared to 0.72
(CI: 0.69, 0.75) for nnU-Net 7T, it was less detrimental than
the errors in FreeSurfer 7T (mean DSC: 0.65, CI:[0.63, 0.68]).
Expert ratings confirmed that nnU-Net was the best 7T method
for CSF segmentation, with a mean rating of 3.89 (CI: 3.7, 4.08),
compared to 1.58 (CI: 1.3, 1.86) for FreeSurfer 7T and 2.76 (CI:
2.55, 2.98) for C-DEF 7T (Table 2). The nnU-Net also matched or
exceeded FreeSurfer 7T in distinguishing deep GM structures such
as the thalamus and globus pallidus, which C-DEF often missed
(Figure 2B). As a result, nnU-Net 7T had substantially better expert
ratings than C-DEF 7T or FreeSurfer 7T for both GM and WM
(Table 2).

Correlation plots (Figures 3A, B) show a strong correlation
between nnU-Net 7T and C-DEF 3T in lesion volumes (r =

0.95 CI: [0.89, 0.98], p < 0.001, slope = 0.68). C-DEF 7T, on
the other hand, failed to detect most lesions throughout the
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FIGURE 1

Qualitative and quantitative assessment shows nnU-Net and PLAn methods give superior skull stripping results at 7T. At left, representative (A–C)

axial and (D) sagittal image slices selected from various participants from the inference set show the output of skull stripping methods (magenta
overlay indicates regions identified as brain, method and field strength indicated at the top) in various brain regions overlaid on 7T MP2RAGE INV1
image. Gold arrows indicate good skull stripping features in areas where other methods made errors (teal arrows). At right, (E) Bland-Altman plots of
total intracranial volume (TIV) calculated from 7T methods in (A–D) compared to AFNI 3T, which was used as a reference (% Di�erence = 100 x
[Method – C-DEF 3T]/Average). Mean bias (solid blue) and 95% limits of agreement of the dataset (dashed gray) are indicated.

TABLE 2 Blinded expert ratings (mean with 95% CI) for each 7T method for skull stripping and tissue segmentation.

FreeSurfer 7T C-DEF/AFNI 7T nnU-Net 7T PLAn 7T

Skull stripping 1.82 [2.07, 1.56] 4.03 [4.2, 3.86] 4.42 [4.51, 4.33] 4.4 [4.50, 4.30]

Cerebrospinal fluid 1.58 [1.86, 1.3] 2.76 [2.98, 2.55] 3.89 [4.08, 3.7] 3.9 [4.09, 3.71]

Gray matter 1.95 [2.14, 1.75] 2.39 [2.63, 2.16] 3.34 [3.5, 3.18] 3.39 [3.55, 3.24]

White matter 2.5 [2.79, 2.21] 3.16 [3.39, 2.93] 3.92 [4.01, 3.83] 3.92 [4.01, 3.83]

Lesions 1.95 [2.22, 1.67] 1.63 [1.90, 1.37] 3.74 [3.98, 3.49] 3.92 [4.16, 3.68]

Rating scale is from 1 being poor and 5 being accurate segmentation for each class.

brain (Figures 2A–D), which resulted in very low lesion volumes
(Figure 3B) and a correlation of just r = 0.33 (CI [−0.13, 0.68],
p > 0.05, slope = 0.09). Meanwhile, FreeSurfer 7T demonstrated

significant lesion sensitivity, with a moderately strong lesion
volume correlation of r = 0.90 (CI: [0.75, 0.96], p < 0.001, slope

=0.61), both of which were significant increases compared to C-
DEF 7T (Figure 3B). However, qualitative inspection revealed these
lesion segmentations to be frequently inaccurate (Figures 2A–C).
Lesion volumes of participants with low lesion loads were inflated,
whereas those with high lesion loads were deflated (Figure 3B).
Both lesion DSC (mean: 0.30 [CI: 0.23, 0.36]) and expert ratings of
1.95 (CI: 1.67, 2.22) in FreeSurfer 7T were only slightly better than
that of C-DEF 7T, despite far greater lesion volumes.

PLAn 7T improves lesion segmentation
over nnU-Net 7T

Despite its substantial advantages over other 7Tmethods, nnU-
Net 7T still produced noticeable deficiencies in lesion detection
(Figures 2B, C). To address these deficiencies, we implemented
the PLAn 7T method. Using cohort 1’s testing group, mean DSC
values calculated against C-DEF 3T indicated small, but statistically
significant improvements in CSF (1%), GM (0.6%), and WM
(0.5%) segmentation in PLAn 7T compared to nnU-Net 7T. Expert
ratings (Table 2) found either no (CSF, WM) or slight (GM, 1.5%)
improvements for tissue segmentation using PLAn 7T compared
to nnU-Net 7T. Correlation plots of CSF volumes vs C-DEF
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FIGURE 2

Qualitative assessment shows that PLAn 7T produces the best overall segmentations at 7T. Representative axial image slices selected from various
participants in the inference set show di�erent tissue segmentation methods (method and field strength indicated at the top) from various (A–C)
supratentorial, and (D) infratentorial brain regions overlaid on 7T MP2RAGE T1map image. Blue arrows indicate good segmentation features, red
arrows indicate errors. For the segmentation overlays, blue indicates WM, yellow CSF, green GM, and magenta lesions.

3T (Figure 3A) also appeared virtually identical between the two
methods. PLAn 7T gave a consistent boost to lesion volumes (mean
bias: 15%, CI: [−25, 55]) compared to nnU-Net 7T. This resulted
in the slope of the regression line increasing significantly (p< 0.05)
from 0.68 for nnU-Net 7T to 0.90 for PLAn 7T and corresponded
to an improved expert lesion rating of 3.92 (CI: 3.68, 4.16) for
PLAn 7T, compared to 3.74 (CI: 3.49, 3.98) for nnU-Net 7T (a
5% increase).

The significant improvement in PLAn 7T’s lesion sensitivity
compared to nnU-Net 7T was validated in an unseen cohort
(Cohort 2, Figure 4). The improved segmentation was consistent
across various lesion types, including diffuse WM hyperintensities
that nnU-Net 7T was often unable to distinguish from GM or WM
(Figures 4A, B), as well as periventricular lesions, which were often
misclassified as CSF (Figures 4C, D). Quantitative analysis of 7T
lesion segmentation revealed significantly higher DSC (Figure 4E)
in PLAn 7T (mean = 0.86, CI: [0.83, 0.90]) than nnU-Net (mean
= 0.72, CI: [0.78, 0.67], p < 0.0001) when compared to C-DEF
3T. In addition, PLAn showed stronger slope which was closer to
unity (dotted line in Figures 4F, G) (slope = 0.72) than nnU-Net

(slope = 0.53) with C-DEF 3T indicating it had less systemic
underestimation at higher lesion volumes.

Discussion

This study presents PLAn, a novel automatic whole-brain
segmentation, including lesion segmentation, using a single,
commonly gathered MRI sequence at 7T. The PLAn tool integrates
skull stripping and whole-brain segmentation including lesion
segmentation in a single step. This enables simpler and faster
training, domain adaptation, and inference than previous methods
in which these steps are handled by separate models. We show
that nnU-Net, a publicly available medical image segmentation
method, can produce accurate segmentations even with a few
well-annotated training examples, outperforming existing skull
stripping and tissue segmentation methods. Adding a pre-training
step to nnU-Net-7T (in PLAn-7T) significantly improved lesion
segmentation performance by leveraging the readily available 3T
pseudo-labels to mitigate limited 7T label availability. Importantly,

Frontiers inNeuroimaging 06 frontiersin.org

https://doi.org/10.3389/fnimg.2023.1252261
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Donnay et al. 10.3389/fnimg.2023.1252261

FIGURE 3

Quantitative assessment shows that PLAn 7T produces the best overall segmentations at 7T. Correlation plots of (A) CSF volume and (B) lesion
volume of various segmentation methods (as indicated on top) vs C-DEF 3T reference with identity (dashed gray) and regression (solid blue) lines. (C)
Dice similarity coe�cient (DSC) plots of each tissue class vs C-DEF 3T reference; asterisks mark significant mean di�erence compared to PLAn 7T (*p
< 0.05, **p < 0.01).

PLAn-7T only requires a 3T cohort for training, but not in
application of the segmentation.

For all segmentation tasks at 7T, D/L recon methods clearly
outperformed C-DEF and FreeSurfer. nnU-Net’s excellent skull
stripping is consistent with prior studies which established the
efficacy of U-Net-derived CNNs for brain extraction in general
(Hwang et al., 2019; Wang et al., 2021) and in MS patients (de
Oliveira et al., 2022). In contrast, FreeSurfer and AFNI were prone
to under or over-skull stripping. This was particularly detrimental
to FreeSurfer’s downstream segmentation tasks, in which the poor
skull stripping dramatically reduced CSF segmentation quality.
Notably, nnU-Net integrated skull stripping and segmentation into
a single step.

Overall, nnU-Net 7T effectively combined the advantages of
C-DEF 7T (good CSF segmentation and cortical boundaries) and
FreeSurfer (detailed GM segmentation). Nevertheless, FreeSurfer’s
cortical segmentations in the temporal lobe and cerebellum suffered
from degradation. Given this degradation’s localized and systematic
nature, it is likely due to inadequate mitigation of the strong 7T
bias fields, as previously found in FreeSurfer analyses at ultra-
high fields (Haast et al., 2018). Indeed, sliding percentile filter
based bias correction that was employed at 3T was found to be
insufficient for correcting the bias fields at 7T, and it was also found
to exasperate artifacts due to susceptibility effects. On the other

hand, N4 bias field correction has worked particularly effective in
addressing these challenges at 7T. PLAn 7T produced similar high-
quality segmentation results to the default nnU-Net 7T. Despite
AFNI’s skull stripping errors at 3T, PLAn 7T produced excellent
results, suggesting that the fine-tuning effectively corrected errors
in the 3T pseudo-labels. It also retained the other aspects of the
7T baseline model that were already optimal, including deep GM
structures and cortical details.

PLAn 7T’s pre-training step boosted nnU-Net’s lesion
sensitivity. nnU-Net, while more effective at lesion detection
than the other baseline methods, still had substantial room for
improvement. With reference to manually drawn lesion masks,
PLAn’s DSC improved by 16% compared to nnU-Net. PLAn
dilated existing lesion boundaries to cover the edges of diffuse
WM hyperintensities, frequently added missing chunks of large
diffuse lesions, or detected lesions missed by all other methods
(Figures 2, 4).

Prior studies indicate that transfer learning is often
advantageous when the training dataset in the target domain
is small (Valverde et al., 2021). In this study, nnU-Net produced
superior lesion segmentation compared to commonly used
methods at 7T with only five training labels. This is a far smaller
training dataset than typically used for CNN training, even for
MRI segmentation tasks, for which manually validated annotations
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FIGURE 4

Improved lesion segmentation in PLAn 7T compared to nnU_Net on unseen cohort. Detailed comparison of segmentation results from nnU-Net
(column 2) and PLAn (column 3) from various participants highlighting (A) punctate lesions in frontal lobe, (B) periventricular and deep white matter
lesions, and (C, D) lesions in occipital horn of lateral ventricle in color, overlaid on 7T MP2RAGE T1 map. Voxelwise subtraction of the lesion mask
from nnUNet 7T and PLAn 7T methods is overlaid in pink on the T1 map (column 4). Manual lesion segmentation is overlaid in red on T1 map
(column 5). (E) Dice similarity coe�cient (DSC) of selected methods calculated from lesion segmentation masks vs manual segmentation mask (****p
< 0.0001). Correlation of lesion volume from nnU-Net and (F) PLAn, and (G) manual segmentation mask.

are highly time-consuming and expensive to generate. In PLAn,
we leveraged readily available data from a lower field strength
to pre-train the segmentation model. Pre-training the network
on a larger, similar dataset allowed for more examples of lesion
morphology and improved lesion segmentation. C-DEF 3T
inference segmentations were chosen as pseudo-labels for the
pre-training step since they were readily available and reasonably
accurate, as demonstrated previously (Selvaganesan et al., 2019;
Dieckhaus et al., 2022), although not entirely free from errors.

FLAIR contrast is invaluable for distinguishing lesions from
GM and CSF. Prior studies have found that 3T FLAIR images
can indicate more accurate lesion boundaries than those visible on
7T or 3T MP2RAGE scans. When re-trained on 7T MP2RAGE
scans, PLAn was able to recognize subtle lesion indicators that were
associated with 3T FLAIR hyperintensities, even in the absence of
a 7T FLAIR, which likely contributed to its ability to detect diffuse
and periventricular lesions better. The lack of FLAIR contrast at
7T may explain why C-DEF 7T failed to detect lesions, unlike
its 3T counterpart. At 3T, C-DEF has previously been shown
to perform better than a U-Net segmentation algorithm when
trained on limited labels (Dieckhaus et al., 2022). In this study,

nnU-Net 7T clearly outperformed C-DEF 7T, suggesting that
MP2RAGE images alone do not provide sufficient contrast for
C-DEF to reliably separate lesions from other tissues, essentially
a lack of orthogonal data. Additional contrast might improve
the performance of C-DEF 7T, as long as susceptibility/distortion
artifacts can be minimized between these sequences. We did
evaluate the efficacy of T2∗-weighted 3D echo-planar imaging
scans as a potential independent contrast. However, the images
suffered from residual distortion errors near the sinuses and were
not further considered. Along with co-registration difficulties at
7T, high-field FLAIR images suffer from increased bias fields and
artifacts, which make them difficult to use for intensity-based
segmentation tasks. Therefore, 7T FLAIR images were not collected
or evaluated in this study.

One limitation of this study is that the methods evaluated
were primarily assessed in an off-the-shelf fashion, with no
hyperparameter tuning or modification unless explicitly stated.
While dedicated fine-tuning of any of these methods may yield
improved results for a specific cohort, such extensive optimization
is beyond the scope of this study. In addition, we compared 7T
segmentation volumes to segmentations produced by C-DEF at
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3T to allow for a detailed comparison to a reliable reference point
(C-DEF 3T) without large-scale manual annotation, which can be
incredibly expensive and tedious. These labels cannot be treated as
a perfect 7T gold standard due to the inherent differences between
segmentations at 3T and 7T. Additionally, a FLAIR contrast was
included at 3T but not 7T. Previous research has shown that lesion
segmentation volumes derived from FLAIR contrasts are higher
than from T1 maps, although the resulting volumes are highly
correlated (Spini et al., 2020). This is in line with our results
which showed that C-DEF 3T reference lesions had higher lesion
volumes than 7T methods that did not use FLAIR. To prevent bias
in comparing 7T methods against each other, blinded neurologist
ratings were included without reference to 3T.

PLAn was pre-trained on pseudo-labels derived from cohort 1-
3T and then initially evaluated on the same participants scanned
at 7T (cohort 1-7T). Then, we compared the lesion segmentation
performance of PLAn and nnU-Net on an unseen cohort (cohort
2) with reference to manually drawn labels. Future work will apply
PLAn on multi-site data, including other disease cohorts, and
refining the pseudo-label and gold standard generation method.

One area for further investigation is whether a larger training
data set (source or target domain) would significantly improve
the segmentation of lesions or other classes. A recent study of
transfer learning for subcortical segmentation found that while
just a few (1 to 3) images were sufficient for fine-tuning in most
cases, smaller structures such as the amygdala and accumbens were
most improved by additional data for fine-tuning (Kushibar et al.,
2019). Several recent studies have also used automated or semi-
automated imperfect training labels (i.e., pseudo-labels) for model
pre-training, followed by few-shot fine-tuning (Bermudez et al.,
2020; Svanera et al., 2021). These examples typically use larger
source domain datasets than the one utilized in this study (n =

20), which may indicate that utilizing more pseudo-labeled data for
pre-training could also boost performance.

In this study, we developed and applied a state-of-the-art
deep learning method to MP2RAGE 7T MR images to obtain
fast and reliable whole-brain segmentations. By employing only
multi-contrast techniques such as MP2RAGE, it is readily scalable
and adaptable to use in various conditions and performs robustly
against any registration errors. The performance of 7T lesion
segmentation was boosted, and training label scarcity for lesion
segmentation was overcome by incorporating a pre-training step
using results from a robust 3T segmentation as pseudo-labels
before fine-tuning a transfer-learning method. We present these
findings as a blueprint for acquiring fast, accurate, and valuable
volumetric markers from 7T MRI data for use in clinical and
research settings.

Computation resources

All C-DEF and FreeSurfer processing was implemented
on a computing cluster with 64x Intel R© Xeon R© CPUs
with 256 GB RAM running CentOS 7.7. All nnU-Net
and PLAn models were implemented on a computing
cluster with NVIDIAÒ v100-SXM2 GPUs, each with 32
GM VRAM and 24 Intel R© Xeon R© CPUs, each with 64
GB RAM.
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