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Background: Brain functional connectivity analysis of resting-state functional

magnetic resonance imaging (fMRI) data is typically performed in a standardized

template space assuming consistency of connections across subjects. Analysis

methods can come in the form of one-edge-at-a-time analyses or dimension

reduction/decomposition methods. Common to these approaches is an

assumption that brain regions are functionally aligned across subjects; however, it

is known that this functional alignment assumption is often violated.

Methods: In this paper, we use subject-level regression models to explain

intra-subject variability in connectivity. Covariates can include factors such as

geographic distance between two pairs of brain regions, whether the two

regions are symmetrically opposite (homotopic), and whether the two regions

are members of the same functional network. Additionally, a covariate for each

brain region can be included, to account for the possibility that some regions

have consistently higher or lower connectivity. This style of analysis allows us

to characterize the fraction of variation explained by each type of covariate.

Additionally, comparisons across subjects can then be made using the fitted

connectivity regressionmodels, o�ering amore parsimonious alternative to edge-

at-a-time approaches.

Results: We apply our approach to Human Connectome Project data on 268

regions of interest (ROIs), grouped into eight functional networks. We find that

a high proportion of variation is explained by region covariates and network

membership covariates, while geographic distance and homotopy have high

relative importance after adjusting for the number of predictors. We also find that

the degree of data repeatability using our connectivity regression model—which

uses only partial location information about pairs of ROI’s—is comparably as high

as the repeatability obtained using full location information.

Discussion: While our analysis uses data that have been transformed into a

common template-space, we also envision the method being useful in multi-

atlas registration settings, where subject data remains in its own geometry and

templates are warped instead. These results suggest the tantalizing possibility

that fMRI connectivity analysis can be performed in subject-space, using less

aggressive registration, such as simple a�ne transformations, multi-atlas subject-

space registration, or perhaps even no registration whatsoever.
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1. Introduction

Functional connectivity is defined as the undirected association

between two or more brain regions (Friston, 2011). This is

often assessed by computing the correlation coefficient over time

in resting-state functional magnetic resonance imaging (fMRI)

data between spatially different regions of the brain. In most

functional connectivity studies, subjects’ scans are first warped

into a standard template, then analyzed using an assumption that

the standardized data are functionally aligned across subjects. For

example, edge-at-a-time approaches compare connectivity across

subjects separately for each edge in the connectivity matrix, the

matrix of correlations for each pair of brain regions. A shortcoming

of such approaches is that the assumption of functional alignment

is often violated: the presence of large inter-subject differences in

functional localization is known to remain even after structural

alignment to a standard template (Haxby et al., 2014). This problem

can be partially addressed using spatial smoothing at a cost in

spatial resolution, effect size, and power. Alternatively, it can be

addressed using analytic approaches such as Hyperalignment (HA,

Haxby et al., 2011, 2014, 2020). HA is a functional alignment

technique that attempts to register individual brains based on

functional properties rather than only on anatomical locations.

It seeks to harness variation in functional connectivity to create

a common functional space. Brain data from local regions are

iteratively mapped into a common high-dimensional space using a

Procrustes transformation, which preserves and aligns participants

based on local representational geometry. This procedure has

been shown to increase functional similarities across subjects

while preserving subject-specific information (Haxby et al., 2011;

Guntupalli et al., 2016; Feilong et al., 2018; Nastase et al., 2019).

While hyperalignment and related procedures show great promise

for allowing subjects to vary in their functional activation patterns,

they are not shape-preserving. Hence, inference on location, size,

and shape of activated areas is invalid. In addition, the solutions are

not unique as it depends directly on the order in which individuals

are entered into the algorithm.

Since edge-at-a-time approaches distinguish each individual

edge in the connectivity matrix, they can be described as making

a full use of the associated location information for each edge

(that is, which pair of brain regions the edge corresponds to).

In contrast, in recent work, Tang et al. (2023) treat all within-

subject edges as exchangeable. Their approach ignores the location

information for each edge and instead characterizes subjects by the

distribution (or histogram) of their edges. This “edge distribution”

has interesting properties, including being theoretically robust

to registration. In addition, this approach is useful in settings

such as in stroke, surgical, or degenerative disease settings where

localization assumptions are both suspicious and difficult to employ

because of registration challenges (Scheinost et al., 2012) (see

Tward et al., 2020, for a discussion of registration in non-standard

settings). However, since it does not use location information

of the edges, this approach ignores the well-established core

neuro-organizational principle of common localized functional

specialization.

In this work, we propose an alternate approach that can be

thought of as intermediate between the edge-at-a-time approach

and the edge distribution approach. We use region-pair (or voxel-

pair) information to explain within-subject connection strength

using linear models, as is typically done in network analyses (Salter-

Townshend and McCormick, 2017). For example, regression

models could include covariates such as distance between the

pair of regions and indicators of whether the two regions are

members of the same functional network.We refer to our approach

as being “partially localized” since the fitted connectivity values

are based only on the partial location information contained in

the covariates. This style of analysis allows us to compute the

proportion of intra-subject variation explained by each type of

covariate. Comparisons across subjects can then be made using

the fitted connectivity regression models (see Section 4). Our

regression approach offers a way of summarizing connectivity

parsimoniously, using a much smaller number of parameters

relative to the total number of edges. This can help alleviate the

problem of multiple comparisons that arises with edge-at-a-time

approaches. Further, sincemany different connectivitymatrices will

yield the same fitted model, our approach may be less sensitive

to some violations of functional alignment than edge-at-a-time

approaches, which use no summarization of the connections. In

contrast to the edge distribution approach, connections are treated

as exchangeable only within levels of the covariates. Additionally,

connectivity regression models can be used either with data that

has been transformed to a common template or in settings where

each subject’s data is left in its own geometry. For this latter

point, we envision a use for this technique when using multi-atlas

registration, where a single common template is not employed and

instead template information is carried from a collection of labeled

atlases to subjects (Rezende et al., 2019). Our proposed regression

approach differs a great deal from functional HA approaches and

related functional alignment techniques (Xu et al., 2012; Andreella

et al., 2022; Wang et al., 2022) since: (i) explicit alignment is

not a goal of the analysis; (ii) aggregate connectivity effects are

considered under the assumption that they are exchangeable within

levels of covariates; and (iii) in principle our approach can be

implemented entirely in subject space using voxel-level data.

We illustrate our approach using resting-state fMRI data for

healthy subjects from the Human Connectome Project (HCP,

Van Essen et al., 2013). We summarize the fraction of variation

explained by different groups of covariates used in our models, and

we also investigate data repeatability (Finn et al., 2015; Airan et al.,

2016; Bridgeford et al., 2021; Wang et al., 2021). Also known as

test-retest reliability, data repeatability quantifies the consistency

over time of multiple measurements made on the same subject. We

compare data repeatability in the HCP data under our approach,

the edge-at-a-time approach, and the edge distribution approach.

The paper is organized as follows: in Section 2, we describe the

data, present our connectivity regression models, and describe how

we assess data repeatability and proportion of variation explained

by groups of covariates. In Section 3, we present results for the HCP

data, and Section 4 concludes with a discussion.

2. Methods

2.1. Data from the Human Connectome
Project

The dataset consists of resting-state fMRI data from 470

healthy subjects from the Human Connectome Project (HCP,
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Van Essen et al., 2013) 500 subject release. All data were acquired

on a Siemens Skyra 3T scanner at Washington University in St.

Louis. Subjects completed two fMRI sessions on consecutive days.

Each session included two 15-min resting-state scans, one with

a right-to-left and the other with a left-to-right phase encoding.

In this work, we focus on the left-to-right phase encoding data,

and hence our data consists of 1, 200 brain volumes (TR =

720 ms) for each day. An analysis of the right-to-left phase

encoding data is also included in the Supplementary material.

Further description of the data and processing pipelines applied

can be found in Geuter et al. (2018). Briefly, scans were

preprocessed using the HCP “fMRIVolume” pipeline (Glasser et al.,

2013), which includes gradient unwarping, motion correction,

distortion correction using FSL’s topup tool, brain-boundary-based

registration to structural T1-weighted scan, non-linear registration

into MNI152 space, grand-mean intensity normalization, and

spatial smoothing using a Gaussian kernel with a full-width

half-maximum of 4 mm. This was followed by time series

extraction using the Shen atlas of 268 regions of interest (Shen

et al., 2013) via regional means. The Fisher’s Z transform was

taken of the synchronous temporal correlations across regions,

resulting in 268 choose 2, or 35,778 transformed inter-regional

correlations for each subject and session. Additionally, we also

conducted a supplemental analysis in which data from the same

subjects and sessions were extracted using the Glasser atlas of

360 regions of interest (Glasser et al., 2016), resulting in 64,620

inter-regional correlations for each subject and session (see the

Supplementary material).

2.2. Subject-level connectivity regression
models

We begin by defining notation. Let Z(j, j′) denote the Fisher’s Z-

transformed empirical correlation over time between two regions

j and j′. Let A be the connectivity matrix, that is, the symmetric

R × R matrix whose entries are the correlations Z(j, j′), where

R is the number of region or seed locations (e.g., R = 268

using the Shen atlas). We also refer to each correlation Z(j, j′)

as an edge of the connectivity matrix A. Let Z be the ordered

vector of the R choose two correlations Z(j, j′) with j < j′,

obtained as the vectorized strictly upper triangular elements of

A. Additionally, let Z = {Z(j, j′) : j < j′} be the collection

of the R choose two correlations viewed as an (unordered) set.

All of these refer to subject- and session-specific measurements;

when comparing multiple subjects and sessions, we will write

Zi,t(j, j
′), Ai,t , Zi,t , and Zi,t to denote measurements for subject

i, session t.

Edge-at-a-time approaches compare each edge Z(j, j′) across

subjects, while the edge distribution approach is based on

Z, the collection of edges not distinguished according to

their location information. Here we propose using subject-

level regression models to explain variation in connectivity.

Separately for each subject, the vector of Fisher-transformed

correlations Z is modeled in terms of characteristics of the

pairs of regions. For the HCP data, we use the following as

our main model; each term is explained below along with its

rationale.

Z(j, j′) = β0 + s0(GeogDist(j, j
′);Hem0)

+ s1(GeogDist(j, j
′);Hem1)

+ s2(HomotopDist(j, j
′);Hem1)+

268
∑

r=1

βr Regionr(j, j
′)

+

8
∑

k=1

∑

k′≥k

γk,k′ Networkk,k′ (j, j
′)+ ǫ(j, j′). (1)

Here GeogDist(j, j′) is the geographic (i.e., Euclidean)

distance between the centers of two regions (ROI’s) j and j′.

Geographic correlations can arise from biologically irrelevant

reasons such as processing (smoothing), as well as biological

reasons such as functional specialization. The model uses smooth

terms of geographic distance, which were fit using generalized

additive models (GAMs Wood, 2011; Hastie, 2017) with thin

plate regression splines. Separate smooth terms for geographic

distance are used for region-pairs that are in the same hemisphere

and region-pairs that are in opposite hemispheres, denoted

by s0(GeogDist(j, j′);Hem0) and s1(GeogDist(j, j′);Hem1),

respectively.

HomotopDist(j, j′) is a measure of approximate symmetry

(homotopy) between regions j and j′—specifically, the distance

between one region-center, and the reflection across the mid-

sagittal plane of the other. The rationale for including this

term is that homotopic correlations are among the most

reproducible resting-state findings (Zhao H. et al., 2022). The

term s2(HomotopDist(j, j′);Hem1) denotes a smooth function

of homotopic distance, among region-pairs that are in opposite

hemispheres. (No term for same-hemisphere pairs is used since

such pairs would not be symmetrically opposite.)

The term Regionr(j, j
′) is an indicator that region r is involved

in the pair—that is, that one of j or j′ is region r. The rationale for

these region terms is the possibility that specific ROI’s may exhibit

consistently higher or lower connectivity. By including an indicator

term for each ROI in our model, we also ensure that the average of

the fitted values for pairs involving a given region is equal to the

average connectivity on those pairs.

The final set of predictors uses network information based

on the results of Finn et al. (2015), who group the 268 regions

in the Shen parcellation into eight functional networks. For k =

k′, the term Networkk,k(j, j
′) is an indicator that regions j and

j′ are both in network k (an intra-network indicator). For k <

k′, Networkk,k′ (j, j
′) is an indicator that one of region j or

j′ is in network k and the other is in network k′ (an inter-

network indicator). Thus, our model includes eight same-network

membership terms and 28 different-network terms.

In summary, region-pair correlations are modeled using

an intercept term and four different types of region-pair

characteristics: (i) geographic distance between region-centers,

(ii) homotopic distance (approximate symmetry) between region-

centers, (iii) indicators of involvement of a given ROI, and (iv)

membership in a given functional network or pair of functional

networks. For brevity we refer to these four types of predictors

as geographic distance, homotopic distance, region terms, and

network membership terms. Including all 268 region terms and
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FIGURE 1

Schematic illustration of our subject-level connectivity regression model. The outcome vector (“Connectivity”) contains the Fisher Z-transformed

correlation for each pair of ROI’s, obtained from the upper triangular part of the subject’s connectivity matrix shown at the left. For our main model

using the Shen parcellation with 268 ROI’s and eight functional networks, the design matrix contains an intercept; the geographic distance between

the pair of ROI’s; homotopic distance between the pair of ROI’s; 36 network membership terms, indicating which network or pair of networks the

two ROI’s are members of; and 268 region terms, indicating which ROI’s are in the pair. The lower part of the figure shows an example of two regions

A and B; suppose that Region A is in Network 3 and Region B is in Network 2. The row corresponding to this pair of regions would have the

geographic distance that is shown in blue; the homotopic distance (how far the regions are from being symmetrically opposite each other) shown in

orange; an indicator that Region A is involved in the pair; an indicator that Region B is involved in the pair; and an indicator that this pair of regions are

in Networks 2 and 3.

all 36 network membership terms introduced rank deficiency,

so (as usual) terms were dropped to obtain a full-rank design

matrix. Figure 1 shows a schematic illustration for this model.

We also consider a number of other related models (see Section

2.5).

It is also worth emphasizing that this approach is a

form of matrix regression (Zhao et al., 2021; Zhao Y. et al.,

2022). Specifically, the fitted model minimizes the loss function
∑

j<j′{Z(j, j
′) − X(j, j′)Tβ}2 over β , where X(j, j′) is a vector

containing an intercept term and characteristics of the region-pair

(j, j′), and β is the vector of regression coefficients. The regression

estimates for β are the same as those obtained by minimizing

the norm ||Z − W1β1 − . . . − Wpβp||
2
F , where Z is the matrix

obtained from the connectivity matrix A by setting the diagonal

entries to 0, theWk arematrices with element (j, j′) equal to element

k of X(j, j′), βk is element k of β , and || · ||F is the Frobenius

norm (that is, the square root of the sum of the squares of the

matrix elements).

We denote the fitted value for Z(j, j′) by Ẑ(j, j′) and the vector

of fitted values by Ẑ.

2.3. Proportion of variation explained by
groups of predictors

A substantial benefit of the proposed model is that it allows us

to investigate the relative importance of each of the characteristics

described above. For linearmodels, Grömping (2006) has presented

a number of relative importance metrics, which are implemented

in the relaimpo R package. The importance of a given predictor

can be assessed using the amount by which the coefficient of

determination R2 increases when that predictor is added to the

model. However, this amount will typically depend on whether

other predictors have already been included in the model. To

account for this, the recommended lmg metric of Grömping

(2006) averages the increase in R2 over all possible orderings of

the predictors. In this way, a given predictor’s relative importance

weighs both the direct impact of that predictor on R2 when it is

the only predictor in the model and the indirect impact when it

is added after one or more of the other predictors. Here we adapt

this for our setting, where we focus on the relative importance of

groups of predictors in a generalized additive model (with Gaussian
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family and linear link). Specifically, we consider all of the network

membership terms as one group, all of the region terms as a second

group, and geographic distance and homotopic distance as the

third and fourth groups of predictors, respectively. We then use

the increase in R2 when a given group of predictors is added, and

average over possible orderings of the four groups. For each subject-

specific model, this partitions the total proportion of variation

explained by the model into the proportion of variation explained

by each of these four groups of predictors.

The proportion of variation explained by a group of predictors

will be impacted by the number of predictors in the group, as well as

the relative importance of each predictor. Therefore, for each group

of predictors, we also consider per-predictor relative importance,

which we define as the proportion of variation explained by

the group of predictors divided by the number of predictors in

the group. We use this metric rather than considering relative

importance for each predictor individually (as is done in the

relaimpo package) since this would involve fitting models on

all possible orderings of the individual predictors, which would be

prohibitively computationally expensive when using hundreds of

predictors.

2.4. Data repeatability

We consider the degree of repeatability obtained by

summarizing subjects using our connectivity-regression

framework. Specifically, we investigate the degree of repeatability

obtained if we use each subject’s vector of fitted connectivity

values Ẑ, compared with repeatability using the vector of Fisher-

transformed correlations Z under the edge-at-a-time approach,

or the set of correlations Z under the edge distribution approach.

We do this using the notion of discriminability (Bridgeford

et al., 2021). Population discriminability is the probability

that two measurements for the same subject will be more

similar than two measurements from different subjects, under

a given distance metric. To elaborate, let Mit1 and Mit2 be

measurements for the same subject at two different sessions

and let Mi′t′ be a measurement for a different subject at a

possibly different session. For a given distance d(·, ·) compatible

with the measurements, discriminability is the probability

δ = P
(

d(Mit1 ,Mit2 ) < d(Mit1 ,Mi′t′ )
)

, which is well-defined

assuming independent subjects and that this probability

does not depend on the specific subjects and sessions being

considered (Wang et al., 2020). Given n independent subjects

each measured at T sessions, a consistent and unbiased estimator

is given by the sample discriminability δ̂ (Wang et al., 2020;

Bridgeford et al., 2021):

δ̂ =
1

n(n− 1)T2(T − 1)
×

n
∑

i=1

∑

i′ 6=i

T
∑

t1=1

∑

t2 6=t1

T
∑

t′=1

I
{

d(Mit1 ,Mit2 ) < d(Mit1 ,Mi′t′ )
}

, (2)

where I{·} is the indicator function.

We note that, when comparing discriminability across different

types of measurements, different distances may be needed for the

FIGURE 2

Proportion of variation in connectivity in the HCP data explained by

our main connectivity regression model. The proportion of variation

explained is shown for each of the 470 subjects and two sessions in

the HCP data. The median across all subjects and sessions is 0.56.

different measurements. The different choices of distances will

impact discriminability of the different measurements. We see this

dependence as a positive feature, correctly reflecting the degree of

repeatability we have for each measurement, since the question of

interest is how well we are able to distinguish within-subject vs.

between-subject measurements by using a distance appropriate for

the type of data at hand. Formeasurements that are ordered vectors,

as we have in the edge-at-a-time approach and our connectivity

regression approach, we use Euclidean distance. For the edge

distribution approach, each measurement is an (unordered) set,

so Euclidean distance cannot be used. Instead, we use the 2-

Wasserstein distance (see Galichon, 2018) between Zi,t and Zi′ ,t′ ,

which is simply the Euclidean distance between the vectors of order

statistics for Zi,t and for Zi′ ,t′ .

An alternative way of measuring discriminability under our

approach would take the measurement for each subject to be the

vector of regression coefficients, rather than the vector of fitted

values. Euclidean distance using the fitted values is a Mahalanobis

distance of the coefficients around the variance/covariance matrix

of the regressors, while Euclidean distance using the regression

coefficients is a Mahalanobis distance around an identity matrix.

Using the regression coefficients as the measurement could be

preferable in some ways, since it moves away from comparing

the fitted values separately for each edge, as in the edge-at-a-time

approach. However, comparing the fitted values as we have done

here has the benefit that the fitted values are fixed in dimension

across different models and independent of the units used.

2.5. Approaches and models compared

In Section 2.2, we presented our main connectivity regression

model (Equation 1), in which region-pair correlations are modeled

using an intercept term and four different types of predictors:
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FIGURE 3

Partition of the proportion of variation in connectivity in the HCP data explained by our connectivity regression models. Each histogram shows the

proportion of variation explained by each group of predictors used in the given model, for each of the 470 subjects and two sessions in the HCP data.

Groups of predictors are: geographic distance between pairs of regions, homotopic distance between pairs of regions, network membership terms

(indicating which functional network or pair of functional networks the regions belong to), and a region term for each ROI. Note that the x-axis is

linear on the log10 scale.

geographic distance, homotopic distance, region terms, and

network membership terms. We also consider models that use

subsets of these predictors. All models contain an intercept term

and the geography and homotopy terms of (1). Our smallest

model (which we denote as “Reference model”) uses only these

predictors. Two other models, denoted as “Reference model

+ networks” and “Reference model + regions,” additionally

include the network membership terms or the region terms. The

main model including all of these predictors we also denote as

“Reference model + networks + regions.” We analyze the HCP

data with the Shen parcellation using each of these connectivity

regression models, and investigate the proportion of variation

explained by each group of predictors used in each model.

We then compare discriminability under the edge-at-a-time

approach, under each of these connectivity regression models,

and under the edge distribution approach. A supplementary

analysis using different parcellations is also described in

the Supplementary material.

3. Results

Figure 2 shows the proportion of variation in connectivity

explained in the main model (Equation 1), for each subject and

session. This proportion varies between 0.22 and 0.85 across

subjects and sessions, with a median of 0.56. Figure 3 shows

the proportion of variation explained by each type of predictor

(color) in each of our connectivity regression models (panel),

for each subject and session. It is interesting to note that these

distributions are somewhat insensitive to the model. For example,

the distribution for network membership terms remains fairly

similar whether region terms are included in the model or not.

We also assessed, in the “Reference model + networks” model,

whether intra-network or inter-network terms account for more

variation explained. Figure 4 shows the distributions of proportion

variation explained by geographic distance, homotopic distance,

intra-network terms, and inter-network terms. Table 1 gives the

means over subjects and sessions for the proportion of variation
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FIGURE 4

Comparison of intra- vs. inter- network terms in the HCP data. The

histogram shows the proportion of variation in connectivity in the

HCP data explained by each of the following groups of predictors:

geographic distance between pairs of regions, homotopic distance

between pairs of regions, intra-network terms (indicating that both

regions are members of the same functional network), and

inter-network terms (indicating that the two regions are members of

a pair of di�erent functional networks). Note that the x-axis is linear

on the log10 scale.

explained by each group of predictors in these models, as well

as for the per-predictor relative importance of each group. As a

group, the region terms had the largest contribution, explaining

on average roughly 40% of the variability in the main model.

However, in terms of per-predictor relative importance, region

terms were the least important, while homotopic distance and

geographic distance were most important by this metric. That is,

geographic distance is a more important predictor (on average)

than a single region term for one ROI; however, collectively the

268 region terms are more important than geographic distance.

The proportion of variation explained by intra-network terms

is similar to the proportion explained by inter-network terms.

However, the per-predictor relative importance for the group of

intra-network terms is three times as high; that is, on average, each

intra-network term explains three times as much variation as a

single inter-network term.

Table 2 shows the point estimate of discriminability, δ̂, using

our models and under the edge-at-a-time and edge distribution

approaches. Our main connectivity regression model obtains a

discriminability of 0.78, comparably as high as the edge-at-a-

time approach (0.86). As expected, discriminability is lower using

connectivity regression models that have a more limited set

of covariates. The edge distribution approach obtains the same

discriminability as our smallest connectivity regressionmodel, with

a value of 0.66. For a point of comparison, we can consider

the values of discriminability that would be obtained if each

subject’s Day 1 measurement were randomly paired with the

Day 2 measurement of a different subject rather than their

own Day 2 measurement. Over different permutations of the

Day 2 measurements in the HCP data, the average value of

discriminability was 0.50, and 95% of values were in the interval

(0.47, 0.52).

4. Discussion

In this paper, we propose the use of subject-level regression

models to characterize functional connectivity while only using

partial location information. These models use the Fisher-

transformed correlation between a pair of regions (ROI’s or voxels)

as the outcome and characteristics of the region-pair as covariates.

Our partially localized approach offers an alternative to edge-at-a-

time approaches (which do not summarize the data and typically

involve a large numbermultiple comparisons) on the one hand, and

the edge distribution approach (which arguably over-summarizes

the connectivity data, disregarding all location information) on

the other.

We highlight two potential uses for these models. First,

on the subject level, we can study the relative importance of

different covariates toward explaining variability in each subject’s

connections. Here we have investigated this in the HCP data.

Second, our models provide a way of summarizing subject-

level connectivity through the fitted regression coefficients. Our

approach could then be extended to compare connectivity between

different groups of subjects, for example through a mixed effects

model. Other functional connectivity approaches summarize

subject-level connectivity via decomposition (for example, using

independent components analysis, or ICA (Calhoun et al., 2009;

Erhardt et al., 2011; Calhoun and Adali, 2012; Risk et al.,

2014; Mejia et al., 2023) or using a collection of graph-theoretic

metrics (Brier et al., 2014; Tao et al., 2020) before comparing

across subjects. Our approach provides an additional way to

summarize connectivity via interpretable parameters. Investigating

the performance of our models for this application will be a

direction for future research. A potential limitation is the loss

of information incurred with our partial localization approach.

Therefore, a question will be whether the information retained

captures important differences between groups of subjects in

specific applications, such as between patients in different arms of

a given study.

As a way of exploring the amount of information captured

by our approach in the context of the HCP data, we studied

data repeatability. Our connectivity regression approach has

comparably as high discriminability as the edge-at-a-time approach

that uses full location information. However, this result should

be taken with a grain of salt, since data repeatability is a

statement about measurement variance and distinctness of a

trait, regardless of the measure’s utility as a biomarker. For

example, images of human fingerprints are highly repeatable

but contain no meaningful biological information. In addition,

discriminability is not insensitive to demographics that impact

measurements. For example, a dataset with a mixture of older

and younger subjects will have higher discriminability than one

with only subjects from a single age group (Wang et al., 2021).

Thus, having high repeatability does not directly indicate that

a measurement could be used as a biomarker. However, high
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TABLE 1 Proportion of variation in connectivity in the HCP data explained by groups of predictors (P.V.E.), and per-predictor relative importance ×100

of each group (P.P.R.I.).

Group of predictors

Model Geography Homotopy Networks Regions Total

Reference model P.V.E. 0.025 0.018 – – 0.043

P.P.R.I. 1.227 1.835 – –

Reference model +

networks

P.V.E. 0.018 0.013 0.177 – 0.208

P.P.R.I. 0.916 1.278 0.492 –

Reference model +

regions

P.V.E. 0.027 0.017 – 0.451 0.496

P.P.R.I. 1.364 1.745 – 0.169

Reference model +

networks + regions

P.V.E. 0.021 0.013 0.133 0.389 0.557

P.P.R.I. 1.072 1.327 0.370 0.150

Geography Homotopy Intra- Inter- Total
network network

Intra- vs. Inter-networks P.V.E. 0.018 0.012 0.086 0.093 0.208

model P.P.R.I. 0.886 1.236 1.070 0.343

Values are averaged over 470 subjects and two sessions. One subject-session was not included in results for “Reference model + networks + regions” due to rank deficiency that occurred for that

subject’s data in one of the submodels used to compute proportion of variation explained.

TABLE 2 Estimates of discriminability for the HCP data under three

approaches.

Approach Discriminability

Edge distribution 0.657

Reference model 0.658

Partial Reference model+ networks 0.712

localization Reference model+ regions 0.773

Reference model+ networks+

regions

0.781

Edge-at-a-Time 0.860

The edge-at-a-time approach uses the vector of Fisher Z-transformed correlations Z as the

measurement. The partially localized approach uses the vector of fitted values Ẑ from the

connectivity regression model, while the edge distribution approach uses the (unordered) set

Z of correlations. For the ordered vectors, Euclidean distance is used; for the edge distribution

approach, the 2-Wasserstein distance on the empirical distribution of correlations is used.

repeatability is at least a desirable property; and the fact that our

approach results in high discriminability even though the subjects

compared here are all healthy controls is a promising indication

of how much information can be captured through connectivity

regression models.

We also investigated the proportion of variation explained

(PVE) by our models. In our main model, this ranged across

subjects and sessions from extremely high (85% of the variation

in connectivity) to quite low (22% of variation in connectivity).

We found that subjects with a lower PVE for a given scan also

tended to have weaker connectivity and lower variability in their

connection strengths from that scan. However, the low PVE for

some subjects did not seem to be due to quality control issues with

these subjects’ scans. To look for signs of whether the low PVE

for some subjects could be due to poor functional alignment, we

also compared each subject’s PVE across different scans. Figure 5

compares the PVE in models fit on data from Day 1 vs. Day 2 for

each subject in the HCP data. While some subjects have a low PVE

for both days, there are also many subjects who have a low PVE

on one day but a considerably higher PVE on the other day. This

could indicate that low PVE for certain sessions/subjects may be

due in large part to session- and subject-specific noise rather than

biological variation across subjects in their functional alignment

(though the comparison of sessions does not take into account the

possibility of any intra-subject variation in functional alignment

across sessions). Figure 5 also compares the PVE in models fit on

data from two different scans on the same day for each subject

(with left-to-right vs. right-to-left phase encoding), as well as the

PVE from two different models fit on data from the same scan but

extracted with two different parcellations. It is interesting to note

the high discrepancy within subjects across days, where subjects

can differ by up to 0.5 between technical replicates. In contrast,

discrepancy was much lower within subjects over acquisition types

and over atlas within the same day.

In our analysis, it is not surprising that region terms

and network membership terms explained a large proportion

of variability in connectivity. Region-level connectivity has

significance related to both biology and nuisance reduction.

Biologically, it is hypothesized that specific foci are “hubs” of

network activity (see Van Den Heuvel and Sporns, 2011, for

example). A benefit of the proposed approach is that it does not

require hub locations to be consistent across subjects. From a

nuisance perspective, any contaminant that increases or decreases

connectivity in a spatially varying manner would receive some

benefit from region adjustment in such a regression model.

Similarly, the intercept includes both nuisance and possibly real

effects, conflating global nuisance effects and increased overall

connectivity, and is related to global signal regression (Liu et al.,

2017). Network membership terms are unsurprising as having
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FIGURE 5

Di�erences in proportion variation explained by session, acquisition method, and parcellation/model. (Upper left) For each subject in the HCP data,

we compare the proportion of variation explained by the same subject-level connectivity regression models fit on their data from Day 1 vs. on Day 2,

both with left-to-right phase encoding and using the Shen parcellation. (Upper right) Proportion of variation explained by the same models fit on

each subject’s data from Day 1 vs. on Day 2, both with left-to-right phase encoding and using the Glasser parcellation. (Lower left) The proportion of

variation explained by the same models (both using the Shen parcellation) fit on each subject’s data from two di�erent sessions on Day 1, one with

left-to-right (LR) and the other with right-to-left (RL) phase encoding. (Lower right) The proportion of variation explained by two di�erent models fit

on data from the same session (Day 1 with LR phase encoding), extracted using the Glasser parcellation vs. the Shen parcellation. The model fit on

the Shen-parcellated data uses geographic distance, homotopic distance, region terms for 268 ROI’s, and network membership terms for eight

networks. The model fit on the Glasser-parcellated data uses a homotopy indicator term, region terms for 360 ROI’s, and network membership terms

for 22 networks. The correlations based on data from di�erent days are 0.50 and 0.48. The correlation from data from di�erent scans on the same

day is 0.67, and the correlation from di�erent parcellation/models for data from the same scan is 0.91.

strong effects on connectivity since they are somewhat circularly

used in this application. That is, networks are exactly sets of ROI’s

that exhibit strong inter-region correlations consistently across

subjects (in the sample used by Finn et al., 2015).

In this paper, we illustrate our approach using data that

had been registered to a common template-space. In the

Supplementary material, we discuss how our approach could also

be applied with data that is left in subject-space, in settings

where one or several labeled templates are warped into subject

space. We also explore how warping a template into subject-space,

vs. registering subjects’ data into standardized template-space,

could impact our connectivity regression models. Future research

will investigate extensions of our approach to subject-space data

without labeled templates, including voxel-level data. In developing

the extension of our approach to voxel-level analyses, the primary

issue will be computational, since the number of correlations grows

at the rate of the number of voxels squared, leading to hundreds of

millions of correlations needing to be modeled.

Finally, we note that the analysis approach used here is

not entirely novel. Intra-subject graph estimation combined with

inter-subject analyses of graph metrics is a common method

of analysis (see Wang et al., 2010), including the evaluation of

repeatability (Braun et al., 2012; Andellini et al., 2015). However,

weighted graph analyses in a regression model using these terms,

along with measuring proportional variation explained, are less

explored. We further believe that extending these methods to

whole-brain analyses is possible and would lead to novel subject-

level summaries of connectivity. In addition, these analyses
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were admittedly exploratory and approached without a priori

hypotheses. An interesting future direction would be to further

investigate model validation on repeatedly measured subjects and

contrast model summaries across phenotypes such as disease status.
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