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Editorial on the Research Topic

Deep learning in neuroimaging-based neurological disease analysis

Improving the understanding, prognosis, diagnosis, and treatment of neurological diseases

has been increasingly relying on acquiring large-scale neuroimaging data from diverse

participant groups to investigate altered brain structure and function linked to the diseases. One

ongoing challenge in such neuroimaging studies is to establish scalable, sensitive, and robust

computational approaches to disentangle disease-related information from high-dimensional,

heterogeneous imaging data. To this end, deep neural networks, the state-of-the-art machine

learning models, have become an emerging analytical tool. Compared to prior machine learning

methods, deep learning methods have the advantage of reducing the need for manually

engineering features from neuroimaging data, which traditionally relies on task-specific,

simplified a priori knowledge. As such, deep learning has shown unprecedented power in clinical

tasks including personalized treatment planning, disease progression forecasting, diagnosis

classification, tumor localization, etc. However, there are also notable challenges associated with

deep learning in neuroimaging studies. First, the sample size in typical neuroimaging studies

is relatively small compared to the dimension of acquired imaging data, which often increases

the chance of overfitting in the training of deep learning models. This data-scarce problem

is exacerbated in multi-modal analysis (e.g., structural and functional MRI analysis), where

study participants often have missing modalities. Moreover, it is generally not straightforward

to reason about the decision process of a deep network. The lack of interpretability hinders the

understanding of disease mechanisms and prevents the integration of deep learning tools in the

clinical workflow. Herein, our Research Topic focuses on recent advances in the applications of

deep learning to analyze neurological diseases based on neuroimaging data, which specifically

deal with the challenges mentioned above.

A promising way to mitigate the small sample size problem is to leverage the concept

of transfer learning, where deep networks can be pre-trained on a related task with

sufficient training samples. For example, in the application of automatic cerebral microbleed

segmentation, Dadar et al. argued that directly training a deep learning model on microbleeds

data requires large-scale ground-truth manual segmentation, which is time-consuming to

acquire and subject to inter-rater and intra-rater variability. Instead, they showed that by

pre-training a segmentation network on the classification of cerebrospinal fluid vs. brain

tissue (where a large number of ground-truth segmentation labels can be easily obtained), the

resulting model can be used as the initialization for the microbleed segmentation network. By

further suppressing false positive detections in a post-hoc manner, Dadar et al. showed this
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transfer learning scheme can generate accurate and robust

microbleed segmentation and has the potential to improve the

treatment of cerebrovascular and neurodegenerative diseases.

However, in their experiments, the algorithm was trained on high-

resolution multi-modal MRI data, which is not always available in

many clinical settings. For example, Anctil-Robitaille et al. realized

that the spatial resolution of typical diffusion-weighted imaging

(DWI) is significantly lower than that of T1w MRI, so they aim to

design a deep network to synthesize high-resolution diffusion data

from structural MRI. To do so, a Cycle-GAN network was trained on

a set of unpaired high-resolution T1w and low-resolution diffusion

MRI. The network maps a high-resolution T1w to a high-resolution

diffusion MRI, which on the one hand can be mapped back to

the original T1 and, on the other hand, is not distinguishable

from the real diffusion data after downsampling. In particular, the

authors modeled the non-Euclidian properties of diffusion tensors

using a Riemannian framework to make the generated diffusion

MRIs physically plausible. Anctil-Robitaille et al. argued that this

method could be used for missing modalities synthesis and datasets

completion. Indeed, having complete multi-modal data is crucial

for neurological disease analysis as they provide complementary

information about the brain structure and function. This is also

indicated in the work by Canalini et al. showing that the choice

of MRI sequences has a huge impact on the registration accuracy

of longitudinal data. Although the FLAIR sequence is useful for

highlighting periventricular hyperintense lesions, such as multiple

sclerosis (MS) plaques, it is the least informative sequence in the

registration process, which heavily relies on the contrast enhanced

T1w MRI and is influenced by the presence of pathology. Finally,

Guo et al. focused on using deep learning to characterize brain

function alterations associated with the progression of early-stage

Parkinson’s disease. They used a long-short-term memory network

(LSTM) to distinguish patient cohorts based on time series data

from resting-state function MRI. After achieving a significant

classification accuracy, the learned LSTM model weights were

used to select the top brain regions that contributed to model

prediction, which characterized functional changes linked to motor

impairment and gained better insight into the brain mechanisms of

Parkinson’s disease.

In summary, the above results published in this Research Topic

addressed the challenges and underscored the great potential of

deep learning methods to improve the analysis of neurological

diseases using neuroimaging data. We foresee that further

research on this topic will continuously focus on harmonizing

heterogeneous multi-modal and longitudinal data to build unbiased

deep learning models to advance scientific discoveries and improve

clinical workflow.
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