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Introduction: In the context of functional magnetic resonance imaging (fMRI), carbon

dioxide (CO2) is a well-known vasodilator that has been widely used to monitor

and interrogate vascular physiology. Moreover, spontaneous fluctuations in end-tidal

carbon dioxide (PETCO2) reflects changes in arterial CO2 and has been demonstrated

as the largest physiological noise source for denoising the low-frequency range of the

resting-state fMRI (rs-fMRI) signal. However, the majority of rs-fMRI studies do not

involve CO2 recordings, and most often only heart rate and respiration are recorded.

While the intrinsic link between these lattermetrics and CO2 led to suggested possible

analytical models, they have not been widely applied.

Methods: In this proof-of-concept study, we propose a deep-learning (DL) approach

to reconstruct CO2 and PETCO2 data from respiration waveforms in the resting state.

Results: We demonstrate that the one-to-one mapping between respiration and

CO2 recordings can be well predicted using fully convolutional networks (FCNs),

achieving a Pearson correlation coe�cient (r) of 0.946 ± 0.056 with the ground truth

CO2. Moreover, dynamic PETCO2 can be successfully derived from the predicted

CO2, achieving r of 0.512 ± 0.269 with the ground truth. Importantly, the FCN-based

methods outperform previously proposed analytical methods. In addition, we provide

guidelines for quality assurance of respiration recordings for the purposes of CO2

prediction.

Discussion: Our results demonstrate that dynamic CO2 can be obtained from

respiration-volume using neural networks, complementing the still few reports in DL

of physiological fMRI signals, and paving the way for further research in DL based

bio-signal processing.

KEYWORDS

deep learning, fully convoluted neural network, carbon dioxide, respiratory variability,

functional MRI, physiological signal analysis, cerebrovascular reactivity (CVR)

1. Introduction

Carbon dioxide (CO2) is a potent vasodilator used that has been shown to rely mainly on the

nitric oxide pathway to increase arterial diameter (Pelligrino et al., 1999; Najarian et al., 2000;

Peebles et al., 2008; Iadecola, 2017). Blood-vessel diameter is highly sensitive to the surrounding

CO2 concentration, with increasing CO2 partial pressures leading to linear increases in both

vessel diameter and flow (Hülsmann and Dubelaar, 1988; Komori et al., 2007). In Komori et al.

for example, this increase was shown to be 21.6% for arteriolar diameter and 34.5% flow velocity

for a 50% change in CO2 partial pressure in rabbit arterioles (Komori et al., 2007). The partial

pressure of carbon dioxide (PCO2) is themeasure of CO2 within arterial or venous blood. It often
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serves as a marker of sufficient alveolar ventilation within the lungs.

Under normal physiologic conditions, the value of PCO2 ranges

between 35 and 45mmHg, or 4.7–6.0 kPa. Typically themeasurement

of PCO2 is performed via arterial blood gas, but the end-tidal pressure

of CO2 (PETCO2) is related to intravascular PCO2 through a linear

relationship under steady-state conditions (Peebles et al., 2007, 2008),

allowing arterial PCO2 to be estimated from PETCO2.

Dynamic CO2 recordings havemultiple utilities and implications.

In the past decades, the CO2-driven functional magnetic resonance

imaging (fMRI) response has been the preeminent method for

mapping cerebrovascular reactivity (Blockley et al., 2017; Chen,

2018; Chen and Gauthier, 2021). Wise et al. first reported the

contribution of spontaneous fluctuations in arterial PCO2 to the

resting-state fMRI (Wise et al., 2004). Chang et al. followed up this

work by demonstrating the potential relationship between PETCO2

and respiratory-volume variability (RVT) (Chang and Glover, 2009).

Using recordings of spontaneous PETCO2 variations, Golestani

et al. determined the fMRI response function that links PETCO2

to the resting-state blood-oxygenation level dependent (BOLD)

signal (Golestani et al., 2015), and also demonstrated PETCO2 as

the primary source of physiological noise in resting-state BOLD.

It has even been used to demonstrate the possible existence of

neuronally-motivated vascular networks in the brain (Bright et al.,

2020). Furthermore, Chan et al. (2021) found that PCO2 (not

PETCO2) fluctuations also contribute significantly to resting-state

BOLD signal variability (Chan et al., 2020). While the mid-breath

PCO2 does not reflect intravascular PCO2, PETCO2 does provide a

quantitative estimate of arterial PCO2, and is more widely used in

fMRI experiments for the purposes of denoising (Murphy et al., 2013)

and CVR mapping (Pinto et al., 2020). The substantial influence of

dynamic PETCO2 fluctuations on resting-state (Golestani and Chen,

2020) and dynamic functional connectivity has been demonstrated

recently (Nikolaou et al., 2016). Dynamic CO2 can also allow vascular

lag structures to be estimated, providing an important metric for

assessing vascular health (Champagne et al., 2019). Given the unique

variance explained by PCO2 and PETCO2, it is safe to say that

dynamic CO2 is a useful thus desirable metric for those working with

resting-state fMRI data.

Despite the increasing realization of the value of CO2 recordings,

it is often impossible to obtain recordings of CO2 during an fMRI

session. Most study sites are not equipped with an MRI-compatible

capnometer that also facilitates continuous recording of PCO2.

Moreover, the many thousands of legacy fMRI data sets (e.g., Human

Connectome Project, UK Biobank) certainly do not include CO2

recordings. On the other hand, respiratory volume variations, which

had previously been related to PETCO2 variations, are more readily

available thanks to the incorporation of respiratory-volume belts in

modern MRI systems. RVT was first introduced by Birn et al. as a

noise source in fMRI that introduces unique signal variability (Birn

et al., 2006). Today, while RVT measurements during fMRI sessions

are increasingly common, they are still unavailable in large-scale

studies and legacy data sets. As a possible solution, recent work by

Salas et al. (2020) demonstrated that the RVT time series can in

principle be reconstructed from fMRI data using a convolutional

neural network (CNN).

Chang et al. previously showed that PETCO2 can be related to

RVT through a respiratory-response function (Birn et al., 2008).

However, this relationship has been difficult to reproduce in

resting-state conditions, as we will show with our data. In the resting

state, not only is it impossible to derive quantitative CO2 values

from respiratory volume, it is also difficult to obtain a deterministic

relationship between dynamic patterns of respiratory volume and

CO2 variation. Thus, in this study, we also use the principle of DL,

but our focus is to bridge the gap between respiratory and CO2

recordings. Our aim is to demonstrate the feasibility of using DL to

produce dynamic CO2 waveforms from the respiratory time series.

1.1. Background on neural networks

In the majority of DL methods for neuroimaging, 2D inputs

are used to produce 2D outputs (Zhu et al., 2019). Image-to-

image translation is used for cross-modality conversion, denoising,

super-resolution and reconstruction (Kaji and Kida, 2019). Our

problem entails the estimation of a 1D signal from another 1D

signal, and within this context, past research has used convolutional

neural networks (CNNs) and recurrent neural networks (RNNs).

Traditional CNNs consist of convolutional layers followed by fully

connected layers (dense layers) terminating the network (Rawat and

Wang, 2017). As CNNs are the most successful type of DL model for

2D image analysis, and physiological signals are 1D time-series data,

some have converted 1D signals to 2D data to be fed into a CNN,

and have obtained good results (Shah et al., 2022). The advantage of

using 1D CNNs over 2D CNNs and RNNs is the significant reduction

in the number of training parameters, which is helpful when the

training data is limited (as the application at hand). Applications

of 1D CNNs include ECG classification and anomaly detection in

biomedical signals (Kiranyaz et al., 2021). Salas et al. pioneered the

use of 1D CNN for estimating physiological fluctuations in fMRI,

an application closely related to ours. They segmented the BOLD

fMRI signals into fixed time-windows and fed them into a CNN,

where the dense layer predicted a single point of the respiration

waveform at the center of the window. To predict the entire time

series, all the time-windows have to be separately propagated through

the network, entailing high complexity and computational cost.

Moreover, commonly found respiration-belt recordings have variable

lengths, which are incompatible with the use of dense layers.

In this work, we implemented a type of CNN known as fully

convolutional networks (FCNs) (Long et al., 2015). A FCN is

simply a traditional CNN without any fully connected layers. Fully

convolutional layers in FCN permit the use of variable-length input

and also minimizes the computational cost. Previously, a 1D U-net

(a type of FCN that includes skip connections) was implemented for

reconstructing low-frequency respiratory-volume signals from fMRI

time-series data (Bayrak et al., 2020). Here, we demonstrate the use

of simple FCNs (without skip connections) for predicting 1D data

wherein the encoder-decoder architecture exploits the latent space to

streamline the prediction of CO2 traces from respiration-belt signal,

in the presence of limited training data.

2. Methods

2.1. Data acquisition

We recorded percent-CO2 (%CO2) fluctuations and respiratory

bellows simultaneously in a group of 18 healthy adults (age 20–38

years) using the Biopac System (Biopac Inc., Goleta, CA, USA). The

Biopac respiration belt was positioned below the ribcage, and detects
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respiratory depth by sensing abdominal circumference changes.

%CO2 data were acquired through gas lines attached to masks affixed

to subjects’ faces. The Biopac %CO2 module (CO2100C) is calibrated

to measure %CO2 concentration in the range of 0 to 10%. In total,

the available data set consisted of 136 resting-state recordings from

different subjects, which were 10.8min long on average (min =

7.2min, max = 16.1min). The procedure was approved by the

Research Ethics Board of Baycrest (REB# 11–47, approvedDec. 2011–

19). To the best of our knowledge, this is the largest data set of its kind

in existence.

2.2. Data preprocessing

The preprocessing steps consist of (1) low-pass filtering both

respiration and CO2 waveforms (f < 1Hz) and (2) correcting the

delay between %CO2 and respiration signal by cross-correlation.

The low pass filter’s cutoff frequency was determined based on the

respiratory rate of an individual (0.2–0.4Hz). The delay between

%CO2 and respiration waveforms were corrected by shifting the

%CO2 time course by the time lag yielding the maximum negative

cross-correlations between it and the respiration waveform. We

found that across all cases, to achieve this, the %CO2 time course had

to be shifted to the left (backwards in time) by an average of 8.5 s (with

a standard deviation of 1.5 s).

After the delay correction process, we rejected data that yielded

absolute Pearson correlations of <0.4. Recordings were also rejected

if their length was <3min, too short to allow adequate training.

More details on the correlation and data-length threshold are given

in the quality assurance section. The respiration belt data was in

arbitrary units; hence it was normalized by subtracting the temporal

mean and dividing the result by standard deviation. The same

procedure was applied to the %CO2 waveforms. Further details about

the normalization are provided in the next subsection. Both the

waveformswere then resampled to 10Hz and exported in CSV format

to be later imported during the training phase of the neural network.

To obtain PETCO2 from the normalized %CO2 recordings, the

peak-detection step [available through SciPy: (Virtanen et al., 2020)]

ensures the minimum distance between the two peaks is twice the

sampling interval. In other words, we assumed the time between

two exhales is at least 2 s, which is consistent with our recorded

respiratory intervals (3–5 s per breath). Moreover, the lower limit of

the amplitude of the peak was set to be 0.3, and negative peaks are

also rejected.

2.2.1. Data normalization
As previously mentioned, both %CO2 and respiration-belt data

were demeaned and normalized to unit standard deviation (such that

SD = 1). The respiration data is fluctuations in voltage transduced

from expansions and contractions of the belt. As such, it varies

with slight variations in belt tightness and positioning, and needs to

be normalized across subjects to achieve inter-subject consistency.

In part due to the need of using normalized respiration as the

independent variable, this latter would encode no quantitative %CO2

information. That is, there could be a many-to-one relationship

between normalized respiration and unnormalized CO2. To mitigate

this issue, we demeaned and normalized the %CO2 time series in the

same manner. In this manuscript, all the further mentions of CO2

denote normalized %CO2, unless stated otherwise.

2.2.2. Quality assurance
A critical part of successful application of machine learning is

quality assurance (QA) of the training and testing data. It is more

probable to find noise in respiration data, wherein artifacts such as

subject movement and talking can easily confound respiration-belt

recordings. Moreover, if the participant does not consistently breathe

from the abdomen, the respiration belt data may not correspond

well with the CO2 data. During the data-collection phase, useful

precautions include ensuring that the respiration belt and CO2 gas

lines are properly connected. Such precautions not only reduce the

unwanted waveforms but also increase the feasibility of machine-

learning approaches. To discard the undesirable recordings, we have

evaluated our data based on the criteria below. Nonetheless, it is

informative to use data containing some level of noise and artifact

for the purposes of representativeness. Therefore, the threshold used

in the rejection process is generously selected.

2.2.2.1. Length of the recording

In general, for our approach, longer data sets are more desirable.

It was observed that all the recordings were either <3min or

more than 6min in length, drawing a clear distinction between test

recordings and usable recordings. Thus, the lower limit for the time

length was set to 3min. Figure 1 shows the histogram plot of all the

recordings after the time-length thresholding.

2.2.2.2. Pearson correlation coe�cient

As previously mentioned, Pearson’s correlation (r) between the

respiration belt and CO2 time courses is used for initial QA purposes.

The threshold for the absolute value of correlation between CO2 and

respiration is−0.4, as respiratory volume and CO2 are expected to be

negatively associated. This limit was empirically determined through

manual review of the recordings. Figure 2 shows that even though

the threshold was −0.4, there were no recordings with r between

−0.4 and −0.5, only one recording with r = −0.5 and most of the

recordings had an r value of <-0.6.

2.2.2.3. Low-frequency noise in the waveforms

Within the 0.1–0.5Hz frequency band, noise in the respiratory

and CO2 waveforms can impair our ability to relate the two

waveforms, even if the recording-duration and correlation-coefficient

thresholds are met. Such noise most likely originates from faulty

attachment of the respiration belt and from drifts in the recording

modules. As it could potentially overlap with breathing frequency,

it cannot be separated from the signal by using filters. However,

this type of noise can be identified through a mismatch in the

low-frequency portion (<0. 2Hz) of the power spectra of CO2 and

respiration, as shown in Supplementary Figure 1. This type of noise

is also reflected in the signal time series as periodic decreases or

increases in the amplitude of signal. Conversely, an exemplary data

set is shown in Supplementary Figure 2.

2.2.3. Neural network
Obtaining the CO2 concentration from the respiration waveform

is a 1D-to-1D (time series to time series) translation problem,

which is modeled using a 1D fully convolutional encoder-decoder
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FIGURE 1

Quality assurance metrics: Histogram plot of the time length of recordings after time length thresholding. Di�erent colors are used to separate the

subjects.

FIGURE 2

Quality assurance metrics: Box plots of the correlation coe�cient between CO2 and respiration waveforms from each individual subject and the total

data after preprocessing. The number of recordings available for each subject is also given below the box plot. The divisions created by the dashed line

show the groups made during the k-fold split of the dataset. The group number is the same as the test split number, and the total number of recordings

in the group is also provided in the plot. The color-coding is the same as Figure 1.

architecture. This modeling is analogous to prevalent image-to-

image translation or semantic segmentation using 2D FCNs (Long

et al., 2015; Alotaibi, 2020). However, most recent works in

image-to-image translation problems involve adversarial training

(Pang et al., 2022), which is notoriously hard especially with

limited data. Thus, adversarial training is excluded in this paper.
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Constructing a deep neural network often involves trial and error

for tuning hidden layers. To find an optimum number of hidden

layers in the network, several FCNs architectures are investigated,

until overfitting was observed (test phase error increases with

increasing network complexity). All codes are written in Python

and use the PyTorch library, and would be publicly available

on GitHub.

2.2.3.1. FCN architecture

Input to the network was an array of size C x L, where the number

of input channels, C = 1 and L is the length of recording. Although

the respiration recordings were normalized using standard deviation,

the resultant data range still varied between data sets. To bound the

respiration amplitude within a fixed range, the respiration array was

further normalized using the tanh operator before being passed on to

the fully convolutional layers. We implemented four different FCN

architectures, each having one (FCN-1L), two (FCN-2L), four (FCN-

4L) and six (FCN-6L) convolution layers, respectively, between the

input and output layers.

FCN-1L consists of a single convolution operation with a kernel

of length 7 and replicate padding of 3 on both sides (head and tail) of

the input waveform. The kernel length is chosen to balance model

complexity with prediction accuracy. FCN-2L encodes the tanh-

normalized respiration waveform by convolving it with a 4× 7 kernel

(4 kernels of length 7) with a stride of 2, which means the input is

downsampled by a factor of 2. This is followed by ReLU nonlinearity

(activation function) and finally a transposed convolution to decode

the hidden layer into CO2. Both the convolution and transposed

convolution are performed with a stride of 2, which replaces the

need for a pooling layer to downsample the output of convolutional

layers and an unpooling layer to upsample the output of transposed

convolutional layers. Similarly, FCN-4L consists of 2 convolution

and 2 transposed convolutional layers, and FCN-6L architecture adds

another 1 layer to both encoder and decoder sections. The network

architecture of FCN-4L is shown in Figure 3.

2.2.3.2. Loss function

We also experimented with two different loss functions. The first

loss function is the mean squared error (MSE) computed between

the measured and predicted CO2 waveforms, which is widely used

in regression problems (Equation 1). However, as the regression

was performed between the waveforms of pseudo-periodic nature,

it was observed that the network learned to predict zero-crossings

extremely well, but the extremities were left underfitted, lowering the

scores of PETCO2 predictions. To rectify this problem, a second loss

function, the weighted MSE (MSEWgt), was introduced Equation 2),

with the weights set to the normalized amplitudes of the ground truth

CO2 waveform for each timepoint. The weighting provides higher

preference to the peaks, and hence we hypothesized that it would

provide better results for PETCO2.

MSE =
1

L

∑L

i=1
(yi − ŷi)

2 (1)

MSEWgt =
1

L

∑L

i=1
[(yi − ŷi)/|yi|]

2 (2)

where, yi and yi are the predicted and ground truth CO2

respectively for the ith time point, and L is the length of the recording.

Networks trained with the weighted cost function are denoted by the

postfix “-Wgt.”

2.2.4. Training
The 18 subjects were split into 5 subsets (splits), and the training

was executed using the k-fold cross-validation strategy. It is typical to

use either 10-fold or 5-fold cross-validation as it generally results in

a model with low bias, modest variance and low-computational cost

compared to leave-one-out cross-validation strategy (Rodriguez et al.,

2010). In our dataset, as the number of subjects is relatively limited,

we opted for k = 5, and each time one subset was left out from the

training phase to be used in testing the accuracy of the network. Each

subject can have multiple recordings, and the data was divided based

on the subjects (and not recordings) to ensure that the training and

testing data has no scans sharing a common subject. The divisions

created by dotted lines in Figure 2 correspond to the different splits.

As visible in the figure, the splits contain data from 2, 5, 4, 4, and 3

subjects, yielding total numbers of 30, 34, 27, 23, and 22 recordings,

respectively. Each split has a different number of total recordings,

which enhances the generalizability of the results. We implemented

two training strategies.

2.2.4.1. Method 1. Equal-length data segments

In this method, we formatted the training data as an array

of equal-sized data segments obtained by segmenting the input

recordings. As the training was performed on a GPU, the

computation parallelized in the tensor with multiple batches,

reducing the training time. We used the chunk size of 90 s and a

batch size of 256. The drawback of this method is the unavoidable

error introduced due to edge effects during convolution, which is

proportional to the number of chunks.

2.2.4.2. Method 2. Variable-length data segments

In this method the input array length could be of variable sizes.

The drawback of using variable-length input is that it prevents

us from grouping the data in batches for parallel processing in

the GPU. On the positive note, unlike in Method 1, Method 2

precludes the segmenting-induced edge effects. We implemented

both methods. The training time was <20 s irrespective of the

network type or trainingmethod. All the networks were trained using

Adam optimizer for 15 epochs. Hyperparameters corresponding to

the optimizer like learning rate and decay rate were fine-tuned

manually for each network. In total, we trained four FCNs, each

using two loss functions, on the 5-fold split data. The training was

performed on a 12GB GeForce GTX TITAN X GPU. All networks

used <500MB GPU memory during the training phase.

2.2.4.3. Reference methods

To the best of our knowledge, there have been no previous

attempts to derive the CO2 waveform from respiratory traces using

machine learning. To establish the performance of our approach

against a possible alternative, we employed two reference methods.

First, based on previous work by Chang and Glover (2009), defining a

PETCO2 as the convolution of RVT with RRF (and then normalized,

negated and shifted temporally for maximum cross-correlation). This

is referred to as the RVTRRF method, described by Equation 3. RVT

was estimated from respiration waveform as detailed in Birn et al.

(2008).

PETCO2
′(t) = RVTRRF (t) = RVT(t)∗RRT(t) (3)
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FIGURE 3

Neural-network architecture: 4-Layer Fully Convolutional Network. The architecture shown here is a type of encoder-decoder neural network consisting

of fully convolutional layers, followed by instance normalization and ReLu non-linearity. The last layer does not contain normalization and activation

function as it is a regression problem. Moreover, the input is first normalized using tanh activation function to constrain the input data between −1 and 1.

The numbers 1, 4 and 8 indicate the number of filters per layer.

where PETCO2
′(t) is the estimated PETCO2. RRF is the

respiratory response function, and ∗ denotes convolution. Similar

to what was done previously (Chang and Glover, 2009), at the

testing stage, we corrected the lag between RVTRRF [PETCO
′

2(t)]

and PETCO2 using the maximum cross-correlation between the two

signals, where the time shift was allowed to vary between −120 and

120 s. Moreover, to maintain the scaling of PETCO2 as obtained from

neural networks, we normalized and demeaned RVTRRF with the

standard deviation and mean of PETCO2.

Second, defining a linear-regression (LR) model relating CO2 to

respiratory volume (Equation 4), and PETCO2’(t) is extracted from

the CO2 time courses (measured using the Biopac system in this case).

CO2
′ (t) = β · Resp (t) + ε (4)

where CO2’ is the estimated CO2, Resp(t) is the respiratory-belt

signal, ε is the intercept, and β is the linear weighting factor derived

from the “training data,” and the LR model could be understood as

a single convolutional operation with a unit kernel size, making it

similar to a machine learning linear regression problem. The training

and testing partitioning are as described for the FCNs. MSE loss

function was backpropagated similar to the FCNs.

2.2.4.4. Evaluation criteria

For the evaluation, the Pearson correlation coefficient (r), mean

squared error (MSE), mean absolute error (MAE) (Equation 5) and

mean absolute percent error (MAPE) (Equation 6) were calculated

between (1) predicted CO2 and ground-truth CO2, (2) predicted

PETCO2 and ground-truth PETCO2. As the MAPE is sensitive to

zero crossings, it was only calculated between the predicted PETCO2

and ground-truth PETCO2.

MAE =
1

L

∑L

i=1

(∣

∣yi − ŷi
∣

∣

)

(5)

MAPE =
1

L

∑L

i=1

(
∣

∣

∣

∣

yi − ŷi

yi

∣

∣

∣

∣

)

(6)

We also performed statistical comparisons amongst correlation

coefficients and MSE values obtained using all FCN and

reference methods using the Kruskal-Wallis test, corrected for

false-discovery rate.

The final validation is inspired by a practical application of CO2

recordings, namely examining the relationship between PETCO2 and

resting-state fMRI time series. For this we include 3 cases acquired

from each of the 2 healthy young subjects (male, age = 25 and 33

years). All data were acquired using a Siemens TIM Trio 3 T system

and a 32-channel head coil. CO2 was acquired during these scans as

described earlier. That is, each dataset contains the following:

• Case 1: spin-echo EPI, TR = 323ms, TE = 45ms, flip angle

= 90◦, 2,082 frames, voxel size = X: 3.48mm, Y: 3.48mm,

Z: 6.25mm;

• Case 2: gradient-echo EPI, TR = 323ms, TE = 30ms, 2,230

frames, voxel size= X: 3.48mm, Y: 3.48mm, Z: 6.25mm;

• Case 3: simultaneous multi-slice gradient-echo EPI, TR =

323ms, TE = 30ms, flip angle = 40◦, 2,230 frames, voxel size

= X: 3.48mm, Y: 3.48mm, Z: 6mm;

Preprocessing steps include: (1) filtering to 0.01–0.1Hz band

with AFNI (Cox, 1996); (2) spatial smoothing with a 5mm kernel

(Jenkinson et al., 2012) (3) Discard the first 5 volumes in each scan

to allow the brain to reach a steady state. All recorded and FCN-

generated CO2 and PETCO2 time courses were low-pass filtered
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to 0.01–0.1Hz to match the temporal resolution of the respective

fMRI data.

3. Results

Results for two representative data sets are shown in Figure 4.

Method 1 (equal data length) adds no extra benefit to the training

process and results in poor performance due to possible truncation

effects in training data. Thus, all the results provided here correspond

to Method 2. The results are shown in Figure 4 and summarized in

Table 1. The best method, as determined by the lowest error terms

(MSE, MAE, MAPE) and highest Pearson correlation (r) is indicated

in bold. The predicted and ground-truth PETCO2 show excellent

visual agreement for FCN-4L-Wgt (Figure 4B). From Table 1, we can

see that the CO2 estimation error obtained from FCN-4L and FCN-

4L-Wgt architecture are identical, with the errors corresponding to

PETCO2 being slightly lower in the latter case. Since r is unaffected

by scaling and translation, and since the LR model involves only

scaling and translation, the modeling step would not improve r.

Strangely, the RVTRRFmodel performs worse than the LRmodel (for

PETCO2), suggesting that estimating PETCO2 from the peaks of the

CO2 (and hence respiration) waveform may be more robust.

Figure 5 shows the r distribution across the entire test dataset

for one of the five splits. The LR method is outperformed by

all FCN methods (and significantly so by FCN-4L-Wgt) for CO2

prediction. The difference between FCN-4L and FCN-4L-Wgt is

not noticeable in the case of CO2 prediction, but overall, FCN-

4L-Wgt achieved the highest r values, while FCN-6L achieved the

lowest r variability. However, for PETCO2, FCN-4L-Wgt reached

higher r values than did FCN-4L, demonstrating the superiority of

a weighted loss function. FCN-6L performs worse than all the other

FCN networks for PETCO2 prediction. However, these differences

are not statistically significant, as can also be seen in Table 2, in which

every approach is compared to the apparent leader (FCN-4L-Wgt).

Note that the RVTRRF method only reached a maximum r score of

just below 0.5, substantially lower compared to all FCN networks.

As previously mentioned, the r scores for RVTRRF correspond to

maximum cross correlation with PETCO2, thus the scores are always

positive. There is no such limitation for the FCNs, resulting in some

network correlation coefficients in the distribution.

Figure 6 compares the correlation scores between training and

testing phase for all the networks. From these plots, it can be inferred

that FCN-6L likely overfits the training data, as reflected by a worse

performance than that of the other networks (as reflected by a lower

r). Since FCN-4L performs better than FCL-2L and doesn’t show

huge differences between training and testing results, we can say four

convolutional blocks are the optimum number for our given training

data. Moreover, in our best model, MAPE score for PETCO2 is 0.142

(< 0.2), reflective of good prediction performance.

Figure 7 compares the correlation coefficients across the five

splits for all the networks. The r-score ranking in the case of CO2

prediction does not match with that of PETCO2 prediction. In the

case of CO2, the r for FCN-4L-Wgt closely resemble those of FCN-

4L, but the former performed better for PETCO2 (in all but one

split). Though the best model varied depending on the split number

and varies between CO2 and PETCO2 prediction, FCN-4L-Wgt

consistently outperformed other models, exemplified in part by the

highest correlation coefficients. The inter-split variability in r is the

lowest for the reference methods (RVTRRF and LR) and highest for

FCN methods, the various FCN methods themselves do not appear

to exhibit different degrees of inter-split performance variability.

Moreover, the performance rankings of the various methods are

consistent across the splits and in line with the trends observed in

Figure 5. Combining the results of Figure 7 with the information in

Figure 2, it can be seen that the poor CO2-prediction performance

for all methods across the second split is due to one subject (subject

6). CO2 prediction in Split 3 was best overall. Yet, the LR model

performs worst in predicting PETCO2 in the 3rd split, reflecting that

higher correlation between CO2 and respiration does not necessarily

translate into higher correlation between PETCO2 and respiration.

This point is further demonstrated by contrasting r scores of PETCO2

and CO2 for the LR approach in the remaining splits.

Figure 8 demonstrates the application of the FCN-4L-predicted

dynamic PETCO2, which have established correlation with the

resting-state fMRI signal. We show that the PETCO2-fMRI

correlation maps for the ground-truth and predicted PETCO2 are

highly similar in all scan sessions (Cases 1, 2 and 3) and subjects

(Datasets 1 and 2). This preliminary demonstration suggests promise

in using the model-predicted PETCO2 for fMRI applications.

4. Discussion

As a proof-of-concept study, we demonstrated that it is feasible

to use an FCN to predict dynamic CO2 from respiration variations.

Furthermore, the performance of the FCN surpasses that of

regression and convolution-based methods. Note that the results

only pertain to dynamic patterns in CO2, not to absolute CO2,

which cannot be predicted from non-quantitative respiration traces

alone. Nonetheless, possible applications range from improving the

feasibility of breath-holding based fMRI studies (Murphy et al., 2013)

that lack CO2 recordings, to the use of the CO2-O2 exchange ratio for

vascular reactivity mapping (Chan et al., 2020). These applications do

not require quantitative values of CO2 and PETCO2.

4.1. Machine learning in physiological signal
processing

The use of machine learning and DL models is prevalent

in physiological signal data such as electromyogram (EMG),

electroencephalogram (EEG), electrocardiogram (ECG), and

electrooculogram (EOG) (Rim et al., 2020). It has been continuously

observed that DL models perform better than other, classical

machine learning models. Rim et al. conducted a review of 147

studies using DL in EMG, ECG, EEG, EOG and their combinations

(Rim et al., 2020), and concluded that most were in the domain

of classification, feature-extraction and data compression, wherein

CNN, RNN, CNN+RNN models were most commonly used. The

studies were divided into 3 categories. The first category exploits

machine-learning models to extract features followed by DNN

as a classifier to boost the accuracy of classification by obtaining

useful features from raw data. The second involves DL as a feature

extractor and traditional machine learning as a classifier to reduce

hand-crafted labeling of the dataset. The third strategy uses an

end-to-end DL pipeline to train raw data and receive the final output

to build a robust model for the above-mentioned tasks. Due to
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FIGURE 4

Qualitative comparison of resultant outputs. Two di�erent sample predictions are shown from the test dataset, and for each of the example, comparisons

are made between (A, D) the CO2 prediction and ground truth (GT), (B, E) the PETCO2 prediction from the reference linear regression model (LR),

FCN-4L-Wgt model and the GT, and (C, F) PETCO2 estimated from RVTRRF and the PETCO2 GT.
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TABLE 1 Quantitative assessment of various approaches and network structures.

Average across all 5 splits RVTRRF LR FCN-1L FCN-2L FCN-4L FCN-6L FCN-4L-Wgt

r CO2 - 0.901± 0.061 0.931± 0.055 0.922± 0.06 0.946± 0.054 0.944± 0.055 0.946± 0.056

r PETCO2 0.256± 0.132 0.311± 0.239 0.443± 0.261 0.45± 0.262 0.5± 0.266 0.461± 0.235 0.512± 0.269

MSE CO2 - 0.19± 0.103 0.138± 0.094 0.151± 0.101 0.108± 0.097 0.11± 0.097 0.106± 0.101

MSE PETCO2 0.032± 0.028 0.026± 0.021 0.02± 0.018 0.019± 0.017 0.018± 0.017 0.02± 0.018 0.017± 0.017

MAE CO2 - 0.337± 0.079 0.269± 0.077 0.276± 0.08 0.223± 0.076 0.227± 0.081 0.213± 0.08

MAE PETCO2 0.121± 0.055 0.112± 0.045 0.094± 0.04 0.093± 0.039 0.081± 0.035 0.085± 0.038 0.08± 0.036

MAPE PETCO2 0.125± 0.109 0.112± 0.084 0.094± 0.077 0.095± 0.078 0.085± 0.073 0.089± 0.074 0.084± 0.077

RVTRRF, RVT convolved with RRF; LR, linear regression; FCN-XL, “X” layered FCN used; -Wgt, with weighted MSE cost function. The parameters used in the assessment include: the correlation

coefficient (r), the mean-squared error (MSE), the mean absolute error (MAE) and the mean-absolute percent error (MAPE). Each metric was calculated for every recording in the test set across all

five splits. The mean and standard deviation (mean ± std) were calculated for all the metrics in each test split. Likewise, the average of (mean ± std) was taken across all the 5 splits and displayed in

this table.

FIGURE 5

Performance of di�erent methods: Distribution of correlation coe�cients (r) on test dataset, where r is computed between (A) ground-truth and predicted

CO2, and (B) the ground-truth and predicted PETCO2 obtained on the test dataset (for one of the five splits) is compared for di�erent models used in the

study and shown in the form of a bean plot. The median r for each method is shown as a white dot at the centers of the distributions. The horizontal lines

indicate statistically significant di�erences between the two approaches at the ends of the lines. The FCN-4L-Wgt approach is significantly superior than

the RVTRRF and LRF approaches for predicting CO2, and better than FCN-6L additionally in predicting PETCO2 , shown by the significantly higher r values.

the absence of a comparative study involving all 3 methods (Rim

et al., 2020), we could not assess the best strategy. Our pipeline is

positioned between the second and third categories, as we used an

end-to-end DNN to estimate CO2 as an intermediate step, followed

by a post-processing step to obtain the final PETCO2 waveform.

4.2. Utility and current status of using RVT
for generating PETCO2

As RVTRRF is correlated with PETCO2, there is a potential

of training a convolutional neural network between RVT and
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TABLE 2 Statistical comparison of various approaches and network structures with FCN-4L-Wgt.

Metric RVTRRF LR FCN-1L FCN-2L FCN-4L FCN-6L

r CO2 0.0001 0.0287 0.0895 −0.9146 0.2189 0.0001

r PETCO2 <0.0001 0.0001 0.1646 0.3593 0.8941 0.0071

MSE CO2 <0.0001 0.0001 0.1646 0.3593 0.8941 0.0071

MSE PETCO2 0.6048 <0.0001 0.0001 0.0005 0.1833 0.001

Listed at the p values indicate the significance of differences. All tests for PETCO2 prediction were performed with 209 degrees of freedom (DOF), and with a DOF of 179 for CO2 prediction. All

p-values were corrected for multiple comparisons. Entries meeting statistical significance are indicated in bold face.

FIGURE 6

Comparison of model performance on train vs. test datasets. The average Pearson correlation coe�cient obtained across one of the splits for (A) CO2

and (B) PETCO2 between test and train dataset is shown in the top row. The error bars indicate the standard deviation.

PETCO2, which might perform better than a single convolution

operation using RRF. This approach aims to find a neural

network architecture which could replace the need of RRF. We

experimented with different types of neural networks trained

to predict PETCO2 from RVT, but none performed adequately.

Therefore, we concluded that it is more feasible to design a

neural network to associate respiration and CO2, and predict

PETCO2 from CO2. This may be due to the fact that the latter

exploits the evident breathing pattern between respiration patterns

and CO2 and performs well even with limited recording lengths.

Conversely, in the former approach, the temporal resolution of RVT

is fundamentally constrained to the observed breath durations, and

the peak detection algorithm can often miss deep breaths (Power

et al., 2020).
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FIGURE 7

Model performance across the five splits. The correlation coe�cients (r) obtained across the five splits and their average for all the models, for (A) CO2

and (B) PETCO2 prediction. The split number is the same as the splits shown in Figure 2.

As a potential alternative metric of respiratory variability, the

windowed respiratory variance (RV), computed as the standard

deviation of the respiratory signal over sliding windows of 6 s (Chang

et al., 2009), is more robust against noise than RVT as it excludes the

influence of breath-cycle duration term. This may however render

RV less physiologically related to CO2. Moreover, the RRF for RV has

not been determined (Birn et al., 2008), leading us to exclude the use

of RV in this proof-of-principle study. Another potential influence

on CO2 prediction may be the presence of hardware/software filters

on the raw recordings. The Biopac system provided software filters

to exclude MRI noise (periodicity < 100ms) while preserving higher

physiological frequencies, and it is conceivable that in cases where

such frequencies are inadvertently removed from the raw respiratory

traces, the ability to predict CO2 fluctuations may be disadvantaged.

4.3. Other DL architectures

As mentioned previously, a 1D U-net with skip connections

had previously been used for translating fMRI data to respiratory-

volume data [30]. Skip connections as used in the U-net could be

implemented in this study, but as the study is more focused on

establishing proof of concept, such complications were avoided in our

implementation of FCNs.

There are recently developed alternative network architectures

that may also suit our problem. For instance, unpaired and paired

image-to-image translation has been accomplished by generative

adversarial networks (GANs) such as Pix2Pix (Isola et al., 2017) and

CycleGAN (Zhu et al., 2017). The translation task is analogous to the

task of transforming the respiration-belt data to the CO2 waveform is

analogous. A simple GAN consists of two sub-models, a generator to

obtain synthetic samples, and a discriminator to predict the value of

the provided sample. The discriminator network in GANs is similar

to the explicit loss function used in traditional DL models. In our

case, adversarial training would mean that instead of using MSE or

weighted MSE loss functions to determine the best CO2 prediction,

another network would distinguish between them. Given that our

use case is much simpler, this approach might not add value while

incurring higher computational costs and overfitting.

Another alternative are RNNs, such as the long-short term

memory (LSTM) (Greff et al., 2017) and gated recurrent unit (GRU)

(Zhao et al., 2016) networks, which are widely used in signal

processing. At first glance, RNNs seemed a natural choice, but

unfortunately, performance was poor (data not shown) for the LSTM.

In our implementation, the initial 5-s respiration-signal segment was

fed into the LSTM block which would predict the corresponding

segment of CO2 and the hidden state. These outputs along with the

next 5-s segment of respiration data were used as the inputs for

the next iteration, with the intention that irregularities in breathing

would be stored in the network’s memory and would help in

prediction. Moreover, the 5-s length was comparable to the duration

of one breath. Unfortunately, due to the short input-lengths coupled
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FIGURE 8

Comparison of ground-truth and predicted PETCO2 correlations. Data from 2 di�erent subjects, imaged over multiple sessions [(A–C), respectively] are

shown. In each case, the peak cross-correlation maps generated using the ground-truth and predicted PETCO2 time courses are shown in upper and

lower rows, with the corresponding correlation-coe�cient histograms showing the comparability of the maps. The slice positions are shown by the

yellow lines on the sagittal image in the upper-left corner.
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with the limited durations of respiration recordings, the concatenated

output lacked the smooth transitions between consecutive chunks

(i.e. edge effects were apparent in each 5-s block, similar to observed

in training method 1), which are required for accurately predicting

a slow-varying signal like PETCO2. Thus, we concluded that time-

series to time-series translation using RNNs was not feasible unless

much longer respiratory and CO2 recordings were available.

4.4. Limitations

Data quality can be a chief limitation in our approach, and

we recommend careful quality assurance as indicated in this work.

Another potential limitation is the way in which the test and training

data are determined by splitting the full data set; the use of k-fold

cross-validation reduces such bias. Peak detection accuracy, which

determine the quality of the source PETCO2 data, also needs careful

quality assurance. Finally, our method does not attach quantitative

values to the estimated PCO2 or PETCO2 (e.g., in units of mmHg).

This is because the quantitative value of PETCO2 depends not only

on respiratory patterns, but also on minute ventilation, tidal volume,

fitness level, baseline CO2 storage, and so on (Rawat et al., 2021).

Nonetheless, our breath-by-breath CO2 time series reflects patterns

of change are sufficient for fMRI applications.

5. Conclusions

This study demonstrates the feasibility of predicting dynamic

PETCO2 from respiration-belt recordings, thus, enabling broader

incorporation of PETCO2 in rs-fMRI analysis. Following the

successful application of 2D FCNs to image-to-image translation, we

introduced 1D FCNs for 1D signal-to-signal translation. The FCN

outperformed the analytic regression and convolution models. The

study also evaluates the effect of FCN depth as well as the choice

of loss function. A 4-layer FCN with weighted MSE performed best

across all splits. The results across different deep neural network

architectures serve as a literature for further research in signal

processing and for the DL community.
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