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Multiplex core of the human brain
using structural, functional and
metabolic connectivity derived
from hybrid PET-MR imaging
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Universiteit (KU) Leuven, Leuven, Belgium, 2Division of Nuclear Medicine, Universitair Ziekenhuis (UZ)
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With the increasing success of mapping brain networks and availability of multiple

MR- and PET-based connectivity measures, the need for novel methodologies

to unravel the structure and function of the brain at multiple spatial and

temporal scales is emerging. Therefore, in this work, we used hybrid PET-MR

data of healthy volunteers (n = 67) to identify multiplex core nodes in the

human brain. First, monoplex networks of structural, functional and metabolic

connectivity were constructed, and consequently combined into a multiplex SC-

FC-MC network by linking the same nodes categorically across layers. Taking into

account the multiplex nature using a tensorial approach, we identified a set of

core nodes in this multiplex network based on a combination of eigentensor

centrality and overlapping degree. We introduced a coreness coe�cient, which

mitigates the e�ect ofmodeling parameters to obtain robust results. The proposed

methodology was applied onto young and elderly healthy volunteers, where

di�erences observed in the monoplex networks persisted in the multiplex as

well. The multiplex core showed a decreased contribution to the default mode

and salience network, while an increased contribution to the dorsal attention

and somatosensory network was observed in the elderly population. Moreover,

a clear distinction in eigentensor centrality was found between young and elderly

healthy volunteers.

KEYWORDS

brain connectivity, PET-MR imaging, multilayer network, structural connectivity,

functional connectivity, metabolic connectivity, aging

Introduction

Over the past decade, graph theoretical approaches and computational network

theory have proven their potential in neuroscience by modeling the brain as a complex

network. Brain networks have become a rich area of research, which is also known as

network neuroscience and ranges across different scales, from the microscale of interacting

biomolecules up to the macroscale of social behavior (Sporns et al., 2004; Bullmore and

Sporns, 2009; Craddock et al., 2018). In network neuroscience, the brain is modeled as a

network (graph) usually consisting of elements representing brain regions (i.e., graph nodes)

and their pairwise interconnections (edges). Based on different neuroimaging techniques,

various ways of node interconnections are described. The two most common ways to

model the brain as a graph are given by structural and functional brain connectivity (SC

and FC, respectively). Structural networks are usually measured by diffusion weighted

(DW) magnetic resonance imaging (MRI), which measures the diffusion rate of water

molecules as a result of their interactions with tissues in the brain. By applying fiber
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tractography algorithms, the white matter pathways in the brain are

reconstructed, which results in structural interconnections between

the network nodes. Various fiber tractography algorithms have

been developed to track the white matter pathways in the brain

using DW-MRI, where recently the crossing fiber limitations of

the diffusion tensor model were overcome by estimating the fiber

density orientation function (fODF) using constrained spherical

deconvolution (CSD) (Tournier et al., 2007). CSD relies on the

principle that the DW signal is given by the spherical convolution

of the fODF with the response function which represents the DW

signal profile for a typical fiber population. Functional connectivity

is defined as the temporal dependency of neuronal activity between

anatomically separated brain regions and is typically estimated

by functional time series measured with resting-state functional

MRI (rs-fMRI) (Raichle and Raichle, 2001) which focuses on

BOLD signal alterations during the resting state of the brain.

Although most connectivity studies are focusing on structural

and functional connectivity, methodological advances have moved

network neuroscience toward the field of molecular connectivity,

measured with positron emission tomography (PET), and in

particular metabolic connectivity (MC) where brain metabolism

is measured with 18F-FDG PET. Basically, molecular connectivity

relies on the assessment of regional co-variation in PET tracer

uptake across subjects, which is different from fMRI studies

where the regional co-variation across time series of the BOLD

signal is measured within the same subject. However, the main

advantage of molecular connectivity is the availability of various

neuroimaging tracers, which provide a very specific signal and thus

allow to identify different, complementary molecular networks.

Besides metabolic connectivity using 18F-FDG PET, connectivity

studies targeting brain neurotransmission systems have emerged

(Caminiti et al., 2017), and amyloid networks and patterns of tau

have been identified to assess the connectivity-based pathological

spreading across the brain during the time course of dementia of

the Alzheimer’s type (Pereira et al., 2018; Franzmeier et al., 2019).

Network modeling approaches have successfully unraveled

interesting features in the brain, such as small-world topology,

indicating an organization of the brain in highly clustered sub-

networks combined with a high level of global connectivity

(Brettschneider et al., 2013), and core-periphery organization, with

the core being a connected group of nodes showing high centrality

or importance in the network and thought to be fundamental

to support integration of information (Feneberg et al., 2018).

Many different metrics are available to measure the centrality

of nodes within the network. However, most of the centrality

measures are generally positive and rather highly correlated, with

high scores for the core nodes for nearly all centrality measures

(van der Burgh et al., 2019). With the increasing success of

mapping brain networks and availability of multiple MR- and PET-

based connectivity measures, the need for novel methodologies

to unravel the structure and function of the brain at multiple

spatial and temporal scales is emerging. The identification of a

multiplex core-periphery organization has recently been proposed

by Battiston et al., where structural and functional networks are

merged into a multiplex (Cistaro et al., 2012). These researchers

hypothesized that integrating information from both structural and

functional networks give a more accurate estimate of the regions

that contribute to the core of the human cortex. Although they

combine features from different layers into one metric describing

core-periphery organization, the underlying, high complexity of

the multiplex approach was not fully elaborated. More recently, a

multilayer network approach has been developed which provides a

mathematical framework to model and analyze complex data using

multivariate and multi-scale information (van den Heuvel et al.,

2008; van den Heuvel and Sporns, 2011). More specifically, this

approach uses a tensorial framework instead of adjacency matrices

(Oldham et al., 2019) which are useful to describe traditional single

layer networks, but are unable to capture to complex architecture

of multilayer networks.

In this work, we use hybrid PET-MR data of healthy controls to

construct a representation of brain networks at three different levels

of connectivity. Structural, functional, and metabolic networks

are constructed based on DW-MRI, rs-fMRI and 18F-FDG PET,

respectively. First, we introduce a novel approach to define a

multiplex network and identify the multiplex core, taking into

account the complex architecture of multilayer networks by using

a tensorial framework. This multiplex network approach allows

to identify novel network metrics, which may provide additional

information that might be undetected by monoplex metrics.

Second, we apply this method to the SC—FC—MC multiplex and

investigate the effect of aging on the multiplex core architecture in

the brain. On the one hand, we study whether differences in the

monoplex networks persist in the multiplex network as well, while,

on the other hand, we investigate if a multiplex metric enables to

find a difference between young and elderly healthy volunteers.

Methods

PET-MR data

Sixty-seven healthy volunteers (mean age: 51.1 ± 16.4 years,

range 20–82 years, almost uniformly distributed) were recruited

prospectively between December 2015 and February 2017. The

main exclusion criteria consisted of major internal pathology,

diabetes mellitus, cancer, absence of a first-degree relative with

dementia, history of important neurological and/or psychiatric

disorders or substance abuse or pre-study use of centrally acting

medication. All subjects underwent a complete neurological

examination, performed by a board-certified physician, had a mini-

mental state examination (MMSE) score ≥ 28 and their index

on the becks depression inventory (BDI) was ≤ 9. The study

was approved by the ethics committee of the University Hospital

Leuven (study number s58571—Belgian Registration Number

b322201526273) and was conducted in full accordance with the

latest version of the declaration of Helsinki. All participants

provided written informed consent before inclusion in the study.
18F-FDG was administered by intravenous injection of 151.9±

9.8 MBq. All subjects underwent simultaneous FDG PET and MR

scanning on a hybrid 3T Signa PET-MR scanner (GE healthcare,

Chicago, IL, USA). List mode images were acquired upon tracer

injection in the scanner for 60min, from which static (40–60min

pi) data were derived. The first 15min of the simultaneous scan,

no MR sequences were applied in order not to invoke primary

auditory cortex activation. MR image acquisition was performed

using an 8-channel phased-array coil. In addition to a whole brain
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volumetric T1-weighted image (3D BRAVO, TR/TE = 8.5/3.2ms,

1 × 1 × 1mm voxel size) and a fluid-attenuated inversion

recovery (FLAIR) image (3D CUBE, TR/TE = 8,500/130ms, 1

× 1 × 1.4mm voxel size) were collected. Resting-state data in

eyes-open condition were acquired with TR/TE = 1.7 s/2ms, flip

angle = 90, voxel size = 3.6 × 3.6 × 4mm. DTI and reverse

phased DTI were acquired using a b-value of 1,500 s/mm², applied

along 48 uniformly distributed directions (TR/TE = 12,000/85ms,

2.5mm isotropic voxel size mm). Default vendor-based MRAC

(MR-based attenuation correction, v1.0) corrected PET images

were reconstructed using ordered subset expectation maximization

(OSEM) with six iterations and 28 subsets, and post-smoothed with

a 3mm isotropic Gaussian filter.

Patients showing too much movement were excluded from

the start, since this can have a large impact on rs-fMRI data and

subsequent analysis, with exclusion criterium: mean framewise

displacement higher than 0.3 mm.

To investigate the effect of aging, we selected a “young”

(n = 26) and “elderly” (n = 28) population by setting an age

threshold at age ≤ 45 and age ≥ 55, respectively and identified the

core nodes for both groups.

Brain connectivity

Both structural, functional, and metabolic networks consisted

of 100 cortical nodes, defined by regions of interest (ROIs) obtained

with a Schaefer parcellation scheme (Kivelä et al., 2014). As

such, each network was represented by a 100 × 100 adjacency

matrix, describing the connectivity or edge weights between each

pair of nodes. SC and FC connectomes for a specific population

were calculated as the average weighted network across the

population. For each modality, the different type of information

and different way of network construction resulted in an unequal

level of network sparsity of the corresponding weighted adjacency

matrix. Therefore, all networks were binarized to ensure that the

connectivity density, i.e., the total number of edges, of each network

was equal. However, since the choice of binarizing threshold

is rather arbitrary, results were averaged across a full range of

connectivity densities (from 10% up to 50%, stepsize: 1%).

Structural connectivity
Diffusion images were processed using MRtrix3 (Boccaletti

et al., 2014) and the FMRIB Software Library (De Domenico et al.,

2014). Preprocessing of the diffusion MRI data included denoising,

Gibbs ringing removal, correction for EPI susceptibility, eddy-

current-induced distortions, gradient-nonlinearities, and subject

motion. From the corrected diffusion data, response functions

for single-fiber white matter (WM), gray matter (GM) and

cerebrospinal fluid (CSF) were estimated using an unsupervised

method (Schaefer et al., 2018). Single-shell 3-tissue constrained

spherical deconvolution (SS3T-CSD) was performed to obtain the

fiber orientation distributions (FODs) for WM, GM and CSF

(Tournier et al., 2012) usingMRtrix3Tissue (https://3Tissue.github.

io), a fork of MRtrix3 (Boccaletti et al., 2014). Consequently,

the FODs were used to conduct deterministic tractography using

the Fiber Assignment by Continuous Tracking (FACT) algorithm,

which tracks the trajectory of white matter tracts by propagating

streamlines along the primary direction of water diffusion at

each voxel (Jenkinson et al., 2012). Anatomically Constrained

Tractography was performed alongside FACT using the tissue-

segmented T1-weighted image to ensure that the generated

streamlines were biologically accurate (D’Hollander Tijs et al.,

2019).Whole brain tractograms were re-weighted using Spherically

Informed Filtering of Tractograms 2 (SIFT2) (D’Hollander Tijs,

2016), which adjusted the streamline weights to represent the

underlying diffusion signal more accurately. For each subject, the

tractogram and Schaefer parcellation were combined to produce

a subject-specific structural connectome. The corresponding edge

weights were defined by the number of streamlines between two

nodes, normalized by the volumes of both regions represented by

the two nodes such that each value of the SC matrix reflected the

density of the white matter streamlines between the corresponding

two nodes.

Functional connectivity
Preprocessing of the BOLD time-series was performed using

fmriprep version 1.5.10 (Esteban et al., 2019). Each T1-weighted

(T1w) volume was corrected for intensity non-uniformity using

N4BiasFieldCorrection [217] and skull-stripped using Advanced

Normalization Tools (ANTs) (De Leener et al., 2017). Spatial

normalization to the ICBM 152 Non-linear Asymmetrical template

(version 2009c) (Smith et al., 2012) was performed through non-

linear registration with the ANTs registration tool using brain-

extracted versions of both T1w volume and template. Brain-tissue

segmentation of CSF, WM and GM was performed on the brain-

extracted T1w volume using FSL (Smith et al., 2015). Functional

data were slice-time corrected using AFNI (3dTshift) (Tustison

et al., 2010), and realigned to a mean reference image using FSL

(mcflirt) (Fonov et al., 2009). Fieldmap-less distortion correction

was performed by co-registering the functional image to the

intensity-inverted T1w image (Zhang et al., 2001), constrained with

an EPI distortion atlas (Cox and Hyde, 1997) and implemented

with ANTs (antsRegistration). This was followed by co-registration

to the corresponding T1w volume using boundary-based image

registration (Jenkinson et al., 2002) with nine degrees of freedom.

Framewise displacement was calculated for each functional run

(Wang et al., 2017). The non-aggressive variant of ICA-based

Automatic Removal of Motion Artifacts (AROMA) was used

to generate and remove noise components from the fmriprep-

processed output (Treiber et al., 2016). Subsequently, mean WM,

mean CSF and global mean signals were calculated and regressed

out in a single step using least squared regression. Finally, the

data were filtered with a high-frequency bandpass filter of (0.01,

0.1Hz) to exclude confounding high-frequency content. After pre-

processing the BOLD rs-fMRI time-series for each individual, edge

weights for the functional networks were calculated by the Pearson

correlation coefficient between the average time-series in each ROI.

Metabolic connectivity
For each subject, the 18F-FDG uptake was normalized by

proportional scaling, i.e., dividing the uptake by the total uptake in
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the gray matter, after smoothing the data with a Gaussian kernel

with a Full Width Half Maximum (FWHM) of 8mm. Although

different strategies exist to define metabolic connectivity networks,

all these approaches rely on the assessment of regional co-variation

in 18F-FDG uptake across subjects, which is different from the

subject-specific approaches to define structural and functional

connectivity. We applied Sparse Inverse Covariance Estimation

(SICE) (Sala et al., 2017), also known as Gaussian graphical

modeling. Basically, SICE imposes a sparsity constraint on the

maximum likelihood solution of the inverse covariance (IC) matrix

under the assumption of a Gaussian model, which means that

the sample size can be less than the number of brain regions

modeled. Since the brain network organization is assumed to be

sparse (Rubinov and Sporns, 2010), SICE is considered as a valid

approach to model metabolic brain connectivity. Although SICE

has proven to be an effective tool for identifying the structure of an

IC matrix, its use is not recommended to estimate the magnitude

of the non-zero entries in case of weighted adjacency matrices

(Sala et al., 2017). However, since we work with binary instead of

weighted matrices, SICE is an appropriate choice for our approach

to estimate the zero and non-zero entries of the IC matrix.

Multilayer network

A multilayer network consists of several classical networks,

each layer encoding a specific type of information. Since multilayer

networks can no longer be represented by classical adjacency

matrices, we used a tensor formalism to describe these networks.

More specifically, we defined a multilayer adjacency tensor of N

nodes and L layers with components given by M
jβ
iα, encoding the

connectivity between node i in layer α and node j in layer β (i, j =

1, 2, . . . ,N; α,β = 1, 2, . . . , L). To easily represent the tensor, we

used the standard approach of flattening this rank-4 tensor into

a rank-2 tensor, also known as the supra-adjacency matrix, with

the diagonal blocks encoding the inter-layer connectivity. For our

three-modal PET-MR data, the multilayer network consisted of

three layers, i.e., a structural, functional and metabolic connectivity

layer, resulting in a SC—FC—MC multilayer network. In order

to naturally extend classical network metrics, the different layers

should be interconnected since otherwise the analysis of the

multilayer adjacency tensor comes down to analyzing each layer

separately. To combine individual layers, links are added between

corresponding nodes across layers, either ordinally by linking

corresponding nodes between adjacent layers only, or categorically,

by linking a node to the corresponding nodes across all layers. We

implemented the latter option since ordinally linking assumes that

neighboring networks are prioritized.

Since core nodes tend to score high on nearly all centrality

measures, we focused on a combination of degree centrality (DC)

and eigenvector centrality (EC) for defining the core nodes in

the multilayer networks. In a single layer network with adjacency

matrix A, the DC of node i is given by its number of connections,

where the EC of node i represented by xi is defined as:

xi =
1

λ

∑

k

Akixk (1)

As a result, EC measures a node’s importance while taking into

account the importance of its neighbors. This can be written in

matrix formAx = λx, which is the eigenvector equation ofA. Since

the adjacency matrix A is positive definite, the Perron-Frobenius

theorem states that there exist a unique and positive eigenvector

corresponding to the leading eigenvalue λ1, yielding the EC values

for all nodes. EC values were calculated by the power iteration

method, which makes sense intuitively. All nodes start with equal

EC, but as the computation progresses, nodes with more edges

start gaining importance, which mainly propagates to the nodes

to which they are connected. After several iterations, EC values

stabilize (error tolerance of 1e-5), resulting in the final EC estimates.

Both DC and EC measures for nodes in monoplex network

were generalized toward multilayer networks. The (scalar) degree

of a node in a multilayer network is either given by the degree of the

aggregated topological network, i.e., the union of the monoplexes,

or by the overlapping (summed) degree oi =
∑

α k
α
i , where k

α
i is

the degree of node i in layer α. Since both degree measures tend to

be highly correlated, the overlapping degree centrality (ODC) was

used. On the other hand, EC generalization is less trivial and there

are several ways to do so (Greve and Fischl, 2009). Themost elegant

way is to rewrite the eigenvalue equation using an equivalent tensor

formulation (single layer):

A
j
ixj = λ1xi (2)

using the Einstein summation convention A
j
ixj ≡

∑

j A
j
ixj. As a

result, the adjacency matrix is now given by the rank-2 tensor A
j
i

containing one contravariant and one covariant component. The

generalization of the above equation to the multilayer case with

adjacency tensorM
jβ
iα is then given by:

M
jβ
iα2jβ = λ12iα (3)

with λ1 the leading eigenvalue and 2iα the corresponding

eigentensor. This equation can easily be solved using the supra-

adjacency matrix formulation:







M1 wIN wIN
wIN M2 wIN
wIN wIN M3













21

22

23






= λ1







21

22

23






(4)

with IN the unity matrix of size N × N, Mα corresponds to the

single-layer adjacency matrix of layer α, 2α
i ≡ 2iα encodes

the eigentensor centrality (ETC) of each node i in layer α while

accounting for the whole interconnected structure, and w is an

intra-layer weight factor. The ETC value θi of each node is found

by contracting 2i with the rank-1 tensors uα with all components

equal to 1, i.e., θi = 2iαu
α . The choice of this aggregation

corresponds to a maximum entropy principle, which is a valid

choice when all layers are considered equally important (Power

et al., 2014). The weight factor w is chosen such that the total

number of inter-layer connections is equal to the intra-layer

connections, i.e.,

w =
3γC2

N

6N
=

γ (N − 1)

4
(5)
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FIGURE 1

Structural connectivity (SC), functional connectivity (FC) and metabolic connectivity (MC) networks are calculated at 20% network density and shown

together with the corresponding core nodes (marked in blue). Core nodes are identified as nodes scoring high, i.e., one standard deviation (std)

above the mean, on both degree and eigenvector centrality. Multiplex (MP) core nodes, marked in red, are analogously defined by one std above the

mean of overlapping degree and eigentensor centrality.

where N is the number of nodes, C2
N is the number of 2-

combinations out of N, i.e., C2
N = N(N − 1)/2, and γ is the

connectivity density of the monoplex networks.

Core selection

At each binarizing threshold between 0.1 and 0.5 (step 0.01),

we identified a set of core nodes by selecting these nodes scoring

high, i.e., a fraction δ of the standard deviation σ above the

mean value µ (µ + δ ∗ σ ), on both DC/ODC and EC/ETC

(depending on the monoplex/multiplex nature of the network).

Since the definition of “scoring high” depends on the parameter

δ, and therefore is rather arbitrary, we calculated a set of core

nodes for different δ values (from 0.4 to 1.6, stepsize 0.2). In

this way, the coreness coefficient Ci of each node i is calculated

as the normalized frequency (across binarizing thresholds and δ

values) of being part of the core. To make the interpretation more

convenient, we colored the top 15% of the most central nodes in a

different color.

To quantify the similarity between the cores of layer α and layer

β , the core similarity coefficient is defined as:

Sc =
I
αβ
c

Nα
c

(0 < Sc < 1) (6)

where I
αβ
c is the number of nodes which are part of the core of both

layer α and β , and Nα
c is the total number of nodes in layer α (De

Domenico, 2017).

First, the structural (SC), functional (FC) and metabolic

(MC) connectomes are calculated for the average population.

Consequently, the corresponding monoplex cores are identified

based on the combined (DC, EC) measure, and the multiplex core

is obtained by selecting nodes scoring high on both ODC and ETC.

SC and FC population connectomes were obtained by calculating

the average weighted SC and FC networks, respectively.
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FIGURE 2

Core nodes (marked as dots) for structural connectivity (SC), functional connectivity (FC), metabolic connectivity (MC) and multiplex (MP) networks.

The size of each marked node corresponds to the coreness coe�cient. For each network, the top 15% nodes with highest coreness coe�cient are

marked in red.

Results

Average brain

As an example, the network connectivity and core nodes at

20% network density are shown in Figure 1, where core nodes are

selected as the nodes having one standard deviation above themean

value on both DC/ODC and EC/ETC (α = 1).

The coreness coefficient Ci, taking into account a full range

of binarizing thresholds, is shown in Figure 2, where the size

of the nodes corresponds to Ci. For each connectome, the

top 15% of nodes scoring highest on the coreness coefficient

Ci are marked in red. Thereafter, a multilayer SC—FC—MC

network is constructed, as illustrated by the supra-adjacency

matrix given in Figure 3 (20% network density). The matrix

consists of three main diagonal blocks, corresponding to the

structural (upper left), functional (middle) and metabolic (lower

right) connectivity layers, respectively. Nodes across layers are

linked categorically, which is illustrated by the non-diagonal

lines in Figure 3. The multilayer core nodes are identified by

a combination of high values for both overlapping degree and

eigentensor centrality.
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FIGURE 3

Structure of the supra-adjacency matrix of the multilayer SC—FC—MC network (connections are indicated in black) at 20% connectivity density. The

matrix consists of three main diagonal blocks, corresponding to the structural (upper left), functional (middle) and metabolic (lower right)

connectivity layers, respectively. The o�-diagonal lines represent the connections between nodes across layers, which are linked categorically, and

are weighted by a factor five (approx.) to balance the block diagonal structure.

For each single-layer network, we selected the top 15% nodes

with highest coreness coefficient (as marked in red in Figure 2)

and calculated the core similarity for this selection of nodes

with respect to the multiplex, which resulted in 40% for SC,

40% for FC and 13% for MC. This “selection” of core nodes

(top 15%) with the corresponding coreness coefficient is given in

the Supplementary material. The percentage of the nodes of this

selected core which are part of each network, as defined by the

Schaefer atlas, is given in Table 1. These data demonstrated that,

for the older participants, less regions of the salient network were

being ranked amongst the regions with highest coreness coefficient

compared to the younger participants, while for the dorsal attention

network, more regions are ranked amongst the regions with highest

coreness coefficient for the older group compared to the younger

group (see also Supplementary Table S1).

Aging

We identified the core nodes for both the young and elderly

population, as illustrated in Figure 4, where the top 15% of most

central nodes, i.e., with highest coreness coefficient, is marked in

red. This selection of core nodes with the corresponding coreness

coefficient is given in the Supplementary material. The percentage

of the nodes of this selected core which are part of each of the seven

functional networks (as defined by the atlas) for both young and old

population is given in Table 1.

The eigentensor centrality of the multiplex network is averaged

across the range of binarizing connectivity thresholds, and higher

for most nodes in the young population compared to the old

population, as illustrated in Figure 5. In 70% of the nodes, the

eigentensor centrality of the young population is higher compared

to the old population, whereof in 60% the relative difference is 30%

or higher. In contrast, of the 30% nodes where the eigentensor

centrality of the old population is higher, only 3% shows a relative

difference of at least 30%. The core similarity coefficient between

young and old age group resulted in 0.93, 0.8, 0.69, and 0.5 for the

SC, FC, MC and multiplex network, respectively.

Discussion

Technical aspects

In this work, we introduced a novel approach to identify a

multilayer core in the human brain by taking into account the

complex architecture of a multilayer network using a tensorial

framework. We used PET/MR data of healthy controls to construct

brain networks at three different levels of connectivity. More

specifically, structural connectivity (SC), functional connectivity

(FC) and metabolic connectivity (MC) networks were constructed

based on diffusion weighted MRI, rs-fMRI and 18F-FDG PET,

respectively. The multilayer core in the resulting SC—FC—MC

multiplex was identified by selecting the nodes scoring high on

both overlapping degree and eigentensor centrality. We focused
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TABLE 1 Percentage of the nodes within the core (selection of top 15%) which are part of each network, as defined by the Schaefer atlas, for the average

(A), young (Y) and elderly (O) population.

SC (%) FC (%) MC (%) MP (%)

A Y O A Y O A Y O A Y O

Visual network 0 0 0 0 0 0 33 33 33 0 0 0

Somatomotor network 27 27 27 13 13 13 13 7 27 27 20 40

Dorsal attention network 27 27 27 33 27 40 7 7 7 27 27 33

Salience network 13 13 13 47 53 40 7 7 7 33 33 20

Limbic network 0 0 0 0 0 0 13 13 13 0 0 0

Control network 27 27 27 7 7 7 0 0 0 7 7 7

Default mode network 7 7 7 0 0 0 27 33 13 7 14 0

on the combination of these two centrality measures since core

nodes in single-layer networks tend to score high on nearly all

centrality measures (van der Burgh et al., 2019). Node degree is

commonly used to identify brain hubs, while eigenvector centrality

has an elegant generalization to eigentensor centrality of multilayer

networks using a tensorial framework. Usually, nodes with a

high eigenvector centrality are important in the sense that they

are linked to other nodes with high eigenvector centrality and

therefore represent highly clustered nodes. Moreover, our findings

demonstrated that both the overlapping degree and eigentensor

centrality rank distribution showed an exponential behavior at both

ends of the distribution (see Supplementary material). Therefore,

only a small fraction of nodes had a significantly large value for both

centrality measures. Hence, the combination of overlapping degree

and eigentensor centrality in a multilayer network ascertained the

most central nodes which should be considered the core nodes

within the network.

Understanding the interplay between brain structure,

function and molecular organization is an ongoing challenge in

neuroscience. For example, SC—FC multiplex networks were

recently derived to identify multiplex motifs (Battiston et al., 2018),

which represent specific subgraphs of reduced size that play a

fundamental role in the stability of the underlying system and

several corresponding functions (Solá et al., 2013). However, at

the mesoscale level, the detection of core-periphery organization

in multiplex brain networks has been poorly explored. Recently,

Battiston et al. proposed a framework to detect core nodes in

multiplex networks (De Domenico, 2017) based on a scalar

richness coefficient which was defined by a weighted sum of

single-layer degree information but didn’t really allow to take

into account the multiplex nature of the SC—FC network. In

contrast to their method, our approach took into account the

complex architecture of a multiplex network for defining the

core structure by linking different layers together categorically, as

illustrated in Figure 3, and using a tensorial framework to define

eigentensor centrality. Moreover, to the best of our knowledge,

our study combined for the first time structural, functional, and

metabolic information, derived from PET/MR imaging, to identify

a multiplex core organization in the human brain.

During network construction, the weight matrices for the SC,

FC, and MC networks were binarized since the sparsity level of

the three different networks is not equal. After a different binary

threshold was applied for each type of network to obtain the same

network density level for all network types, a proper integration

of the three different networks into a multiplex was made. Since

the choice of network density was rather arbitrary, a full range of

densities was considered, yielding a core structure for each network

density level. However, the core at each network density level was

defined by selecting the nodes having both a high overlapping

degree and eigentensor centrality. As this definition of “high” was

also arbitrary, we considered a range of overlapping degree and

eigentensor centrality values. As such, the coreness coefficient for

each node was introduced, being the normalized frequency (across

network densities and core selection range) of each node being part

of the core. Therefore, a robust metric is obtained which is less

independent of modeling parameters.

Clinical relevance

Based on the results shown in Table 1 and Figure 4, we observed

no differences in the core structure of the SC networks between

the young and elderly population. However, we found a shift in

core organization in the FC and MC networks between young

and old. More specifically, in the FC networks, we observed an

increase of core nodes with aging in the dorsal attention network

together with a decrease in the salience network, whereas in the

MC networks, an increase of core nodes in the somatomotor cortex

was found with aging together with decrease in the default mode

network. The reason behind the observed increase of core nodes

in the somatomotor cortex might be explained by a compensatory

mechanism due to a decreased integrative capacity (Milo et al.,

2002). These findings are in line with literature, with changes

in the default mode network and somatomotor cortex being

detected by the core organization of the MC networks which

confirms the hypothesis that functional changes with aging precede

structural ones (Solá et al., 2013; De Domenico et al., 2015).

In addition, these results demonstrate the complementarity of

FC and MC metrics, although literature data have also shown

that functional connections determined by rs-fMRI are related to

glucose metabolism (Palombit et al., 2022). On the other hand, the

correlation strength between the spatial distributions of PET and

rs-fMRI-derived metrics has proven to be spatially heterogeneous

across both anatomic regions and functional networks, with
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FIGURE 4

Core nodes (marked as dots) for young and old population for structural connectivity (SC), functional connectivity (FC), metabolic connectivity (MC)

and multiplex (MP) networks. The size of each marked node corresponds to its normalized coreness coe�cient. The top 15% of the nodes with

highest coreness coe�cient are marked in red.

FIGURE 5

Eigentensor centrality for young and old population.

lowest correlation strength in the limbic network, and strongest

correlation for the default-mode network (Aiello et al., 2015). This

coupling between glucose metabolism and functional connectivity,

which was observed in healthy aging, was substantially reduced in

patients with amnestic mild cognitive impairment and Alzheimer’s

disease, suggesting that changes in glucose utilization could be

linked to a reduced communication among brain regions impacted

by the underlying pathological process (Marchitelli et al., 2018).

However, findings of these studies are based on individual 18F-

FDG PET measurements of regional glucose metabolism without

considering MC, while this study considers a population-based

MC network, such that comparing results is not straightforward.
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For future research purposes, novel approaches such as the

Kullback-Leibler divergence similarity estimation (KLSE) can be

considered to generate an individual brain metabolic network for

a single subject using static 18F-FDG PET imaging. This technique

assumes that brain regions with similar glucose metabolism are

highly interconnected while brain regions with differences in

glucose metabolism have a lower connectivity strength. Using

these metabolic connectivity strengths, the approach successfully

predicted individual risk of progression from Mild Cognitive

Impairment (MCI) to Alzheimer’s Disease (AD) (Wang et al., 2020)

while age age-related effects on graph-based connectivity measures

using KLSE have also been evaluated (Mertens et al., 2022).

However, the KLSE approach compares the intra-regional 18F-FDG

distribution between different brain regions within a single subject

such that it provides a quantitative representation of the 18F-FDG

distribution throughout the brain and different subnetworks with a

high average metabolic strength between nodes corresponding to a

rather homogeneous 18F-FDG uptake in the corresponding brain

regions. As such, the KLSE approach should be considered as a

different but potentially complementary approach to MC estimates

across subjects using correlation measures, as was used in this and

other studies (Arnemann et al., 2018; Huang et al., 2022), with

the latter approach being more in line with standard techniques to

estimate SC and FC.

The differences in the core organization observed between

young and old in the FC and MC networks were confirmed

by the multiplex network (Table 1). Moreover, we found a

clear difference in eigentensor centrality derived from the

multiplex network between both age populations, as illustrated

in Figure 5. Therefore, multiplex networks and corresponding

metrics might be considered as advanced biomarker(s) in aging

and neurodegenerative disorders, as they integrate effects detected

by SC, FC, and MC and therefore could improve diagnosis and

patient stratification. However, more research is needed to test the

discriminative potential of multiplex networks and corresponding

advanced metrics in aging and neurodegenerative disorders.

Limitations

The main limitation of this study is the population-based MC

measure which relies on the assessment of regional co-variation

in 18F-FDG uptake across subjects, while SC and FC which are

calculated on the individual subject level and then averaged.

Because of this group-based correlation approach for MC, two

groups with a different age range needed to be considered to

evaluate the age dependency of MC metrics, which generated only

one estimate for each connectivity metric per group, therefore

limiting the evaluation of age dependent effects to an observational

description of changes.

Conclusion

Based on PET/MR imaging, monoplex networks of structural,

functional, and metabolic connectivity were first constructed, and

consequently combined into a multiplex SC-FC-MC network by

linking the same nodes categorically across layers. Based on a

combination of eigentensor centrality and overlapping degree, we

identified the core nodes in this multiplex network, while taking

into account the multiplex nature using a tensorial representation.

The proposed methodology was applied to young and elderly

healthy volunteers, where differences observed in the monoplex

networks were confirmed by the multiplex approach. Furthermore,

a clear distinction in eigentensor centrality was found between

young and old healthy volunteers. These findings demonstrate

the potential of multiplex networks as an integrative approach to

capture the relevant information in hybrid neuroimaging data.
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