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White matter hyperintensities (WMHs) are a risk factor for stroke. Consequently,

many individuals who su�er a stroke have comorbid WMHs. The impact of WMHs

on stroke recovery is an active area of research. Automated WMH segmentation

methods are often employed as they require minimal user input and reduce risk of

rater bias; however, these automatedmethods have not been specifically validated

for use in individuals with stroke. Here, we present methodological validation

of automated WMH segmentation methods in individuals with stroke. We first

optimized parameters for FSL’s publicly available WMH segmentation software

BIANCA in two independent (multi-site) datasets. Our optimized BIANCA protocol

achieved good performance within each independent dataset, when the BIANCA

model was trained and tested in the same dataset or trained on mixed-sample

data. BIANCA segmentation failed when generalizing a trained model to a new

testing dataset. We therefore contrasted BIANCA’s performance with SAMSEG,

an unsupervised WMH segmentation tool available through FreeSurfer. SAMSEG

does not require prior WMH masks for model training and was more robust to

handling multi-site data. However, SAMSEG performance was slightly lower than

BIANCA when data from a single site were tested. This manuscript will serve as a

guide for the development and utilization of WMH analysis pipelines for individuals

with stroke.
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1. Introduction

White matter hyperintensities (WMHs) are a form of cerebral small vessel disease that

occur with aging and are associated with cardiometabolic risk factors (Jeerakathil et al.,

2004; Launer, 2004). WMHs are also a significant risk factor for stroke; individuals with

high WMH volumes are three time more likely to experience a stroke after adjustment

for vascular risk factors (Debette and Markus, 2010). Consequently, WMHs are common

in individuals with stroke (Wen and Sachdev, 2004), and WMHs may impact recovery

outcomes after stroke (Helenius and Henninger, 2015; Georgakis et al., 2019). WMHs are

fairly predictable in shape and distribution, making them excellent candidates for automated
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lesion segmentation pipelines (Balakrishnan et al., 2021). However,

stroke lesions are highly variable in shape, size, and distribution

(Bonkhoff et al., 2021), and often present challenges to automated

MRI tools (Ito et al., 2019). Thus, automated tools for segmenting

WMHs should be specifically validated for use in individuals

with stroke.

Brain Intensity AbNormality Classification Algorithm

(BIANCA) is an automated WMH segmentation software freely

available from FSL (Griffanti et al., 2016). BIANCA employs

supervised learning using a k-nearest neighbors (k-NN) algorithm

(Griffanti et al., 2016). BIANCA has shown good segmentation

accuracy across a variety of studies in older adults (Griffanti et al.,

2016; Vanderbecq et al., 2020; Hotz et al., 2022), and requires

relatively small amounts of training data in order to achieve good

performance (Griffanti et al., 2016). BIANCA is now the WMH

segmentation method of choice for many large-scale neuroimaging

studies such as UK Biobank (Alfaro-Almagro et al., 2018). For

stroke researchers, BIANCA is an appealing tool for WMH

segmentation because it is publicly available and has established

use in aging populations. However, MRI analytic tools developed in

the aging brain may or may not generalize for use after stroke, and

BIANCA has not been specifically validated for use in individuals

with overt stroke lesions. The first aim of this manuscript is to

determine the optimal analysis protocol to minimize potential

effects of stroke lesions on WMH segmentation with BIANCA.

The second aim of this manuscript is to provide

recommendations for the choice of segmentation method for

stroke researchers, depending on the composition of their study

cohort. In response to the need for larger sample sizes to adequately

power neuroimaging studies of stroke recovery, the Enhancing

Neuroimaging Genetics through Meta-Analysis (ENIGMA) Stroke

Recovery working group is collating large datasets of individuals

with stroke frommultiple sites across the world (Liew et al., 2022a).

This approach allows for the re-use of previously collected MRI

scans and enhances the potential for novel discoveries. However,

as a supervised learning method, BIANCA’s performance may

decrease when segmenting data that is different from the training

dataset. Therefore, the use of BIANCA for multi-site data where

MRI scanner or acquisition parameters differ from those of the

training sample may be limited, though this has not been widely

explored. In this study, we validated our optimized BIANCA

protocol across two independent samples of individuals with

stroke with different MRI acquisition parameters. We compared

BIANCA performance when the model was trained and tested

within the same dataset, when the model was trained on data from

one dataset and tested on an independent dataset, and when the

model was trained and tested on mixed data from both samples.

We also evaluated the performance of an automated WMH

segmentation with Sequence Adaptive Multimodal SEGmentation

(SAMSEG), which is a contrast-based method that is unsupervised

and expected to perform well on multisite data (Cerri et al.,

2021). SAMSEG is freely available through FreeSurfer (version

7.2) (Puonti et al., 2016; Cerri et al., 2021) and is fully automated,

meaning it does not have user-defined parameters that require

optimization. SAMSEG performs lesion segmentation in the

context of whole brain modeling, incorporating both T1- and

T2-weighted images as inputs. SAMSEG employs unsupervised

TABLE 1 Participant demographics.

Dataset 1:
Chronic stroke

cohort
n = 43

Dataset 2:
Subacute stroke

cohort
n = 120

Agea 65 (9) 68 (12)

Sexb

F 13 (30%) 38 (32%)

M 30 (70%) 82 (68%)

Months post-strokea 69 (59) 3 (1)

aMean (SD); bn (%).

Gaussian mixture modeling to automatically group together voxels

with similar intensities and perform voxel segmentation. SAMSEG

learns appropriate intensity cutoffs for each image, making it

robust to between site and scanner differences (Puonti et al.,

2016). Here, we compared these two automated segmentation

methods and performed validation analyses on two independent

stroke datasets.

2. Methods

2.1. Datasets

Data for this study were assembled from two research groups

to optimize BIANCA parameters and test them on an independent

sample. The following sections describe the imaging protocols and

WMH segmentation procedures used for each of these datasets. A

summary of participant demographics can be found in Table 1.

2.1.1. Dataset 1: Chronic stroke cohort for
BIANCA protocol optimization and testing

The chronic stroke dataset was collected at the Brain Behavior

Laboratory of the University of British Columbia (UBC). This

dataset was comprised of 43 individuals with chronic stroke (>6

months post-stroke). Inclusion criteria were as follows: (1) age

between 40 and 80 years old, (2) >6 months post first clinically

diagnosed stroke, (3) no history of seizure/epilepsy, head trauma,

a major psychiatric diagnosis, neurodegenerative disorders, or

substance abuse. To optimize BIANCA parameters, 80% of this

dataset (n = 34) was randomly selected for model training and

cross validation. Once the optimized BIANCA parameters were

determined they were tested on the remaining 20% of the dataset

(n= 9).

MRI images were acquired at the UBC MRI Research Center

on a 3.0T Phillips Achieva or Elition scanner (Philips Healthcare,

Best, The Netherlands). We acquired the following structural scans:

(∗1∗) a T1-weighted 3D magnetization-prepared rapid gradient-

echo (MPRAGE) anatomical scan [repetition time (TR)/time to

echo (TE)/inversion time (TI) = 3,000/3.7/905ms, flip angle = 9◦,

voxel size = 1mm isotropic, field of view (FOV) = 256 × 224 ×

180mm], (2) a fluid attenuated inversion recovery (FLAIR) scan

(TR/TE/TI= 9,000/90/2,500ms, flip angle= 90◦, voxel size= 0.94
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× 0.94mm FOV= 240× 191× 144mm, slice thickness= 3mm),

and (∗3∗) a combined T2-weighted (T2) and proton density (PD)

scan (TR/TE1/TE2 = 2,500/9.5/90ms, flip angle = 90◦, voxel size

= 0.94× 0.94mm, FOV= 240× 191× 144mm, slice thickness=

3 mm).

Gold-standard WMH segmentation was performed with

the Semi-Automated Brain Region Extraction (SABRE) Lesion

Explorer pipeline, a semi-automated and validated pipeline

(Ramirez et al., 2011, 2020). WMH masks were visually quality

checked and false positive voxels were removed where necessary

by a single experienced rater. Stroke lesions were manually drawn

by a single experienced rater on co-registered FLAIR and T1

images. SABRE tools were used for skull stripping and intensity

normalization of structural scans (Dade et al., 2004; Ramirez et al.,

2020).

2.1.2. Dataset 2: Subacute stroke cohort for
independent validation of BIANCA protocol

The optimized BIANCA model was tested on an independent

cohort of individuals with subacute stroke (3 months post-

stroke) from the Cognition and Neocortical Volume after Stroke

(CANVAS) Study (n = 120). Details of the full study protocol have

previously been published (Brodtmann et al., 2014).

MRI images were acquired on a 3T Siemens Tim Trio

scanner (Erlangen, Germany) at the Melbourne Brain Center,

Austin Campus of the Florey Institute of Neuroscience and

Mental Health. The following scans were acquired: (∗1∗) a T1-

weighted 3DMPRAGE sequence anatomical scan (TR/TE/TI =

1,900/2.6/900ms, flip angle = 9◦, voxel size = 1mm isotropic,

FOV = 256 × 256 × 160mm), (∗2∗) a FLAIR scan (TR/TE/TI =

6,000/380/2,100ms, flip angle= 120◦, voxel size 0.5× 0.5× 1mm3,

FOV= 512× 512× 160 mm).

Gold-standard WMH segmentation was performed with a

semi-automated procedure. SAMSEG was used for initial seed

WMH segmentation, and generated WMH masks were manually

edited with custom MATLAB software. Stroke lesions were

manually drawn by experienced raters on FLAIR images. Skull

stripping and intensity normalization of structural scans was

performed according to published ENIGMA protocols (Liew et al.,

2022a,b).

2.2. BIANCA optimization

We optimized the BIANCA parameters on our training

sample from Dataset 1 (n = 34 individuals for training). Model

optimization was scored with leave-one-out cross validation and

standard BIANCA scoring metrics (Griffanti et al., 2016). BIANCA

was run in FSL v6.0.5.

BIANCA requires all scans have the same FoV and voxel

dimensions. To use BIANCA across multi-site data with different

acquisition parameters, we first registered scans to 1mm MNI

space. Because stroke lesions can cause distortions in non-linear

registrations, we used linear registration to MNI space to avoid

any stroke-lesion related warping in scan registrations (Liew et al.,

2018).

2.2.1. BIANCA overview
BIANCA uses a k-NN algorithm to classify voxels as WMH

or non-WMH based on the nearest training data in feature space.

The feature space in BIANCA captures information about voxel

intensity and spatial characteristics; these features are extracted

from the training set with labeled voxels (i.e.: voxel label as

WMHor non-WMH from gold-standardWMHmasks). BIANCA’s

output gives each voxel’s probability of belonging to WMH or non-

WMH class, based on the proportion of k neighbors belonging

to that class. The final step in BIANCA is applying a threshold

to the voxel probability distributions to assign each voxel to

WMH or non-WMH classes. To determine the optimal BIANCA

parameters in individuals with stroke, we: (∗1∗) tested the user-

defined BIANCA settings available in the BIANCA toolkit, (∗2∗)

adjusted the WMH thresholding using either a fixed or an adaptive

thresholding approach, and (∗3∗) applied additional methods for

handling stroke lesions to improve BIANCA accuracy.

BIANCA performance was rated using standard BIANCA

scoring metrics (Griffanti et al., 2016). The calculated metrics

compare gold-standard WMH masks to the BIANCA-derived

WMHmasks for each participant and evaluate the degree of overlap

and volumetric correspondence between masks. We selected the

Dice Similarity Index (SI), interclass correlation coefficient (ICC),

and cluster-level false negative ratio (FNRc) as our key metrics

of interest (Griffanti et al., 2016). SI and FNRc index degree of

mask overlap, and ICC measures volumetric correspondence. ICC

was computed as the agreement between the gold-standard and

automatically generated WMH volumes, with the R package “irr.”

We gave higher importance to FNRc over false-positive ratio, as we

prioritized sensitivity to lesion detection. Decisions about optimal

BIANCA settings were made based on the performance of these

three metrics. In cases where key metrics did not agree, we chose

the setting that gave better performance in 2/3 of these metrics.

2.2.2. BIANCA settings
BIANCA has several user-defined options to optimize k-NN

WMH segmentation [for a full description see: Griffanti et al.

(2016)]. Briefly, these are:

A. The MRI modalities used as features in training data. In our

dataset we always include T1 and FLAIR scans as training

features. We tested the additional value of including T2-

weighted scans as a training feature.

B. Spatial weighting of BIANCA by MNI coordinates. BIANCA

can use MNI-registration coordinates to weight the probability

of WMH classification, because WMHs occur more frequently

in some regions (e.g., periventricular to lateral ventricles)

than others (e.g., brainstem). Higher spatial weighting values

increase a linear scaling factor that increases the probability

weighting of MNI coordinates. We tested the following values:

0 (no spatial weighting), 1, 5, and 10.

C. Patch size to define the local average intensity for each MRI

modality. A “patch” can be used for local averaging of MRI

intensity around each voxel to improve the robustness of the

segmentation to misregistration. A higher patch size increases

the size of the kernel used for local averaging. We tested a 3D

patch using the following values: 0 (no patch), 3, 6, and 9.
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D. Training point location for non-WMH points. By default

BIANCA selects non-WMH training points from any location

in the brain except for those in the WMH mask (“any”

location option). There are two additional options to constrain

the selection of non-WMH training points: points that do

not directly border the WMH mask (“noborder” option), or

points that are directly bordering the WMH-mask (“surround”

option). We tested each of these three non-WMH training

point location settings.

E. The number of training points for both WMH and non-

WMH training points. By default, BIANCA selects 2,000

training points at random in the WMH masks, and an equal

number of non-WMH training points. The user can specify the

number of WMH and non-WMH training points to use or can

direct BIANCA to use all the points within the WMH mask

and an equal number of non-WMH training points for each

individual. We tested the following values: all WMH and equal

non-WMH, 2,000 WMH and 2,000 non-WMH, and 2,000

WMH and 10,000 non-WMH points. During the optimization

phases we tested further increasing the number of non-

WMH training points (see Supplementary material). Because

changing the number of training points also changes the

probability threshold values, we tested 5 different thresholding

options for each training point setting (0.8, 0.85, 0.9, 0.95,

and 0.99)

To determine the optimal BIANCAmodel for use in individuals

with stroke, we systematically tested each of these user-defined

BIANCA settings on our training sample from Dataset 1. We

used identical testing procedures as employed in Griffanti et al.

(2016). We began by applying BIANCA with all default options,

then varied each BIANCA setting while keeping all other settings

constant, to isolate the effects of each setting on BIANCA

performance. We tested a total of 27 different BIANCA setting

configurations: MRI modalities (2 options), spatial weighting (4

options), patch size (4 options), training point location (3 options),

and training point number (3 options + 5 thresholds each).

We compared BIANCA performance in each configuration and

selected each best-performing setting to be applied as the start

point in subsequent testing phases. We then ran BIANCA with

the determined best setting configuration and again systematically

varied each of the BIANCA settings and re-scored performance to

test if the optimal settings remained constant. Testing continued

in these phases until optimal BIANCA settings were determined

(i.e., the setting consistently provided the best scores on our

training sample).

2.2.3. BIANCA thresholding
We tested applying a fixed threshold to WMH probability

maps vs. an adaptive threshold using LOCally Adaptive Threshold

Estimation (LOCATE) (Sundaresan et al., 2019). LOCATE

takes a lesion probability map based on distance from the

cerebral ventricles as input, and provides spatially adaptive

thresholding of the WMH segmentation, accounting for lesion

load, shape, and location. LOCATE thresholding was performed

on BIANCA output from optimized parameters for each subject,

and performance was scored and compared to performance

using the optimal fixed threshold determined from the previous

testing round.

2.2.4. Stroke-specific optimization steps
We tested additional settings around the handling of

stroke lesions:

1. Removing the stroke lesion from the brain mask prior to

BIANCA training was compared to removing the stroke

lesion after BIANCA training. This allowed us to test

masking the stroke lesion on BIANCA input vs. output. This

step was performed before systematic BIANCA parameter

optimization to determine the optimal starting point for

BIANCA model testing.

2. Stroke mask dilation to mask the boundary of the stroke

lesion. We anticipated possible false-positive WMH voxels at

the boundaries of stroke lesions. We tested whether removal of

these false positives might improve BIANCA performance by

dilating the stroke lesion mask and removing the dilated mask

from BIANCA output. We dilated the stroke lesion mask in

1mm increments from 1 to 5mm in size and scored BIANCA

performance with the dilated masks removed.

2.2.5. BIANCA model testing
Once the optimized BIANCA parameters were established in

the training sample from Dataset 1 (chronic stroke cohort), we ran

the optimized BIANCA model on the test sample from Dataset

1 cohort and scored performance. We then used the optimized

BIANCA settings on Dataset 2 (subacute stroke cohort) in two

phases: (1) by splitting Dataset 2 into an 80/20% training and test

sample (n= 96 training; 24 testing) and applying BIANCAwith the

same testing parameters to confirm the optimized settings would

transfer to a new cohort; (∗2∗) testing the BIANCA model trained

on Dataset 1 to segment WMHs in Dataset 2. Finally, we evaluated

BIANCA performance on combined data from both independent

datasets, by training data on a mixed random sample of data

from each dataset (n = 34 from Dataset 1 and 34 from Dataset

2) and testing the trained model on the remaining data (n = 9

from Dataset 1 and 86 from Dataset 2). These steps allowed us to

evaluate the accuracy of applying a trained BIANCA model to a

novel unseen dataset.

2.3. SAMSEG lesion segmentation

We further compared BIANCA output with SAMSEG lesion

segmentation performance, with a particular interest in comparing

performance on multi-site data. SAMSEG was run in Freesurfer

v7.3.1. As mentioned previously, SAMSEG is an unsupervised

and automated tissue segmentation method that uses parametric

Bayesian modeling for tissue segmentations (Puonti et al.,

2016; Cerri et al., 2021). WMH segmentation is implemented

with additional unsupervised models to learn the shape and

intensity of WMH lesions (Cerri et al., 2021). SAMSEG has

excellent reliability across multi-site data (Puonti et al., 2016;

Cerri et al., 2021). Because SAMSEG is an unsupervised
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method, it does not require the use of training WMH masks

for tissue segmentation. We tested performance with different

probability thresholds of voxels being assigned as lesion, with the

following threshold values: 0.1, 0.3 (SAMSEG default setting), 0.5,

0.7, and 0.9.

T1 scans and FLAIR scans registered to T1 space were used

as inputs to SAMSEG, and stroke lesion masks were used to

remove stroke lesions from the resulting segmented SAMSEG

tissue classes. SAMSEG was performed with the run_samseg

command implemented through FreeSurfer (v.7.2). SAMSEG

performance was scored against gold standard WMH masks for

every individual.

3. Results

3.1. BIANCA optimization

Our data required four phases of systematic testing to

determine the optimized user-defined BIANCA model settings.

Results from BIANCA optimization for the first phase of setting

testing and the final phase of setting testing are presented

in Figure 1. The values of all BIANCA scoring measures

across four phases of parameter testing are presented in

Supplementary Tables 1–4.

General observations from parameter testing include

the following:

1. Using more MRI modalities as features (T1, FLAIR, and T2

scans) always improved BIANCA performance.

2. Incorporating MNI coordinates with spatial weighting

improved BIANCA performance. The best spatial weighting

was 1.

3. Training point location performance was largely equivalent

when the training points came from anywhere in the brain, or

if they excluded the boundary around the WMHmask (“any”

and “noborder” options). BIANCA performance decreased

when training points were restricted to the WMH boundary

(“surround” option).

4. BIANCA performance generally improved with higher

numbers of non-WMH training points. Our final best

performing model included 2,000 WMH and 58,000 non-

WMH training points.

Our optimal BIANCA settings were consistent with the optimal

settings determined in a non-stroke cohort by Griffanti et al. (2016),

with one exception: we obtained better BIANCA performance

with a higher number of non-WMH training points (58,000) than

Griffanti et al. (2016) (10,000).

3.1.1. Thresholding
Figure 2 presents a comparison between the optimized fixed

threshold (0.85) and adaptive LOCATE-based threshold. We found

the fixed threshold had better performance, with higher SI and ICC,

though FNRc was also slightly higher with the fixed threshold.

3.1.2. Stroke-specific optimization
Stroke masking: Figure 3 compares excluding the stroke

mask from BIANCA input vs. output. We found that WMH

segmentation was improved when the stroke mask was excluded

from model training on input. This was likely because the stroke

lesion voxels were not included as non-WMH training points, thus

improving WMH segmentation.

Stroke lesion dilation: Figure 4 presents results of stroke lesion

dilation on BIANCA performance scores. We found BIANCA

performance was best when the stroke mask was not dilated

in size, and performance decreased with increased stroke lesion

dilation sizes.

3.1.3. Optimized BIANCA model summary
Our final optimized BIANCA model had the following

parameters: (∗1∗) stroke lesion masking on data input, (∗2∗)

FLAIR, T1 and T2 scans included as training modalities, (∗3∗)

MNI coordinates incorporated with a SW = 1, (∗4∗) training

point location anywhere, with 2,000 WMH training points

and 58,000 non-WMH training points, and (∗5∗) a threshold

of 0.85 applied to BIANCA output. These BIANCA settings

resulted in good performance on the training sample with the

following performance scores: SI = 0.61, ICC = 0.94, FNRc

= 0.34 (Table 2). WMH segmentation was greatly improved

with optimized BIANCA settings when compared to the default

BIANCA settings (Figure 5).

3.2. BIANCA validation

3.2.1. Testing dataset
Our optimized BIANCA parameters were tested on the

reserved 20% of our training sample (n = 9). BIANCA achieved

good performance on the test data set with the following

performance scores: SI= 0.60, ICC= 0.91, FNRc= 0.42 (Table 2).

3.2.2. Independent cohort validation
We validated BIANCA performance in an independent cohort

of scans from a subacute stroke population (Dataset 2). First, we

validated the optimized BIANCA settings by training and testing

BIANCA on data from Dataset 2. Using the optimized BIANCA

parameters gave good performance on the training and test sample

from Dataset 2 (training sample: SI = 0.60, ICC = 0.95, FNRc

= 0.54; test sample: SI = 0.66, ICC = 0.96, FNRc = 0.55). Next,

we tested if the BIANCA model trained on Dataset 1 could be

applied to segment WMHs in Dataset 2. BIANCA had very poor

performance when the model trained off data from Dataset 1

was applied to segment WMHs in Dataset 2, with the following

performance scores: SI = 0.08, ICC = 0.01, FNRc = 0.13. Finally,

we tested BIANCA performance when trained and tested off a

mixed sample of data from Datasets 1 and 2. BIANCA maintained

good performance when trained off mixed sample data, with the

following performance scores: SI= 0.54, ICC= 0.95, FNRc = 0.55

(Table 2).
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FIGURE 1

BIANCA parameter optimization. Figures present BIANCA model scoring for user-defined BIANCA settings tested in the initial and final rounds of

BIANCA setting testing. BIANCA performance was scored against gold-standard WMH-masks with the dice similarity index (SI), false-negative ratio by

cluster (FNRc), and interclass-correlation coe�cient (ICC). Y-axis values are the mean scores for the corresponding scoring metrics. Gray bars and

black asterisks indicate the best-performing setting for each BIANCA option. (A–E) BIANCA options, see methods “BIANCA Optimization” section for

full description of each option [corresponding to tested options (A–E)]. For full performance scores from all rounds of BIANCA optimization, see

Supplementary Tables 1–4.

Frontiers inNeuroimaging 06 frontiersin.org

https://doi.org/10.3389/fnimg.2023.1099301
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Ferris et al. 10.3389/fnimg.2023.1099301

FIGURE 2

Comparison of BIANCA performance on Dataset 1 training sample

using a fixed threshold (0.85) compared to an adaptive threshold

using LOCATE. BIANCA performed better with a fixed threshold,

indicated by higher SI and ICC values. A fixed threshold of 0.85 was

used in the optimized BIANCA model. Gray bars and black asterisks

indicate the best-performing setting.

FIGURE 3

Comparison of BIANCA performance when stroke lesion was

removed from BIANCA input or output. BIANCA performance was

improved when stroke lesions were masked in training input. This

testing phase was performed prior to BIANCA optimization to

determine the best starting point for BIANCA model testing (default

BIANCA parameters). Gray bars and black asterisks indicate the

best-performing setting.

3.3. SAMSEG segmentation

We compared SAMSEG performance on multisite data.

SAMSEG is an unsupervised segmentation method, therefore

no training data are needed for WMH segmentation.

SAMSEG performance was best with a threshold of 0.1

FIGURE 4

E�ects of dilating the stroke lesion mask and removing from

BIANCA output as a potential method to control for false positive

WMHs around the boundaries of the stroke lesion. BIANCA

performance decreased with increasing size of stroke lesion

dilations, and the best BIANCA performance was achieved when

stroke lesions were not altered in size. This indicates BIANCA did not

identify significant numbers of false-positive WMHs around the

boundaries of stroke lesions. This step was performed after BIANCA

parameter optimization too fine-tune BIANCA model output

(optimized BIANCA parameters). Gray bars and black asterisks

indicate the best-performing setting.

(Supplementary Figure 1, Supplementary Table 5), this threshold

setting was subsequently applied to all SAMSEG output.

SAMSEG achieved good performance on Dataset 1 (SI = 0.54,

ICC = 0.95, FNRc = 0.34). On Dataset 2 SAMSEG also achieved

good performance, however the false negative ratio was high (SI

= 0.54, ICC = 0.95, FNRc = 0.76). Generally, SI scores were

lower with SAMSEG compared to BIANCA, but ICC scores were

comparable between the two methods. Outcome metrics from all

tested BIANCA and SAMSEG models are presented in Table 2.

Qualitatively, we noticed that SAMSEGhad a greater chance of false

positive in the corpus callosum (Figure 6).

3.4. WMH segmentation overview

Figure 7 presents relationships between BIANCA and SAMSEG

performance and lesion volumes. After controlling for age and

time post-stroke, there was a linear relationship between log-

transformed WMH volumes and SI scores for both BIANCA (b =

0.109, p< 0.001) and SAMSEG (b= 0.172, p< 0.001) performance.

There was no relationship between log-transformed stroke volumes

and BIANCA (b=−0.010, p= 0.286) or SAMSEG (b= 0.018, p=

0.099) performance.

4. Discussion

In this manuscript we developed a set of optimized parameters

for WMH segmentation with BIANCA in individuals with stroke.

Our optimized BIANCA protocol demonstrated good performance

on both a chronic stroke and a subacute stroke cohort when

trained and tested within the same cohort. As a supervised
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TABLE 2 WMH segmentation performance scores.

Dataset Training data Overlap with gold-standard mask Volumetric correspondence

SI FDR FNR FDRc FNRc DER OER ICC

BIANCA

Dataset 1 Dataset 1 0.60 0.35 0.36 0.60 0.35 0.12 0.67 0.93

Dataset 2 Dataset 2 0.65 0.30 0.37 0.51 0.55 0.13 0.58 0.95

Dataset 2 Dataset 1 0.08 0.95 0.14 0.97 0.13 0.09 1.75 0.01

Mixed sample Mixed sample 0.54 0.47 0.41 0.79 0.55 0.24 0.69 0.95

SAMSEG

Dataset 1 0.54 0.57 0.16 0.77 0.34 0.20 0.73 0.95

Dataset 2 0.54 0.33 0.49 0.53 0.76 0.45 0.48 0.95

Table presents performance scores for Dataset 1 (chronic stroke cohort) and Dataset 2 (subacute stroke cohort), comparing performance between WMH segmentation methods (BIANCA vs.

SAMSEG) and datasets used in supervisedmodel training (BIANCA). SI, Dice similarity index; FDR, false-discovery ratio; FNR, false-negative ratio; FDRc, cluster-level FDR; FNRc, cluster-level

FNR; DER, detection error rate; OER, outline error rate; ICC, interclass correlation coefficient.

FIGURE 5

Example improvements in BIANCA WMH segmentation in an

individual with chronic stroke. Panels present (A) ground truth WMH

masks from SABRE segmentation (in dark blue) and the stroke lesion

mask (in red-excluded from BIANCA segmentations), (B) + (C):

automated WMH segmentation between default BIANCA options (B)

and BIANCA segmentation with the set of optimized BIANCA

parameters described in the current report (C).

learning technique, BIANCA’s performance failed when tested

on data with different acquisition parameters from the training

data, but good performance was maintained if BIANCA was

trained off mixed sample data from two independent datasets.

We also tested the performance of FreeSurfer’s unsupervised

contrast-based WMH segmentation tool SAMSEG. Compared to

BIANCA, SAMSEG had slightly poorer Dice similarity index

scores and higher false negative ratios, but still gave good WMH

segmentation performance in individuals with stroke. Importantly,

SAMSEG maintained good performance scores across multi-site

data without the need for model training and therefore may be

a more practical method for use in large multi-center research

studies. A comparison of each technique is presented in Table 3.

4.1. BIANCA

BIANCA is a publicly available software tool that is easily

implemented and widely used for WMH segmentation (Griffanti

et al., 2016). While there have been some efforts to develop

FIGURE 6

Example of false-positive WMH segmentation errors in BIANCA vs.

SAMSEG in an individual with chronic stroke. (A) Ground truth WMH

masks from SABRE segmentation (in dark blue) and the stroke lesion

mask (in red- excluded from WMH segmentations), (B) BIANCA

WMH segmentation. (C) SAMSEG false positives segmenting

portions on the corpus callosum as WMHs.

machine learning-based methods specifically for stroke and WMH

segmentation in stroke populations (Guerrero et al., 2018) these

are yet to be openly available and widely implemented. For now,

the best choice for the stroke research field is to adapt automated

methods developed in otherwise healthy individuals for use in

individuals with stroke. We found that BIANCA performs well for

WMH segmentation in individuals with stroke using the optimized

set of parameters described here.

Recommendations for BIANCA in individuals with stroke:

1. The stroke lesion should be excluded from the input training

data by removing the stroke lesion from the brain mask.

2. Including multiple imaging modalities (FLAIR, T1, and T2

scans) improves BIANCA performance, if available.

3. Registration of input scans to MNI space is recommended;

BIANCA performance was always best when MNI coordinates

were incorporated with a spatial weighting of 1.

4. The number of non-WMH training points should be increased

beyond default settings (we recommend 2,000WMH points and

58,000 non-WMH points).
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FIGURE 7

Relationships between automated WMH segmentation performance (indexed by Dice similarity index; SI) and lesion volumes in individuals with

stroke. (A) Individuals with higher WMH volumes had better automated WMH segmentation accuracy with both BIANCA (left) and SAMSEG (right)

segmentation algorithms. (B) WMH segmentation accuracy did not relate to stroke volumes for either BIANCA or SAMSEG segmentation. Dataset 1:

cohort of individuals with chronic stroke; Dataset 2: cohort of individuals with subacute stroke.

TABLE 3 Comparison of BIANCA and SAMSEG for use in individuals with stroke.

Pros Cons

BIANCA - Better segmentation performance, particularly in spatial performance - Poor performance when generalizing trained model to multi-site data

- Better detection of deep WMHS - Stroke lesion masking is critical

- High quality WMHmasks need for model training

SAMSEG - Quick and easy segmentation package, fully automated - Spatial performance worse than BIANCA

- Can be applied across multi-site data - Higher rate of false positive and false negative WMHs

5. We recommend use of a fixed threshold (0.85 in the current

report) rather than an adaptive threshold using LOCATE to

binarize generated BIANCA probability maps.

In our study BIANCA’s similarity index scores were lower than

what has been achieved with BIANCA in typical aging (Sundaresan

et al., 2019). However, our similarity index scores were similar

to scores in individuals with mild cerebrovascular disease such

as transient ischemic attack (Griffanti et al., 2016), and were

in line with typical similarity index scores for automated stroke

lesion segmentation (Ito et al., 2019). Thus, our observed spatial

performance was within typical similarity index scores achieved

for individuals with stroke, where increased variability in brain

structure is expected to impact the performance of automated MRI

tools (Ito et al., 2019). Additionally, our observed ICC scores were

excellent, indicating good volumetric correspondence in BIANCA

WMH segmentation.

Generally, BIANCA was able to handle the presence of a stroke

infarct without significant additional processing steps. BIANCA

performed best when stroke lesions were excluded from the

training data, because voxels containing abnormal signal from

stroke lesions were not used as training points in the BIANCA

algorithm. This principle may hold true for supervised brain tissue

segmentation for other major neurological pathologies in clinical
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populations. We did not see any benefit (and in fact performance

decreased) when the stroke lesion mask was dilated in size to avoid

including voxels around the lesion in the data.

Using multiple imaging modalities beyond FLAIR as training

features improved performance; this has been a consistent finding

in the literature (Griffanti et al., 2016; Ling et al., 2018). We

did not test the inclusion of additional structural scans that

are routinely collected in stroke research studies (such as DWI

or proton density scans), and BIANCA performance might be

further improved through inclusion of additional MRI modalities

as training features. However, both BIANCA and SAMSEG

maintained good performance when using only one T2-weighted

modality, as evidenced by results from our optimization testing

for Dataset 1 (comparing the inclusion of FLAIR vs. FLAIR and

T2 scans) and all results for Dataset 2 (which only had FLAIR

and T1 scans acquired). WMH segmentation was also improved

through the incorporation of MNI coordinates through a linear

MNI registration. Stroke lesions can induce distortions in non-

linear registrations, which requires careful analytic approaches

to overcome such as careful lesion masking or enantiomorphic

normalization of lesioned tissue (Nachev et al., 2008; Ito et al.,

2018). We used linear registration to bring images into a

common space without registration distortions from stroke lesions.

This improved WMH segmentation after incorporating MNI

coordinates through spatial weighting. An important consideration

with this approach is that linear registrations bring a trade-off such

that the specific concurrence with atlas-based region definitions

will be reduced relative to what can be achieved with high-quality

non-linear registrations. Furthermore, because our study only used

linear registration, we were unable to test the additional benefit of

regional masking procedures to reduce false positives implemented

in BIANCA through mask_brain_mask, because this step requires

non-linear registration warps to run. If high-quality non-linear

registrations are available within a stroke cohort, then this

additional step could be taken to constrain the BIANCA training

space and potentially further improve WMH segmentation.

The tool LOCATE uses a spatially-adaptive technique to

threshold BIANCA WMH probability maps (Sundaresan et al.,

2019). We found the adaptive LOCATE threshold resulted in worse

performance when compared to a fixed threshold, in contrast to

what has been reported in older adults (Sundaresan et al., 2019).

This might be because of increased neurological variability in

individuals with stroke from the stroke lesion itself and concurrent

age-related neurodegeneration and cerebral atrophy (Wen and

Sachdev, 2004; Duering et al., 2012; Brodtmann et al., 2020). This

increased neurological variability may make it more difficult for

the adaptive threshold process to identify the optimal thresholds

to apply across the brain. The use of a fixed threshold has

additional benefits beyond improved accuracy, as a fixed threshold

is simpler to implement and requires less computational time in the

processing pipeline.

BIANCA similarity index performance was linearly related

to WMH volumes. Smaller WMH volumes were more difficult

to accurately segment, this has also been reported elsewhere

with BIANCA (Wulms et al., 2022) and other automated WMH

segmentation algorithms (Heinen et al., 2019). For small WMH

volumes, a spatial disagreement of only a few voxels can have a large

impact on spatial performance measures. Importantly, we found

no relationship between similarity index scores and total stroke

volume. This means that BIANCA was able to accurately segment

WMHs even in individuals with large stroke lesions and is a robust

technique to use in individuals with stroke.

As a supervised method, BIANCA did not perform well when

tested on data with different acquisition parameters from the

training data. This has implications for the use of BIANCA for

large multi-site studies. If training WMH masks are available from

each site, then good BIANCA performance can be achieve with site-

specific or mixed-site training of the algorithm, a finding that has

also been observed in samples of older adults (Bordin et al., 2021). If

trainingWMHmasks are not available for each site, and the goal of

the study is to harmonize data across multiple sites with different

acquisition parameters, then BIANCA is not the optimal WMH

segmentation method.

BIANCA relies on a k-NN algorithm, which is one of the

most commonly used algorithms applied to date for supervised

WMH segmentation (Frey et al., 2019). Many of the findings

of our study would generalize to the use any supervised WMH

segmentation algorithm, for instance in the need tomask out stroke

lesions from input to the training data. Recent advancements in

deep learningmethods, particularly convolutional neural networks,

have shown excellent preliminary results for WMH segmentation

in older adults (Kuijf et al., 2019; Isensee et al., 2021). Many of

these algorithms are not yet publicly available, and their accuracy

in individuals with concurrent stroke lesions remains to be

established. However, the development of more advanced machine

learning models has high potential to further improve automated

segmentation of both WMH and stroke lesions in the future.

4.2. SAMSEG

SAMSEG was recently developed for segmentation of multiple

sclerosis (MS) lesions (Cerri et al., 2021), and it also has been used

to segment age-related WMHs (Restrepo et al., 2021; Dewenter

et al., 2022). Unlike BIANCA, SAMSEG does not require tuning

of parameters for each sample, nor does it require WMH

masks for model training, making it a quick and practical tool

for segmentation of large datasets. SAMSEG performance was

comparable across data from two different research sites without

the need for model training to site-specific sequences.

Despite achieving excellent volumetric correspondence scores

(ICC) and good similarity index scores, SAMSEG had a relatively

high rates of cluster-level false positives with our applied threshold

of 0.1, with false-positive lesion frequently appearing in the midline

of corpus callosum white matter. Our study prioritized sensitivity

to lesion detection (low false negatives) over false positives, and

our low probability threshold of 0.1 achieved this balance. However,

depending on the goals of the research study, a higher probability

threshold could be applied which would decrease the rate of

false positives, but increase false negatives. False negatives may be

most likely for small deep WMHs (WMHs that do not contact

the cerebral ventricles). Deep WMHs are notoriously difficult to

segment with automated methods (Park et al., 2018). Furthermore,
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WMH segmentation tools that were developed for MS lesion

segmentation can show decreased performance on age-related

WMHs due to reduced gray matter/white matter contrast in the

aging brain (Caligiuri et al., 2015). Therefore, analytic choices can

be made weighting the sensitivity to lesion detection and spatial

accuracy vs. wholistic volumetric correspondence, depending on

the aims of the analysis.

SAMSEG performance was not impacted by stroke lesion

volumes, meaning SAMSEG performed equally well in individuals

with large and small stroke lesions. SAMSEG is publicly

available through FreeSurfer’s platform, but SAMSEG can be

run independently from the full FreeSurfer processing pipeline

with coarser regional parcellation. While FreeSurfer frequently

fails in the presence of stroke lesions (Ozzoude et al., 2020),

SAMSEG did not show any failures or decrement in WMH

segmentation performance in individuals with stroke. Additionally

SAMSEG does not require any preprocessing steps (Puonti

et al., 2016), meaning there are no steps to handle the stroke

lesion on data input. Here, we removed stroke masks from

output SAMSEG tissue segmentations as a post-processing step.

If SAMSEG is applied in a cohort where stroke lesion masks

are not available for this post-processing step, we recommend

checking segmentation output carefully for any misclassification

of stroke lesion tissue as a WMH. Additionally, we did

not evaluate the accuracy of other tissue segmentations (gray

matter, white matter, CSF) from SAMSEG output in individuals

with stroke.

A final limitation for researchers to consider when

choosing an automated WMH segmentation method is that

both BIANCA and SAMSEG rely on high quality structural

scans, such as those generated on research MRI scanners.

These methods may not generalize for use in clinically

acquired scans, which typically have low through-plane

resolution and often not amenable to MNI registration and

3D segmentation techniques. Clinical WMH segmentation

methods may require specific WMH segmentation, such as

those developed by the MRI-GENIE study (Schirmer et al.,

2019).

5. Conclusions

In this paper, we present an optimized protocol for automated

supervised WMH segmentation in individuals with stroke

using BIANCA. We also compared BIANCA performance to

SAMSEG, an unsupervised WMH segmentation method. Both

BIANCA and SAMSEG achieved good WMH segmentation

performance in the presence of stroke lesions. Our data validate

the use of automated WMH segmentation methods in stroke

research studies, with potential additional considerations

for the handling of stroke lesions in the segmentation

pipeline. With the acceleration of research examining the

contributions of concurrent age-related cerebrovascular

disease on stroke outcomes, we expect this paper to be

a useful methodological guide for the selection of WMH

segmentation technique depending on the study aims and

data composition.
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