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Schizophrenia is a severe brain disorder with serious symptoms including delusions,

disorganized speech, and hallucinations that can have a long-term detrimental impact

on di�erent aspects of a patient’s life. It is still unclear what the main cause of

schizophrenia is, but a combination of altered brain connectivity and structure may

play a role. Neuroimaging data has been useful in characterizing schizophrenia,

but there has been very little work focused on voxel-wise changes in multiple

brain networks over time, despite evidence that functional networks exhibit complex

spatiotemporal changes over time within individual subjects. Recent studies have

primarily focused on static (average) features of functional data or on temporal

variations between fixed networks; however, such approaches are not able to capture

multiple overlapping networks which change at the voxel level. In this work, we

employ a deep residual convolutional neural network (CNN) model to extract 53

di�erent spatiotemporal networks each of which captures dynamism within various

domains including subcortical, cerebellar, visual, sensori-motor, auditory, cognitive

control, and default mode. We apply this approach to study spatiotemporal brain

dynamism at the voxel level within multiple functional networks extracted from

a large functional magnetic resonance imaging (fMRI) dataset of individuals with

schizophrenia (N= 708) and controls (N= 510). Our analysis reveals widespread group

level di�erences across multiple networks and spatiotemporal features including

voxel-wise variability, magnitude, and temporal functional network connectivity in

widespread regions expected to be impacted by the disorder. We compare with

typical average spatial amplitude and show highly structured and neuroanatomically

relevant results are missed if one does not consider the voxel-wise spatial dynamics.

Importantly, our approach can summarize static, temporal dynamic, spatial dynamic,

and spatiotemporal dynamics features, thus proving a powerful approach to unify

and compare these various perspectives. In sum, we show the proposed approach

highlights the importance of accounting for both temporal and spatial dynamism

in whole brain neuroimaging data generally, shows a high-level of sensitivity to

schizophrenia highlighting global but spatially unique dynamics showing group

di�erences, and may be especially important in studies focused on the development

of brain-based biomarkers.
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1. Introduction

Brain disorders affect many people worldwide every year.

Schizophrenia is a chronic neuropsychiatric disorder, affecting over

20 million people worldwide. Schizophrenia often leads to cognitive

and functional impairments and symptoms which typically emerge

in late adolescence to early adulthood. Moreover, it shows a relapsing

disease course in roughly 70% of the cases, so an early and rigorous

diagnostic is critical to have a better treatment and get a reasonable

clinical outcome (Keepers et al., 2020; Gutman et al., 2022). We still

do not have understanding of the cause of schizophrenia, nor do

we fully understand its impact on the brain and as a brain disorder.

There is great interest in studying the underlying neural mechanism

of psychosis. There have been numerous neuroimaging studies of

schizophrenia (Sakoglu et al., 2010; Pettersson-Yeo et al., 2011; Naim-

Feil et al., 2018; Kottaram et al., 2019) in which the identified

variations are highly complicated and distributed across many brain

regions. However, existing, neuroimaging models of functional brain

networks typically make strong assumptions about the associated

variations in brain function. For example, most studies still do not

allow for the possibility of time-varying changes in brain networks

at the voxel level, i.e., spatial dynamics. Consequently, there are also

almost no studies on the role of spatiotemporal brain dynamism

effects in brain disorder as most are focused on static summaries

or time-resolved variation in coupling among fixed nodes (Miller

et al., 2016). Generally, spatial brain dynamics refers to any changes

in size, shape, or translation of active region over time, temporal

dynamics refers to transient changes in coupling fixed brain regions

over time, and spatiotemporal dynamics refers to transient changes in

both the node/region and in its coupling to other nodes/regions (Iraji

et al., 2020). Prior work focused on temporal dynamics has shown

hypoconnectivity or dysconnectivity in transient coupling between

functionally correlated sources for individuals with schizophrenia

including transient changes in thalamic hyperconnectivity as well

as hypoconnectivity between sensory networks and the putamen

(Damaraju et al., 2014). It has been shown that models that capture

dynamics can improve sensitivity. For example, Rashid et al. (2016)

showed incorporation of temporal dynamics improved classification

accuracy for a three-way prediction of controls vs. schizophrenia

vs. bipolar disorder. Other studies of temporal brain dynamism

yielded promising results including 3 different brain networks

exhibiting antagonism with severity of the illness. Despite the fact

that schizophrenia is thought to involve complex morphological

and functional dysconnectivity, there has been little work exploring

potential spatiotemporal biomarkers that can distinguish patients

from controls. One approach by Kottaram et al. (2018) addressed

the issue by utilizing a relatively constrained spatiotemporal model

that achieved higher accuracy in comparison with classical methods.

In this work, support vector machine classifiers were trained on

functional connectivity dynamics and predicted patients vs. controls

with an accuracy of more than 90%. They also showed that

constraining the model to ignore spatial or temporal dynamics

yielded lower performance, with static functional connectivity

having the lowest performing. Extensive research on voxel-wise

spatiotemporal brain dynamism in schizophrenia is important to

more fully characterize the underlying brain changes linked to

schizophrenia. There are to date only a few studies that have

begun to explore this. For example, prior work has evaluated the

relevance of interactions between spatially distributed patterns or

temporally synchronized brain networks described as spatiotemporal

brain dynamics (Ma et al., 2014; Iraji et al., 2022). Another study

by Miller and Pearlson (2019) on saturated transient supra-network

sources called polarization, showed remarkable differences in special

patterns in time-resolved network connectivity such that high

polarized sources are highly correlated with connection stability

between auditory, sensory, motor, and visual networks. Other studies

have begun to explore the relationship of spatial dynamics within

a hierarchy of time-varying network components with different

granularity levels where higher levels show more dynamism vs. lower

levels that illustrate more homogeneity (Iraji et al., 2019a). Moreover,

a study by Iraji et al. (2019b), characterized the spatial chronnectome

and highlighted cases where inter-network integration was changing

over time, providing an important motivation to continue to extend

such approaches for biomarker detection.

It is especially important to develop flexible approaches based

on spatiotemporal brain dynamism to move toward a reliable

biomarker for schizophrenia, but working on spatiotemporal

dynamics is computationally intensive especially while utilizing deep

learning models either in training or inference phase, but recent

enhancements in computational infrastructures and algorithms like

GPUs/TPUs and distributed systems (Li et al., 2020) have made it

possible to use deep learning techniques on fMRI data and study

spatiotemporal brain dynamics. In this work we address issue by

studying group differences using a novel framework with deep

residual convolutional neural network models to estimate spatially

flexible networks in 5D including space, time, and network. We apply

this approach to a large study of schizophrenia patients and controls

in order to evaluate the degree to which the 5D networks captured

complex group differences.

2. Methods and materials

We conducted our study by incorporating a framework called

neuromark which leverages a fully automated spatially constrained

ICA approach to estimate subject specific spatial maps and

timecourses. In this work we used the neuromark_fMRI_1.0

template, consisting of 53 replicable brain networks to initialize a

deep learning model which encodes spatiotemporal brain dynamism

within an fMRI dataset to generate 4D voxel-wise dynamic brain

networks each of the 53 networks, which are grouped into 7

domains including sensorimotor (SM), default mode (DM), auditory

(AU), cognitive control (CC), visual (VI), subcortical (SC), and

cerebellar (CB) as is shown in Figure 1. This produces a 5D dataset

including 53 4D brain networks, for each subject. Following this, we

utilized different statistical metrics to summarize the network and

to analyze group differences which are thoroughly discussed in the

following sections.

2.1. Demographic and image acquisition

We investigated potential differences between schizophrenia vs.

control groups by using 1,218 resting-state functional magnetic

resonance (fMRI) images from different existing datasets
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FIGURE 1

The diagram shows data flow in our framework by feeding an fMRI

input into 53 di�erent models each of which belongs to a specific

brain domain like visual, cerebellar, auditory, sensory motor, default

mode, cognitive control, subcortical leads to generating

spatiotemporal maps (4D maps) for each of brain networks.

including 510 control and 708 schizophrenic subjects collected

from two studies.

The first study utilized data collected at the MPRC (Maryland

Psychiatric Research Center) project which was gathered by

University of Maryland across three sites using 3-Tesla Siemens

Allegra scanners with voxel size of 3.44 × 3.44 × 4mm, field of view

220× 220mm, TR= 2,000ms, TE= 27ms, and also 150 volumes; 3-

Tesla Siemens TimTrio scanner with voxel spacing size of 1.72× 1.72

× 4mm, field of view 220 × 220mm, TR = 2,000ms, TE = 30ms,

and 444 volumes; and a 3-Tesla Siemens Trio scanner with voxel

spacing size of 3.44 × 3.44 × 4mm, field of view 220 × 220mm, TR

= 2,210ms, TE = 30ms, and also 140 volumes. Also, similar subject

TABLE 1 Demographic information of data.

Project Diagnosis Sex Samples Age (years)

Mean
± sd

Range

Study 1 CNT M 100 38.841±
14.21

12.0–77.0

F 154 41.0±
16.31

10.0–79.0

SCZ M 111 35.09±
12.93

13.0–63.0

F 52 43.05±
13.64

13.0–63.0

Study 2 CNT M 133 28.85±
7.82

18.16–
45.75

F 123 28.40±
7.82

17.66–
45.33

SCZ M 297 28.03±
7.54

16.33–
46.75

F 248 30.28±
7.66

16.83–
54.0

inclusion criteria such as headmotion<3◦ and spatial normalization,

were applied to all participants (Du et al., 2020; Iraji et al., 2022). The

second study was conducted on data collected on a multi-site study

using 3TMRI scanners. During the resting fMRI acquisition, subjects

were asked to relax and stay awake during the scan. Images were

subjected to a harmonized preprocessing pipeline after excluding

subjects with head motion >3mm in x, y, and z or 3◦ in pitch,

roll, or yaw. All participants signed an informed consent form based

upon guidelines of the Internal Review Boards of corresponding

institutions and expert psychiatrists diagnosed the schizophrenia

patients. The demographic information of the collected data is shown

in Table 1.

2.2. Data preprocessing

Data preprocessing plays a crucial role in neuroimaging analysis

and can significantly impact the interpretation of result. In this

work, standard preprocessing steps were applied to all resting

state fMRI data utilizing statistical parametric mapping toolbox

(Penny et al., 2011) including removal of the first 5 timepoints for

magnetization equilibrium, head motion correction, and slice timing

correction. Moreover, data were spatially normalized to the Montreal

Neurological Institute (MNI) Echo-planar imaging (EPI) template,

resampled to 3 × 3 × 3mm, and smoothed by a 6mm Gaussian

kernel (FWHM= 6 mm).

2.3. Model structure

Spatiotemporal brain dynamism forms the backbone of our

group comparison study, characterized by a 5D set of brain networks

extracted from fMRI data. We incorporated a brain parcellation

framework (Kazemivash, 2020, 2022) including 53 pre-trained

models each of which produces a score map (probabilistic map) for
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FIGURE 2

Schematic diagram of residual parcellation model with U-Net style structure including encoding and decoding blocks that contain combination of layers

such as 3D convolution, max pooling, batch normalization, drop out, and convolution transposed. Black arrows show skip connections and data flow in

and outside of each block.

a specific brain network, varying over space, time and across subjects

and consequently is able to encode spatiotemporal brain dynamics.

Each of the models is a residual U-Net style regressor containing

36 layers such as 3D convolution, transposed 3D convolution, max

pooling, batch normalization, and dropout layers grouped into

encoding and decoding blocks and was trained and evaluated using

1,470 samples (volumes) from a subset of 3 preprocessed fMRI images

in the UK Biobank dataset as the input and relevant extracted ICA

maps as priors due to supervised training approach. Furthermore,

mean squared error (MSE) as the loss function, Adam optimizer

with adaptive learning rate of 0.00001 and step size of 5 were

utilized to train models in 200 epochs along with a volume-based

data feeding policy and all volumes were normalized using min-

max normalization method to get a faster convergence in training

process. An early stopping method is also applied to have a better

generalization and prevent the overfitting issue. We also fine-tuned

the pre-trained model using 49,000 samples (volumes) from a subset

of 100 preprocessed fMRI data in same dataset, and results were

similar to that from the initial model.

The structure of the model was configured based on two main

residual encoding and decoding blocks, wrapping different layers.

In the proposed configuration, all encoding blocks have identical

structure inside the block but different out-channel sizes between

blocks. First encoding block has 3 volumetric convolution layers

with same out-channel size between layers followed by a batch

normalization layer after each of them. There is also a 3D max

pooling layer with stride of 1 and kernel size of 3 after each encoding

block and eventually a drop out layer with ratio of 0.5 as the last

component of encoder segment. Besides, there are 3 decoding blocks

in decoder segments and each of them contains a couple of 3D

convolution transposed layer followed by a batch normalization layer.

Schematic diagram of the model structure and layer details are given

in Figure 2, Table 2.

TABLE 2 Model architecture.

Layer (type) Output shape Param # Tr.Param#

Conv3d-1 [5, 64, 51, 61, 50] 1,792 1,792

Sigmoid-2 [5, 64, 51, 61, 50] 0 0

ResEncBlocks-3 [5, 32, 47, 57, 46] 110,880 110,880

ResEncBlocks-4 [5, 16, 43, 53, 42] 27,792 27,792

ResEncBlocks-5 [5, 8, 39, 49, 38] 6,984 6,984

Dropout3d-6 [5, 8, 39, 49, 38] 0 0

ResDecBlocks-7 [5, 16, 43, 53, 42] 10,464 10,464

ResDecBlocks-8 [5, 32, 47, 57, 46] 41,664 41,664

Dropout3d-9 [5, 32, 47, 57, 46] 0 0

ResDecBlocks-10 [5, 64, 51, 61, 50] 166,272 166,272

ConvTranspose3d-11 [5, 1, 53, 63, 52] 1,729 1,729

Sigmoid-12 [5, 1, 53, 63, 52] 0 0

Total params: 367,577

Trainable params: 367,577

Non-trainable params: 0

2.4. Statistics and evaluation metrics

In this work we evaluate group differences between patient

and control data considering multiple fully fluid 4D networks.

Consequently, it is crucial to have solid and reliable metrics for

interpreting brain dynamism differences between groups of subjects

in both spatial and temporal aspects. More specifically, we study
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differences in spatial maps between control vs. schizophrenia subjects

by generating 4D maps for each of networks.

Furthermore, we analyze spatial variability over time by

computing spatial deviation over time for each of control and

schizophrenia groups on multiple summary measures. To do

this, we calculate summation of absolute consecutive timepoints

differences, and then averaging over subjects as is given in the

following equations:

ω̄i
k=

6t∈T ωt

T
, ω̄′

k=
6i∈N ω̄i

k

N
(1)

ω̃i
k=6t∈T−1 |ωt+1−ωt| , ω̃′

k=
6i∈N ω̃i

k

N
(2)

Here, ωi
k
is the output of the model for brain network k and subject

i with same shape as the input fMRI data (4D tensor), T denotes

number of timepoints in ω. Also, ω̄ shows voxel-wise average over

time and, ω̃ denotes sum of absolute differences between consecutive

timepoints. Eventually, ω̄
′ and ω̃

′ refer to averaged values over

subjects and both functions result in a 3D tensor for each one due

to voxel-wise operations. Moreover, we use a voxel-wise T-test for

comparing our maps to identify regions showing group differences

between controls vs. patients using the following equation:

tj=

(

−̄→
vcj −

−̄→
vsj

)

√

σ c
j
2

ncj
+

σ s
j
2

nsj

(3)

Where .̄ shows average value, tj refers to t-Test value of a specific

voxel,
−→
vcj is a vector containing different values of a specific voxel

in ω̄i
k
or ω̃i

k
, and also σ c

j
2 is the variance of relevant vector for

all controls. Also, ncj denotes number of control subjects. We have

same definition for
−→
vsj , σ

s
j
2 and nsj in patients with schizophrenia and

obtain a 3D tensor after computing t for all voxels.

We can also compute measures that capture temporal brain

dynamism by evaluating the temporal coupling among networks

using static functional network connectivity (sFNC) or dynamic

version of that (dFNC) between each pair of spatiotemporal maps,

ordered to show functional interactions across different brain

networks. To do this, we compute the Pearson correlation between

each pair of spatiotemporal maps using the whole length scan to

get static functional network connectivity (sFNC) which eventually

forms amatrix with size of k×k (number of all maps) for each subject

by calculating sFNC for all pairs (Allen et al., 2014).

ρp,q=
COV

(−→
ωp , −→ωq

)

σ
(−→
ωp

)

σ
(−→
ωq

) p,q∈S (4)

Here, S is a set of all extracted brain networks, −→ωp and −→
ωq are

generated 4D maps for network p and q which are flattened into

vectors and contain all brain voxels at all timepoints.

Recent studies emphasize on dynamic nature of functional

connectivity in BOLD fMRI data in both animals and humans

(Chang, 2010; Sakoglu et al., 2010; Hutchison et al., 2013). In line

with this, we can compute dynamic functional network connectivity

(dFNC) which highlights FNC variation over time, by applying same

procedure as sFNC on a subset of timepoints with a constant window

size that has overlap with the previous subset with ratio of α to

estimate multiple FNC matrices for an individual. We can then

use clustering to identify transient recurring patterns of functional

connectivity, called functional states, and summarize these in various

ways including the occupancy ratio (OR) which provides the time

percentage of each state occurring during a scan (Iraji et al., 2021).

3. Experimental results

We incorporated our BPARC framework with 53 pre-trained

models to extract individual 4D spatiotemporal brain maps each of

which belonging to one of sensorymotor (SM), default mode (DMN),

auditory (AU), cognitive control (CC), visual (VI), subcortical (SC),

and cerebellar (CB) domains for all 1,218 subjects. Then, we studied

group level differences between control and schizophrenia subjects

regarding to averaged spatial maps, averaged spatial dynamics,

and eventually static and dynamic functional network connectivity

(FNC). Figure 3 shows generated representations for a sensori-motor

network (SM3) for 4 random subjects.

3.1. Group di�erences in spatial maps

In the proposed study, we inspect group level dissimilarities

in spatial maps between healthy-control and patients with

schizophrenia by averaging maps over time and subjects, then

computing 2-sample t-tests to capture group differences as shown

in Figure 3 for a sample subset of networks. The resulting maps

depict plausible representation as we can see homogeneous parcels—

connectivity in relevant brain regions for all averaged spatial maps as

shown in Figure 4.

Moreover, we can see most networks show significant differences

between the patients and controls, indicating widespread differences

in brain connectivity between the two groups. For example, we

see higher amplitude in voxels within sensori-motor-3 and visual-

2 networks in schizophrenia patients. We also see other networks

which show higher amplitude for the control group, for example

in default mode network-3. Two-sample t values computed by

applying 2 sample T-test highlight group differences across the

various networks. In order to have a deeper insight into spatial maps

in both groups, we carried out a statistical analysis on distribution

of peak voxel within region of interest (ROI). Hence, we located 2

peak voxels in positive and negative segments of difference map and

gathered values of those voxels in all subjects and drew a violin plot

to see how distribution of those coefficients vary regarding median,

min, max, and interquartile range (IQR) as shown in Figure 5.

Furthermore, we inspected spatial dynamics for both control and

schizophrenia groups. One summary measure for evaluating spatial

dynamics is group level spatial deviation over time. Precisely, it can

be defined as summation of absolute differences between consecutive

timepoints, averaged over subjects and shows voxel-level activity

patterns over time. Results show interesting information and patterns

that is not captured by the overall mean activity (not visible in

averaged maps) as is shown in Figure 6 for a subset of brain networks.

Interestingly, our observation illustrates functional connectivity near

the boundaries of the active region in the cerebellar-2 network which

is not visible in averaged maps or sensori-motor3 network in which

we can see a transient linking to the cerebellum.
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FIGURE 3

Generated maps for a sensori-motor (SM3) network for a random subset of subjects including control (2 left) and schizophrenia (2 right) that vary over

subjects.

FIGURE 4

A subset of group level spatial maps averaged over time and subject for each control and schizophrenia patient along with subtracted maps and 2 sample

T-tests to illustrate group level dissimilarities in sensori-motor (SM3), cerebellar (CB2), visual (VI2), cognitive control (CC1), default mode network (DMN3),

auditory (AU2), and subcortical (SC5) networks. Furthermore, all brain maps are masked to focus on region of interest (ROI).

FIGURE 5

Violin plot shows distribution of peak voxels in positive and negative segments for all subjects in default mode network (DMN3), cerebellar (CB2),

cognitive control (CC1) networks.
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FIGURE 6

Group level spatial dynamics which change over time, averaged over subjects for the control schizophrenia in sensori-motor (SM3), cerebellar (CB2),

visual (VI2), cognitive control (CC1), default mode network (DMN3), auditory (AU2), and subcortical (SC5) networks. All brain maps are thresholded to

highlight functional changes which are not visible in the averaged maps.

3.2. Group di�erences in FNC

We also summarized the functional behavior of the 4D brain

networks for both groups of healthy-control and schizophrenia via

static functional network connectivity (static-FNC) which is Pearson

correlation between all voxels in all timepoints for all 53 networks.

We also show 2-sample t-test on the FNCs (thresholded at p<0.05

corrected for multiple comparisons via the false discovery rate) to

highlight group level differences as is shown in Figure 7.

In addition to static-FNC, we characterized the group level

temporal coupling and dynamics by comparing the occupancy ratio

in dynamic functional network connectivity between schizophrenia

and healthy-control groups. To do this, we generated dynamic-FNCs

by using windows size of 30 and overlapping ratio of 10 to generate

various number of windows for each of subjects. Next, we applied

k-means algorithm to cluster all generated windows into a set of

separate clusters such that distance of each window within a cluster

to the cluster centroid is minimized and the optimal number of

clusters was estimated by elbow criterion. This procedure resulted in

recognizing 4 initial states which are verified by centroids and used

to predict label of all dynamic FNC windows for each of subjects.

Finally, we computed the OR by counting frequency of states for each

of subjects as is shown in Figure 8 with all initial states.

Our exploration of temporal brain dynamics illustrates high

correlation between networks belonging to same domain while

showing anti-correlation/weak correlation to others for both groups.

We also see differences in the OR and behaviors of the dFNC maps.

For example, we see different patterns in the centroids (4 heat maps)

computed by k-means algorithm and control subjects spend more

time in state-2 whereas schizophrenia patients spend more time in

the other states.

3.3. Time complexity

In the proposed approach, we studied characterization of

5D spatiotemporal brain dynamism in schizophrenia by utilizing

representations of input fMRI data, generated by a framework with

53 models. In neuroimaging studies, the time and computational

complexity of brain parcellation methods are often crucial especially

when working with multiple models. Therefore, we evaluated time

complexity of the whole framework for generating 5D maps for each

of the subjects along with comparison of each model runtime. In our

experiment, we ran the framework on 4 Nvidia Tesla V100 GPUs

with 32 GB of dedicated memory, but we just utilized and reported

Frontiers inNeuroimaging 07 frontiersin.org

https://doi.org/10.3389/fnimg.2023.1097523
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Kazemivash et al. 10.3389/fnimg.2023.1097523

FIGURE 7

Each of FNCs illustrates correlation between all 53 components grouped into 7 sub-domains including default mode network (DMN), visual (VI), auditory

(AU), cognitive control (CC), subcortical (SC), sensori-motor (SM), and cerebellar (CB) for controls (top left), schizophrenia patients (top right), and

thresholded 2 sample T-test for HC-SZ (bottom).

one of GPUs for complexity analysis to have fair comparison and

track runtime of the whole framework for each of subjects and also

7 models each of which belonging to a domain that are shown in

Table 3. Clearly, runtime of the whole framework is a bit higher than

summation of each model runtime which is overhead of loading and

switching between 53 pretrained models.

3.4. Ablation study of models

In this section, an ablation analysis of model structure was

conducted to better understand how different configurations affect

model performance. Despite the hyperparameter optimization step

which was applied during the training phase, we changed the model

architecture using 4 different scenarios by substituting instance norm

for batch norm and omitting or adding a random convolution layer

(Subsequently deconvolution layer). Moreover, we used same test set

and preprocessing steps for all configuration and mean squared error

as original loss function in training procedure is reported for sensori-

motor (SM3) model in Table 4 and highlights better performance of

the original configuration in comparison with other scenarios.

4. Discussion

In this study, we conducted a group level analysis for

characterizing 5D spatiotemporal networks in schizophrenia.

We utilized the BPARC framework including 53 residual

models to generate 4D score maps (probabilistic maps)

for all subjects each of which is a representation of the

relevant brain network. Our analysis demonstrates significant

differences between control vs. schizophrenia network

representations in terms of space, time, and spatiotemporal

brain dynamics.

4.1. Space, connectivity, and Spatiotemporal
dynamism in schizophrenia

The proposed study, sought to extend findings supporting the

validation of promising 4D representations generated by brain

parcellation framework. We addressed the aforementioned goal by

inspecting generated representation for schizophrenic patients in
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FIGURE 8

Each of states (Heatmaps) shows centroids, computed by k-means algorithm applied on all dFNC windows and the bar chart highlights temporal

variation using occupancy ratio in health control vs. schizophrenia subjects in 4 di�erent states.

TABLE 3 Time complexity of the framework.

Framework SM3 CB2 VI2 CC1 DMN3 AU2 SC5

Mean ± sd Mean ± sd Mean ± sd Mean ± sd Mean ± sd Mean ± sd Mean ± sd Mean ± sd

Runtime (s) 1283.66±4.83 14.24±0.3 14.13±0.47 14.23±0.41 13.93±0.68 14.24±0.17 14.19±0.98 14.22±0.38

terms of spatial features, functional connectivity, and spatiotemporal

brain dynamism.

Our observation shows significant differences in averaged spatial

maps in which group level differences are lower in auditory and

subcortical networks while sensori-motor, cerebellum, and default

mode domains show the most differences with overall higher values

in the patients. Moreover, it is also clear in Figure 5 that we have

higher median for peak voxels in positive segments the control group

vs. schizophrenia. Conversely, we find a higher median in negative

segments for the schizophrenia group, suggesting overall higher

activity in the controls. The PDF (probability density function) of the

coefficients for both groups shows positive kurtosis in the negative

segment of the controls for the cognitive control-1 network. Our

results are in line with previous studies in schizophrenia reporting

higher amplitude for default mode network in controls (Mingoia

et al., 2012) or significant voxel-wise differences (higher t-value)

for schizophrenic patients in subcortical and default mode network

(Salman et al., 2019). Moreover, we observed different patterns

of spatial brain dynamism between controls vs. schizophrenia

subjects. Our result illustrates a lower level of voxel-wise variation

over time for thalamus, hypothalamus, cerebellum, precuneus,

anterior cingulate cortex, paracentral lobule, and frontal gyrus in

schizophrenic patients. In another word, we can detect a partially

semi-stationary status of spatial dynamics in cerebellum, default

mode, subcortical, and cognitive control domains for schizophrenic

patients in comparison with control subjects.

On the other side, plenty of research have reported an

aberrant pattern in functional connectivity being associated

with schizophrenia (Pettersson-Yeo et al., 2011; Damaraju

et al., 2014). According to our functional network connectivity

measurements, we can see hyperconnectivity of different brain

domains in schizophrenic patients which are consistent with

recent findings like visual domain and subcortical domain (Iraji

et al., 2022), default mode with sensori-motor and subcortical

domains (Camchong et al., 2011). Previous studies also reported

hypoconnectivity of thalamus with frontal lobe (Anticevic

et al., 2014; Damaraju et al., 2014). Thus, we detected thalamic

hypoconnectivity with inferior frontal gyrus, superior frontal

gyrus, and hippocampus which are similarly reported in previous

studies as well. Another group of studies recognized transient

reduction in temporal brain dynamism (Iraji et al., 2019a;

Mennigen and Rashid, 2019) which is compatible with our

results regarding dynamic FNC and dwell time of different states.

Our observation supports the hypothesis of altered connectivity

patterns in schizophrenia and possibility of these patterns with

psychological interventions.
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TABLE 4 Ablation analysis of SM3 model.

Batch norm layer Instance norm
layer

Omitting 1
convolution
layer +
deconvolution
layer

Adding 1
convolution
layer +
deconvolution
layer

Mean squared
error (MSE)

Original architecture ✓ ✗ ✗ ✗ 30.27

Scenario 1 ✗ ✓ ✗ ✗ 34.71

Scenario 2 ✗ ✓ ✓ ✗ 40.33

Scenario 3 ✗ ✓ ✗ ✓ 35.84

FIGURE 9

This figure highlights spatial dynamics over time in a sensori-motor network (SM3) by showing a transient state from sensori-motor to cerebellar network.

Part (A) shows the averaged map over time and subjects for the control group and section (B) shows spatial deviation over time which is averaged over

subjects for the same network/group.

4.2. Advantages of the 4D maps

The proposed approach generates full 4D representations from

input fMRI data and enables us to directly study spatiotemporal brain

dynamism. A good feature of the proposed method is generating

individual maps for each subject which makes it a better choice

rather than a group of schizophrenia studies in which atlas-based

parcellation plays a key role. Atlas-based analysis are widely used for

studying potential biomarkers in schizophrenia by using a fixed size

template for all subjects and then conducting statistical analysis on

different segments (He et al., 2021; Zhang et al., 2021; Takahashi et al.,

2022), but obviously they ignore natural differences between brains in

shape, size, and folding, which are considered in 4D approach.

A major advantage of the 4D network approach is we can capture

changes which are only visible in the voxel level spatial dynamics. One

dramatic example which highlights this feature is our observation

of functional activity in the sensori-motor3 network that shows

transient linking to the cerebellum as is shown in Figure 9.

This feature can open up a wide range of possibilities in

studying brain disease and makes the 4D approach different from

popular ICA-based analysis. In ICA-based methods, we can compute

individual spatial components and time-courses for each subject,

then applying statistical analysis on them (Sendi et al., 2021; Duda

and Iraji, 2022; Iraji et al., 2022), but variation of voxels in shape, size,

and translation over time—spatial dynamics is a missing piece of the

puzzle. Moreover, the proposed 4D approach has less computational
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complexity in inference phase comparing with ICA-based studies

which can also consider a minor advantage as well.

4.3. Limitations

We can numerate several limitations and assumptions in the

proposed schizophrenia study which might be considered in future

research. However, we are able to relatively replicate plausible

representation (score map) patterns for all subjects, it is not still

clear whether observed patterns are generated by neuronal and

cognitive sources originally or just that of artifacts which is a common

challenge in recent research (Damaraju et al., 2014; Sendi et al., 2021).

It is not also feasible to evaluate impact of short and long-term

pharmacologic treatment on changing neuronal activity patterns

which are represented by the models for schizophrenia patients

(Joo et al., 2020; Penades et al., 2020). Moreover, schizophrenia is

a complex brain disease where different internal or environmental

factors interact with each other to affect brain and eventually appears

into clinical symptoms which not investigated in our study including

gender, age, genetics, IQ, etc., (Henry et al., 2013; Chen et al., 2021).

5. Conclusion

In this work, we have studied group level differences in

spatiotemporal brain dynamics between healthy-control and

schizophrenia subjects by incorporating BPARC framework

including 53 different pre-trained models. Our testing and

evaluations show group level differences across multiple networks

and spatiotemporal features which need further study as a potential

brain-based biomarker for schizophrenia. In future, we will utilize

generated representations for classifying control and schizophrenia

subjects and studying impact and contribution of different brain

networks in schizophrenia. Also, we will incorporate other factors

like gender, age, and ethnicity in our analysis including during

the model training process, to more fully address potentially

confounding factors.
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