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The monitoring and assessment of data quality is an essential step in the

acquisition and analysis of functional MRI (fMRI) data. Ideally data quality

monitoring is performed while the data are being acquired and the subject is

still in the MRI scanner so that any errors can be caught early and addressed. It

is also important to perform data quality assessments at multiple points in the

processing pipeline. This is particularly true when analyzing datasets with large

numbers of subjects, coming frommultiple investigators and/or institutions. These

quality control procedures should monitor not only the quality of the original and

processed data, but also the accuracy and consistency of acquisition parameters.

Between-site di�erences in acquisition parameters can guide the choice of certain

processing steps (e.g., resampling from oblique orientations, spatial smoothing).

Various quality control metrics can determine what subjects to exclude from

the group analyses, and can also guide additional processing steps that may

be necessary. This paper describes a combination of qualitative and quantitative

assessments to determine the quality of fMRI data. Processing is performed

using the AFNI data analysis package. Qualitative assessments include visual

inspection of the structural T1-weighted and fMRI echo-planar images, functional

connectivity maps, functional connectivity strength, and temporal signal-to-noise

maps concatenated from all subjects into a movie format. Quantitative metrics

include the acquisition parameters, statistics about the level of subject motion,

temporal signal-to-noise ratio, smoothness of the data, and the average functional

connectivity strength. These measures are evaluated at di�erent steps in the

processing pipeline to catch gross abnormalities in the data, and to determine

deviations in acquisition parameters, the alignment to template space, the level of

head motion, and other sources of noise. We also evaluate the e�ect of di�erent

quantitative QC cuto�s, specifically the motion censoring threshold, and the

impact of bandpass filtering. These qualitative and quantitative metrics can then

provide information about what subjects to exclude and what subjects to examine

more closely in the analysis of large datasets.
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Introduction

Functional MRI (fMRI) signal changes are relatively small and sensitive to various

sources of noise, such a scanner artifacts, head motion, and other physiological fluctuations.

Generating functional activation or connectivity maps from the acquired data therefore

typically consists of a number of processing steps aimed at reducing this noise and aligning

the brain images into a common space for group-level analyses. The programs used to
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perform this processing can vary between research groups, and

each step often has multiple options that can be chosen by the

researcher. An integral part of this processing pipeline is quality

control (QC) to determine what processing steps or options are

needed, to determine the source of any problems in the pipeline, to

determine whether a subject should be excluded from group-level

analyses, and ultimately to ensure the accuracy and validity of the

final results.

Quality control should ideally be performed first in real-time,

while the subject is being scanned and still in the MRI scanner.

The advantage to this is that corrupted data can be immediately

identified and then re-acquired or otherwise addressed. It is also

critical to performQC at multiple stages during the pre-processing.

This QC can be both qualitative and quantitative. Qualitative

measures, such as viewing the data at different stages during the

processing, is extremely useful because of the myriad ways that the

data can be corrupted or that the processing can go awry. A trained

researcher can then determine what additional processing steps

may be needed or what options or parameters should be adjusted.

Quantitative measures of QC, such as the signal-to-noise ratio or

the amount of head motion, are also important, particularly for

large datasets where qualitative QC can be time consuming. These

quantitative measures also allow for more reproducible analyses

and inform the level of confidence in the final imaging results.

The most common problems affecting the quality of resting-

state functional MRI data include imaging artifacts, subject

head motion, and errors in aligning the data to a common

template space. Imaging artifacts can include B0-field distortions

or malfunctions in the RF coil leading to spikes or variations of

signal intensity near malfunctioning coil elements. Head motion is

common in fMRI and has long been recognized as a problem that

needs to be minimized and reduced (Friston et al., 1996). Resting-

state functional connectivity studies are particularly sensitive to the

effects of motion since connectivity is measured by the temporal

similarity of fMRI time series between two or more regions using

some metric, such as the Pearson’s correlation coefficient (Biswal

et al., 1995). Two regions with correlated non-neuronal signal

variations (noise) would result in an erroneously inflated functional

connectivity, while two regions with uncorrelated noise would

result in reduced connectivity. Even small amounts of motion can

have significant impact on functional connectivity (Power et al.,

2012; Satterthwaite et al., 2012; Van Dijk et al., 2012). Alignment of

the functional data requires both the alignment of the T2∗-weighted

EPI to the T1-weighted structural image and the alignment of the

T1-weighted structural to the template. The alignment between the

EPI and T1 needs to take into account the differences in contrast

between a T1-weighted and a T2∗-weighted image. Alignment of

the T1 to template space can involve non-linear transformations

(e.g., image warping), and the accuracy of these depends of the

quality of the removal of non-brain tissue (“brain extraction” or

“skull-stripping”). Finally, problems can occur due to user error,

such as prescribing an imaging volume that misses part of the brain

or making an error in converting between file formats.

This paper provides several suggested QC procedures and

measures for the analysis of resting-state functional MRI. This

QC consists of both qualitative and quantitative measures, which

are described in detail in the Methods section, and are applied

to T1-weighted structural and resting-state functional MRI data

provided by the OpenQC project. Finally, a determination is

made whether to include or exclude each participant from further

analyses, or when the inclusion or exclusion is borderline or

depends on other factors.

Methods

MRI data

The MRI data consisted of T1-weighted structural MRI

scans and T2∗-weighted echo-planar imaging (EPI) resting-state

functional MRI scans from 139 subjects drawn from 7 different

sites, provided by the OpenQC project. These data were drawn

from various publicly available MRI data repositories—ABIDE,

ABIDE-II (Di Martino et al., 2014), Functional Connectome

Project (Biswal et al., 2010), and OpenNeuro (Markiewicz et al.,

2021). The EPI datasets all had a single echo time and did not

have simultaneous multi-slice acquisitions. B0-field inhomogeneity

measures (e.g., B0-field maps or EPIs with reversed phase

encoding) were not provided.

Processing pipeline

All data processing was performed using AFNI unless otherwise

indicated (Cox, 1996). Processing scripts are available on GitHub:

https://github.com/rbirn/OpenQC. The ICBM 152 non-linear atlas

version 2009 was used as the template “MNI” brain (Fonov

et al., 2011). The T1-weighted image volume was aligned to

the MNI template by removing non-brain tissue signals and

non-linearly warping the image to the template (using AFNI’s

@SSwarper). The T1-weighted image was segmented into gray

matter, white matter, and CSF using FSL’s fast (Zhang et al.,

2001). The functional MRI echo-planar imaging (EPI) data were

processed by first removing the first 4 volumes to assure that the

magnetization is at steady-state. The data were then corrected

for slice-timing differences (3dTshift), rotated and resampled to

remove any oblique orientation (3dWarp), and registered to the

first volume in each time series to reduce the effects of head

motion (3dvolreg). B1-field inhomogeneities (bias field) were

estimated using N4BiasFieldCorrection from ANTs (Tustison et al.,

2010). The data were then divided by this bias field to correct

for B1-field inhomogeneity. The echo-planar image was aligned

to the T1-weighted structural scan using a 12-parameter affine

transformation (align_epi_anat.py). The EPI-to-T1 and T1-to-

template transformations were then concatenated and used to non-

linearly warp the fMRI data to the MNI template. In order to

further reduce the effects of physiological noise and head motion,

several nuisance regressors were included in a general linear

model and projected out of the data (3dTproject). These included

the average signal over the whole brain, the average signal over

eroded white matter, average signal over CSF, the 6 realignment

parameters, and the temporal derivatives of each of these regressors.

This general linear model also included 2 polynomials (to account

for slow drifts) and a set of sines and cosines to band-pass filter the

data from 0.01 to 0.1Hz. Time points where the volume-to-volume

motion exceeded a predefined motion censoring threshold, as well
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as the preceding time points, were excluded (censored) from the

nuisance regression. Three different motion censoring thresholds

were evaluated: 0.2, 0.4, 1.0mm. Prior studies have shown that

one source of variability in multi-site studies are differences

in the spatial smoothness of the data (Friedman et al., 2008).

Since the data in this study were acquired at different sites and

different spatial resolutions, rather than applying a fixed amount

of spatial smoothing, the data were then iteratively smoothed to

a achieve a final full-width at half maximum (FWHM) of 8mm

(using 3dBlurToFWHM). For comparison, the data processing was

repeated without regressing out the average whole-brain signal

(global signal regression, GSR).

Functional connectivity maps were generated for 4 seed regions

of interest—4mm radius spheres located in the posterior cingulate

(MNI coordinate: 0, 50, 31), the left primary motor cortex (MNI

coordinate: 36, 20, 60), left auditory cortex (MNI coordinate: 43,

25, 14), and the left primary visual cortex (MNI coordinate: 30, 87,

9). These seed regions identify the default mode network, motor

network, auditory network, and visual network, respectively. The

preprocessed signal was averaged over each seed region of interest,

and the Pearson’s correlation coefficient between this seed time

course and all other voxel time courses was computed. In addition

to these voxel-wise functional connectivity maps, connections

betweenmultiple regions across the whole brain was investigated by

computing a functional connectivity matrix. The brain was divided

into 333 regions of interest according to a parcellation by Gordon

et al. (2016). The preprocessed signal was averaged over each region

of interest, and all pairwise correlations were computed.

For comparison of QC metrics, data were also processed using

the more automated pipeline provided with AFNI, afni_proc.py.

This pipeline used as input the original resting-state EPI and

the T1 processed (brain extracted and aligned to template space)

by @SSwarper, and included the following processing steps:

removal of first 4 time points; alignment of EPI to T1; volume

registration (motion correction); non-linear warping to template

space; nuisance regression using average signal over eroded white

matter and CSF, motion, and their derivatives; band-pass filtering

(0.01–0.1Hz); and blurring to a FWHM of 8mm. This pipeline by

default derives a set of quality control metrics from each subject

and assembles them into an html-formatted document that can be

viewed in a web browser.

Quality control procedures

First, several imaging parameters were extracted from the data

and compared. This included the spatial resolution (voxel size),

matrix size, repetition time (TR), obliquity, and number of time

points (image volumes) acquired. These values informed some

of the processing choices and QC criteria. Specifically, the fact

that data were acquired at different spatial resolutions motivated

iterative blurring of the data to a final resolution rather than

applying a fixed spatial blur across subjects. The observation that

some data were acquired with oblique orientations necessitated

that this be accounted for when registering the EPI to the T1-

weighted structural scan and the T1-weighted structural to the

template. The total number of time points acquired needs to

be considered when applying certain QC criteria (e.g., the total

number of “good” time points). The imaging parameters were also

examined for any deviations from other scans acquired at that

site. The processing pipeline described above was then run on

each dataset. Log files were generated that contained any status or

error messages (typically output to the screen). These log files were

examined when the processing pipeline failed to produce the final

preprocessed data output.

The image quality and alignment of each subject’s T1-weighted

structural scan to template space was examined by concatenating

the T1-weighted images across subjects. Similarly, a single echo-

planar image volume, after warping to template space but before

nuisance regression or spatial smoothing, was extracted from each

subject and concatenated across subjects. These series of image

volumes were then be played as a movie within the AFNI GUI to

identify any misalignments or other imaging artifacts. Functional

connectivity maps for each of the seed regions were similarly

concatenated and played as a movie, with the subject’s T1-weighted

image as the underlay and the functional connectivity as an overlay.

QC metrics

A number of quantitative metrics were computed, using the

first (non afni_proc.py) pipeline described above, to assess data

quality. These are briefly described below.

Left-right flip
Potential errors in the left-right orientation (i.e., accidental flips

of the data in the L-R direction) were investigated by flipping the

structural T1 dataset in the left-right direction and repeating the

alignment between the EPI and T1. This is performed using the -

check_flip option in AFNI’s align_epi_anat.py. If the cost function

for the alignment is lower for the flipped dataset, either the EPI or

T1 is likely flipped in the L-R direction.

FWHM
The smoothness of the acquired EPI data were determined by

computing the full-width at half-maximum (FWHM) in each of

the 3 cardinal directions (using 3dFWHMx). This measure can be

used to determine whether variations in the image matrix are due

to differences in the acquisition (e.g., acquiring data at a higher

resolution) or to differences in the processing (e.g., resampling the

data to a higher resolution). This information can then guide other

processing choices, such as the amount of smoothing to apply, or

whether to smooth to a predetermined amount of smoothness.

Temporal signal-to-noise ratio (TSNR)
The temporal signal to noise ratio was computed by dividing

the mean signal over time in each voxel of the original acquired

image by its standard deviation over time. This measure can be

good at identifying data severely corrupted by head motion, RF coil

problems (e.g., spiking), or other imaging artifacts. This measure

does vary with the imaging parameters (resolution, number of

averages, parallel imaging acceleration, field strength, echo time,
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etc.), so it is difficult to set a strict cutoff. However, the average

TSNR over the whole brain can be compared to other subjects

within the group acquired with similar imaging parameters at

that site.

Mean Enorm
Volume-to-volume head motion was assessed by first

computing the temporal difference of each image realignment

parameter (3 translations, 3 rotations), and then computing the

Euclidean norm (square-root of the sum of squares, Enorm)

of these temporal differences at each time point, with shifts in

millimeters and rotations in degrees. Note that a 1 degree rotations

corresponds to a displacement of 1mm at a radius of 57mm,

roughly the distance from the center of mass to the edge of the

brain. The mean value of the Enorm across time provides a

measure of the mean (average) volume-to-volume motion for that

imaging run.

Max Enorm
The maximum of the Enorm time course (computed as

described above) across time provides a measure of the maximum

motion from one time point to the next. The rationale for excluding

subjects based on the maximum motion is that large motion is

more likely to be associated with changes in B0-field distortions,

moving into different parts of the RF coil sensitivity, and spin-

history effects. However, if large motion is infrequent, there are

approaches to reduce the resultant signal changes (Birn et al., 2022).

Number of “good” time points
The number of time points remaining after censoring time

points exceeding a certain motion (Enorm) threshold. A related,

and from a quality control viewpoint equivalent, metric is the

degrees-of-freedom remaining after censoring, band-pass filtering,

and nuisance regression. Enough degrees-of-freedom should

remain to accurately estimate the functional connectivity. A degree-

of-freedom cutoff of 15 was used for this study. Studies have

also shown that the specificity (Van Dijk et al., 2010), test-retest

reliability (Birn et al., 2013) and the identification accuracy (Finn

et al., 2015) of functional connectivity increases with both greater

number of time points and duration of acquisition. A QC cutoff of

at least 5min of good data has been used by prior studies (Van Dijk

et al., 2010; Power et al., 2014, 2015). However, 3 of the sites in this

study acquired only 5min of data or less. Therefore, a QC cutoff of

4min was used for this study.

Dice_e2a
The Sorensen-Dice coefficient between the echo-planar fMRI

brain image and T1-weighted structural is computed as two times

the intersection between whole-brain masks of the echo-planar

image and T1-weighted image (after alignment, in template space)

divided by the sum of the areas of each of these masks. The goal of

this metric is to measure the accuracy of the EPI-to-T1 alignment.

This measure can be computed using the AFNI program 3ddot.

Dice_a2t
The Sorensen-Dice coefficient between the T1-weighted

structural and MNI template is computed similar as above, but

with whole-brain masks of the T1-weighted and MNI template

images. The goal of this metric is to measure the accuracy of the

T1-to-template alignment.

FCS
The functional connectivity strength (FCS) is the average

functional connectivity from each voxel to all other voxels in the

brain. Mathematically this is identical to computing the correlation

between each voxel time series and a scaled version of the global

signal. This scaled version of the global signal is computed by

dividing each voxel’s signal intensity time course by its standard

deviation over time, and then computing the average of these

scaled signals over the entire brain. This metric can be used to

identify abnormally high correlations that may result from some

RF coil problems, for example a loose connection in one of the coil

elements causing spikes in the signal. These signal spikes occur at

the same time across large portions of the image thus causing the

time courses to be highly correlated. The rationale for using this

measure in addition to TSNR is that a single spike may not affect

the TSNR very much, but can affect the correlation of that voxel

time course with all other voxel in that slice.

Similarity to mean FC
The similarity of the mean functional connectivity is

determined by computing the correlation between each subject’s

functional connectivity matrix and the group average functional

connectivity matrix (using AFNI’s 3ddot). This metric can

identify potential outliers in functional connectivity. For

comparison, the similarity was also using the Euclidean distance

between each subject’s functional connectivity matrix and the

group mean functional connectivity matrix. To distinguish

this metric from the similarity using Pearson’s correlation,

we call this the “Dissimilarity” since a greater Euclidean

distance is associated with a reduced similarity and thus

greater dissimilarity. This was computed using AFNI’s 3dcalc

and 3dROIstats.

Determination of QC criteria

A common QC criterion is to exclude time points whose

framewise displacement (volume-to-volume motion) exceeds

0.2mm (Power et al., 2014, 2015). We wanted to examine

whether this censoring threshold was appropriate for the current

study. Therefore, the processing pipeline was run for 3 different

motion censoring thresholds: 0.2, 0.4, and 1.0mm. In addition,

we compared the functional connectivity both with and without

bandpass filtering.

One measure that has been used to assess the effectiveness

of different processing choices is the correlation between the

functional connectivity and a quality control metric, such as the

mean Enorm—a measure referred to as QC-FC (Ciric et al.,

2018). This is essentially testing whether there is a difference
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FIGURE 1

(Top Row) T1-weighted image in native space for a subject with enlarged ventricles. (Bottom Row) T1-weighted image non-linearly aligned to

template space as underlay, with the gray/white matter boundaries from the template brain overlayed in red. Dice coe�cient between the subject’s

T1 and the template = 0.96.

in functional connectivity as a function of head motion, i.e.,

between high-motion and low-motion subjects. We therefore

computed the correlation between the functional connectivity and

the mean Enorm for each connection in the connectivity matrix.

We then computed a histogram of these correlation values. An

additional metric that has been used to evaluate the effectiveness

of different processing choices is the distance dependence of

motion artifacts (Power et al., 2012, 2014, 2015; Ciric et al., 2018).

This is computed as the correlation between the QC-FC metric

described above and the distance between each of the nodes in the

connectivity matrix.

We also looked at the similarity of each subject’s functional

connectivity matrix to the group average functional connectivity

matrix, as described above. We then examined the correlation

of this similarity with motion, specifically the mean Enorm. The

rationale for the motion censoring threshold that we chose is

provided in the results section (below).

Resources

The following software packages and versions were used in

the analysis:

AFNI Version AFNI_21.2.07 (precompiled binary

linux_openmp_64, Sep. 20, 2021).

FSL Version 6.0.4.

ANTs Version 0.0.0 (compiled May 26, 2020).

Results

The set of quality control (QC) summary criteria used for

excluding or identifying problematic subjects in this study are

shown in Table 1. The quality control procedures identified a

number of problems with the data, leading to the exclusion of

some of the subjects and modified processing for others. Very

similar results were obtained from the afni_proc.py and our custom

AFNI pipeline.

Examination of the imaging parameters showed that some of

the datasets were acquired (or reconstructed) at a different matrix

size compared to others from the same site. For example, sub-118

had a matrix size of 112 voxels while all other scans from that site

had a matrix size of 96 voxels. The json files associated with the

data all indicate that the data from this site was acquired with a

matrix size of 84× 81. For site 5, 15 subjects had a matrix size of 80
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FIGURE 2

Alignment between the EPI and T1-weighted structural image. (A) Histogram of the Dice coe�cients of the EPI and anatomical T1-weighted brain

masks (Dice_e2a). (B–D) Case examples of the alignment between the EPI (in grayscale) and T1 (in red outline). (B) Subject 617 shows a slight

misalignment between the EPI and T1 in the superior region of the brain (yellow arrow), and has a relatively low Dice coe�cient = 0.88 compared to

the rest of the group. (C) Subject 116 shows a slight misalignment, a stretching of the EPI in the left-right direction (yellow arrows), but has a Dice

coe�cient close to the mean of the group, Dice = 0.91. (D) Subject 613 shows a good alignment between the EPI and T1 in the cortex, but has a

signal dropout in the frontal lobe resulting in a relatively low Dice coe�cient = 0.87.
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voxels while 5 subjects had a matrix size of 128 voxels. The datasets

from this site with 128 voxels had significantly greater smoothness

(FWHM in the x- and y-directions) compared to the datasets with

80 voxels (p < 0.004), suggesting that the data was re-interpolated

after acquisition, resulting in increased blurring.

Visualization of the original EPI datasets indicated that two

datasets (sub-518, sub-519) were upside down, with the I-S axis

inverted. Alignment between the EPI and T1 indicated that two

subjects (sub-101, sub-115) had either the EPI or T1 flipped in the

L-R direction. Visualization of the T1-weighted structural images

indicated that one subject (sub-509) had much larger ventricles

than the rest of the sample (Figure 1).

Visualization of the T1-weighted images concatenated across

subjects and played as a movie indicated good alignment of each

T1 to the template. Alignment of the EPI to template space was

generally quite good, but had a greater variability across subjects

with some brain areas showing a slight misalignment to the

template brain in some subjects (Figure 2). Closer examination of

the processing in these subjects indicated that this misalignment

to template space was due to a poor alignment between the EPI

and T1-weighted image, even after automatic alignment. The Dice

coefficient between the EPI and T1 (Dice_e2a) was lower for some

of the misaligned participants compared to the rest of the group.

However, some participants had lower Dice coefficients due to B0-

field inhomogeneity induced signal dropout, and other subjects

had Dice coefficients close to the group mean despite showing

substantial misalignments (Figure 2).

As expected, temporal signal-to-noise ratio (TSNR) was

reduced in subjects with higher amounts of motion (Figure 3). The

converse was not necessarily true—some subjects with low motion

also had low TSNR, possibly due to other non-motion sources of

noise. No outliers or abnormalities were found in the temporal SNR

or functional connectivity strength to indicate any coil artifacts.

Similarly, the entire cortex was scanned in all subjects.

The most common problem across datasets was excessive head

motion. At an Enorm censoring threshold of 0.2mm, 15 subjects

did not have enough degrees of freedom left for the nuisance

regression and bandpass filtering. A total of 26 subjects had very

low degrees of freedom (<15), and 16 subjects had <4min of data

left after censoring. At a censoring threshold of 0.4mm, 2 subjects

did not have enough degrees of freedom after censoring, 4 subjects

had very low degrees of freedom, and 2 subjects had <4min of

data left after censoring. Two subjects had one or more movements

>3mm. A closer examination of the subject with the largest motion

of 6.5mm (sub-102) revealed that the motion occurred right at the

end of the imaging run (Figure 4). The effect of this motion can

therefore be eliminated by censoring the time points at the end of

the imaging run.

Rationale for QC criteria: Motion censoring
threshold

The correlation between functional connectivity and mean

Enorm (QC-FC) was highly similar for censoring thresholds of

0.2, 0.4, and 1.0mm (Figure 5). The mean correlation of FC with

motion was close to zero (0.00001 for a motion censoring threshold

FIGURE 3

Temporal signal-to-noise ratio (TSNR) vs. the mean

volume-to-volume motion as measured by the Euclidean norm

(Enorm) of the temporal di�erence of the 6 realignment parameters.

As motion increases, the TSNR decreases. Note that subjects with

higher motion have lower TSNR, but the converse is not necessarily

true—subjects with low motion can also have low TSNR, possibly

due to other non-motion sources of noise.

of 0.2mm, 0.001 for censoring threshold 0.4mm, and 0.004 for

a censoring threshold of 1.0mm). The histogram showed slightly

wider tails, indicating some connections with greater correlation

with motion, at a censoring threshold of 1.0mm compared to 0.4

or 0.2mm. The QC-FC was slightly increased when no bandpass

filtering was performed. There was very little distance dependence

of the QC-FC. At a motion censoring threshold of 0.2mm,

the correlation between QC-FC and distance was −0.004 (95%

confidence interval: −0.012 to 0.004). At a motion censoring

threshold of 0.4mm the distance dependence correlation was

−0.0009 (−0.009, 0.007), and at a motion censoring threshold of

1.0mm the correlation was 0.005 (−0.003, 0.013).

There was very little difference in the group functional

connectivity matrices using censoring thresholds of 0.2, 0.4, or

1.0mm (Figure 6). The similarity of each subject’s functional

connectivity to group mean functional connectivity was nearly the

same whether the group functional connectivity matrix was formed

using 0.2 vs. 0.4mm censoring thresholds (R2 = 0.999) (Figure 7).

Therefore, it does not matter which motion threshold was used

as the group functional connectivity for comparison in computing

the similarity.

With a censoring threshold of 0.2mm, the similarity was

strongly dependent on the mean motion with lower similarity for

subjects with higher motion (R2 = 0.27) (Figure 8A). However, at

a motion censoring threshold of 0.4mm, the similarity was only

weakly related to subject motion (R2 = 0.04) (Figure 8C). The

similarity of functional connectivity to the group mean was greater

for a censoring threshold of 0.4mm compared to 0.2mm and this

difference was greater in high-motion subjects (Figure 9A). That

is, high-motion subjects had a higher similarity of their functional

connectivity matrices to the group average using a 0.4mm

threshold compared to a more stringent 0.2mm. This suggests
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FIGURE 4

Estimated head motion realignment parameters for subject sub-102, which had the largest maximum volume-to-volume motion of 6.5mm.

However, this motion occurred at the end of the run, so the e�ects of this motion can be eliminated by censoring the last few time points.

FIGURE 5

Histograms of the correlation between a quality control (QC) criterion—the mean Enorm—and the functional connectivity (FC): QC-FC, for 3

di�erent motion censoring thresholds (02 = 0.2mm, 04 = 0.4mm, 10 = 1.0mm) with (f) and without (nf) temporal bandpass filtering (0.01–0.1Hz).

that the decreased similarity in high-motion subjects at a 0.2mm

censoring threshold is due to the reduced degrees of freedom

from aggressive time point censoring rather than corruption

of the functional connectivity due to motion. Similarity was

further increased, particularly in high-motion subjects, by using

a motion-censoring threshold of 1.0mm (Figure 9B). However,
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FIGURE 6

Group average functional connectivity matrices for data with di�erent motion-censoring thresholds: (A) volume-to-volume motion (Euclidean

norm, Enorm) < 0.2mm, (B) Enorm < 0.4mm, (C) Enorm < 1.0mm. (D–F) Connectivity values (Fisher-Z transformed correlation coe�cients) for (D)

Enorm < 0.2mm vs. Enorm < 0.4mm, (E) Enorm < 0.4mm vs. Enorm < 1.0mm, (F) Enorm < 0.2mm vs. Enorm < 1.0mm. Group average matrices

are highly similar for these 3 di�erent levels of motion censoring.

FIGURE 7

Similarity of each subject’s functional connectivity matrix (using a

censoring threshold of 0.4mm) to the group average functional

connectivity matrix that used either 0.2mm (y-axis) or 0.4mm

(x-axis) censoring threshold. The similarity is nearly identical (R2
=

0.9988) regardless of which threshold was used in the formation of

the group maps.

this threshold is much higher than is currently used in the field,

and combined with the slightly higher correlation with motion

(QC-FC) at a 1.0mm censoring threshold, we decided to use a

0.4mm censoring threshold as the cutoff.

Figure 10 shows the similarity vs. degrees of freedom for a

censoring threshold of 0.2 and 0.4mm. Similarity is reduced for

lower degrees of freedom. Moreover, there is no clear cutoff for

the similarity at low degrees of freedom. The similarity appears

to be roughly linearly related to the degrees of freedom for low

degrees of freedom (<50), plateauing at higher degrees of freedom.

We decided to use a cutoff of 15 degrees of freedom to reduce the

influence of severe motion while still retaining enough subjects in

the group analysis.

Similarity of functional connectivity to the groupmean was also

increased by eliminating the band-pass filtering step (see Figures 8,

9). One example of this is shown in Figure 11 for a subject (sub-507)

that had only 7 degrees of freedom left after bandpass filtering and

motion censoring with a threshold of 0.4mm. This connectivity

matrix appears quite noisy (Figure 11A) At a motion censoring

threshold of 0.2mm and no bandpass filtering, the functional

connectivity matrix is more similar to the group average functional

connectivity (Figure 11B). The connectivity matrix for this subject

at a motion censoring threshold of 0.4mm is very similar to

a threshold of 0.2mm when no bandpass filtering is applied
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FIGURE 8

The similarity between each subject’s functional connectivity matrix and the group-average functional connectivity matrix for di�erent motion

censoring thresholds (0.2, 0.4, 1.0mm) with and without bandpass filtering (BP). BP, bandpass filtering (0.01–0.1Hz), no BP, no bandpass filtering. (A)

At a motion censoring threshold of 0.2mm with bandpass filtering, subjects with higher motion (mean Enorm) show reduced similarity (R2
= 0.27).

(B) Without bandpass filtering, similarity is increased, but subjects with higher motion still show lower similarity (R2
= 0.19). (C) At a motion censoring

threshold of 0.4mm with bandpass filtering, similarity to the group mean connectivity is only weakly correlated with motion (R2
= 0.05). (D) Without

bandpass filtering, there is again only a weak correlation with motion. (E) At a motion censoring threshold of 1.0mm and bandpass filtering, there is

very little correlation between the similarity and motion (R2
= 0.00002). (F) Without bandpass filtering at a motion threshold of 1.0mm, there is very

little correlation with motion across subjects (R2
= 0.0014).
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FIGURE 9

Di�erence in the similarity of each subject’s functional connectivity matrix to the group mean for di�erent levels of motion censoring, with (f) and

without (nf) bandpass filtering. (A) With bandpass filtering, similarity is increased for connectivity matrices computed at a motion threshold of 0.4 vs.

0.2mm, particularly in subjects with high motion. (B) Similarly with bandpass filtering, similarity is increased for a motion censoring threshold of

1.0mm compared to 0.4mm, particularly for high-motion subjects. (C) At a motion-censoring threshold of 0.2mm, not performing bandpass

filtering increases the similarity compared to performing bandpass filtering, particularly in high-motion subjects. (D) At a motion-censoring threshold

of 0.4mm, similarity to the group-mean is increased for most subjects without vs. with bandpass filtering, but less dependent on the mean level of

motion. (E) Without bandpass filtering, a motion censoring threshold of 0.4mm has greater similarity than a threshold of 0.2mm, particularly for

high-motion subjects. (F) Without bandpass filtering, using a motion censoring threshold of 1.0mm compared to 0.4mm can result in either

increases or decreases in similarity to the group mean, with little correlation to mean motion.

(Figure 11C). Increase in similarity when eliminating the bandpass

filtering step was observed even in low-motion subjects (Figure 12).

Subject sub-501 had a mean Enorm of 0.03mmwith no time points

censored at a threshold of 0.4mm. Thirty-two degrees of freedom

were left with bandpass filtering, and 119 degrees of freedom were

left without bandpass filtering. The pattern of within-network and

between-network connectivity was noisier and less like the group

average maps when bandpass filtering was applied. Figures 12C, D
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FIGURE 10

Similarity of each subject’s functional connectivity matrix to the group mean for a motion censoring threshold of (Top) 0.2mm and (Bottom) 0.4mm,

vs. the degrees of freedom left after motion censoring, bandpass filtering, and nuisance regression. The similarity appears to be roughly linearly

related to the degrees of freedom for low degrees of freedom (<50), plateauing at higher degrees of freedom.

shows the connectivity matrix from a low-motion subject (sub-

606) that had longer time series (720 time points), with no time

points censored at a threshold of 0.4mm, 306 degrees of freedom

left after bandpass filtering and 699 degrees of freedom without

bandpass filtering. Functional connectivity matrices are highly

similar with and without bandpass filtering since both have high

degrees of freedom.

The similarity was further improved by relaxing the motion

censoring from 0.2 to 0.4mm (Figure 9E). That is, the increase

in similarity for a motion censoring threshold of 0.4 vs. 0.2mm,

both without bandpass filtering, was greater in subjects with higher

mean_enorm, again likely due to the greater degrees of freedom

with a more relaxed censoring threshold. Without bandpass

filtering, the similarity was slightly correlated with mean_enorm

at a censoring threshold of 0.2mm (R2 = 0.19, Figure 8B),

but only weakly correlated with subject motion at a censoring

threshold of 0.4mm (R2 = 0.05, Figure 8D). The improvements

in similarity with vs. without bandpass filtering was correlated

with the mean_enorm at a censoring threshold of 0.2mm (R2 =

0.30, Figure 9C) but not 0.4mm (R2 = 0.03, Figure 9D). These

results all suggest that the similarity is improved by not applying

bandpass filtering and by using a less stringent censoring threshold

(e.g., 0.4mm) due to the increased degrees of freedom. Without

bandpass filtering, using a motion censoring threshold of 1.0mm

compared to 0.4mm resulted in either increases or decreases in

similarity to the group mean for different subjects, with little

correlation to mean motion (Figure 9F). Similar results were

obtained when the similarity was computed using the Euclidean

distance between each subject’s functional connectivity matrix

and the group mean rather than the Pearson’s correlation (see

Supplementary material).

Similar results were obtained with and without global signal

regression (GSR). The similarity to the group mean functional

connectivity was slightly higher with GSR, with a mean similarity

(Pearson’s correlation) of 0.54 with GSR compared to 0.53 without

GSR (p < 1e-12) (see Supplementary material).

Discussion

Several datasets were identified by the quality control

procedures as having deviations from expected parameters or other

issues. Whether a subject should be excluded or not from further

group analyses depends on the particular issue, whether this issue

can be addressed, and the goals of the study. For example, excluding

subjects with abnormal brain anatomy (e.g., enlarged ventricles)
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FIGURE 11

Functional connectivity matrices from sub-507. (A) With a motion censoring threshold of 0.4mm, only 7 degrees of freedom are left, and matrix is

quite noisy, quite di�erent than the group mean functional connectivity matrix. (B) At a motion censoring threshold of 0.2mm and no bandpass

filtering, the functional connectivity matrix is more similar to the group average functional connectivity. (C) Connectivity matrix at a motion

censoring threshold of 0.4mm is very similar to a threshold of 0.2mm when no bandpass filtering is applied.

TABLE 1 QC criteria summary table.

Resting state fMRI QC criteria: Exclude (or re-examine)
a subject if:

(A) Fewer than 15 degrees-of-freedom are left after motion censoring, nuisance

regression, and band-pass filtering

(B) Fewer than 4min (240 s) of data remain after motion censoring

(C) Maximum Enorm (volume-to-volume motion) > 3mm

(D) The data are left-right flipped and the correct orientation cannot

be determined

(E) Temporal signal-to-noise and/or FCS indicate the presence of an RF coil

artifact (e.g., spiking)

(F) Part of the cortex is out of the field of view (qualitative)

(G) There are large abnormalities in the anatomy (qualitative)

(H) There are significant mis-alignments in the data to template space that

cannot be fixed with different processing choices (qualitative)

may be advisable in studies attempting to characterize typical

functional connectivity, but not in studies where such deviations

are more common or of interest.

Data that had a different spatial resolution from others at that

site can still be processed since all of the data are aligned and re-

interpolated to a common resolution in template space, and the

current study is already combining data from multiple sites which

had acquired data at different spatial resolution. The data from site

500 with the higher spatial resolution (matrix size of 128 voxels vs.

80 voxels) did have greater smoothness, but the impact of this is

reduced by smoothing all of the data to a similar final smoothness.

The echo-planar images from 2 subjects were flipped in the

I-S direction. This may have resulted from either an error in the

conversion of the DICOM files to NIFTI format, or in erroneously

setting the subject position in the scanner as supine-feet-first rather

than supine-head-first. This flip can in principle be easily corrected,

but the process is a bit more complex since the data were acquired

with an oblique orientation. In addition, one needs to check

whether the left-right orientation is also flipped. This could be done

by comparing the alignment of the original and flipped versions of

the EPI to the T1. Flips in the left-right orientation were identified

in 2 additional subjects. It is unclear whether the error is in the

EPI or the T1, but may be determined by examining the original

DICOM files. These four subjects were designated as “uncertain”—

if the correct left-right orientation can be determined, then they can

be included; if the correct orientation cannot be determined then

they should be excluded.

A motion censoring threshold of 0.2mm is commonly used in

the field. However, the findings here suggest that this threshold

is too stringent for the current study, likely due to the reduced

degrees of freedom with aggressive censoring. The similarity

of each subject’s functional connectivity to the group mean is

increased using a threshold of 0.4mm and this similarity is no

longer correlated with the mean motion, which was the case

for the more stringent thresholding of 0.2mm. Relaxing the

threshold to 0.4mm did not increase the correlation of the

functional connectivity with motion (QC-FC). Similarly, there was

no observable distance dependence of QC-FC at all three motion

censoring thresholds evaluated.

Bandpass filtering between 0.01 and 0.1Hz (or in some

studies 0.008–0.08Hz) is commonly performed in the field. The

rationale for this processing step is that the fluctuations of

interest typically occur at very low temporal frequencies (<0.1Hz)

(Biswal et al., 1995; Cordes et al., 2001), while non-neuronal

fluctuations such as cardiac and respiratory fluctuations occur at

much higher frequencies. However, with the typical acquisition

rates (repetition times, TR), this physiological noise is aliased to

lower frequencies and is not necessarily reduced by the bandpass

filtering. Furthermore, bandpass filtering significantly reduces the

degrees of freedom, which can affect the quality of the functional

connectivity estimates (e.g., see Figure 11). The similarity of the

functional connectivity to the group mean increases for nearly

all subjects when no bandpass filtering is performed (this is
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FIGURE 12

Functional connectivity matrices for 2 low-motion subjects with and without bandpass filtering (0.01–0.1Hz). Degrees of freedom (dof) after motion

censoring, nuisance regression, and with/without bandpass filtering are shown in the title. (A, B) Sub-501, mean Enorm = 0.03, no time points

censored and 140 time points left at a censoring threshold of 0.4mm. (A) With bandpass filtering, 32 degrees of freedom are left. (B) Without

bandpass filtering, 119 degrees of freedom are left. Note that the pattern of within-network and between-network connectivity is noisier and less like

the group average maps when bandpass filtering is applied. (C, D) Sub-606, mean Enorm = 0.03mm, no time points censored and 720 time points

left at a censoring threshold of 0.4mm. (C) With bandpass filtering, 306 degrees of freedom are left. (D) Without bandpass filtering, 699 degrees of

freedom are left. Functional connectivity matrices are highly similar with and without bandpass filtering since both have high degrees of freedom.

the case regardless of which group connectivity matrix is used

for comparison—with vs. without bandpass filtering). When

stringent (0.2mm) motion censoring is applied, the similarity

to the group mean is much greater without bandpass filtering

compared to with bandpass filtering, particularly in higher motion

subjects. This is likely due to the very low degrees of freedom

in high motion subjects with both a stringent motion censoring

threshold and bandpass filtering. The degrees of freedom are

higher without bandpass filtering, which is likely the reason for

an increase in similarity (compared to with bandpass filtering)

in the higher motion subjects. At a more relaxed (0.4mm)

motion censoring threshold, the similarity does not depend on the

mean motion, but is increased (by varying amounts) for nearly

all subjects.

The similarity of a subject’s functional connectivity to

the group mean is a useful way to identify outliers and to

determine appropriate processing steps and quality control criteria

(e.g., bandpass filtering, motion censoring threshold). A useful

qualitative QC step is to visualize the functional connectivity

maps from key seed regions (e.g., seed regions from the posterior

cingulate to identify the default mode network) and see if they

match the expected patterns. While not performed in the current

study, quantitative metrics could be computed to measure how

well the patterns of these seed-based connectivity maps match

the expected pattern. An extension of this approach, in order to

measure connectivity for multiple regions throughout the brain

is to compute a connectivity matrix from a systematic brain-

wide parcellation of the brain and examine the similarity of

each subject’s connectivity matrix to the group mean connectivity

matrix. However, it is important to keep in mind that the

goal in many functional connectivity studies is to determine the

association of individual differences in functional connectivity with
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some other variable. That is, we want individual differences in

functional connectivity, but not those that are due to differences

in subject motion. For that reason, we used the correlation of

the similarity with subject motion as a guide to determine the

appropriate QC criteria (motion censoring threshold), rather than

using the similarity as a QC cutoff. In addition, this measure of

similarity may not capture all artifacts, such as systematic errors

across the entire sample.

The benefits from a motion threshold of 0.4mm compared

to 0.2mm found here does not necessarily generalize to all other

studies, in particular those acquiring much larger number of time

points. The low similarity observed in many subjects in this study

is due to the very low degrees of freedom remaining when more

aggressive censoring is applied, particularly in combination with

bandpass filtering. In studies like HCP and ABCD, where the TR is

lower andmanymore time points have been acquired, there may be

sufficient degrees of freedom left for robust estimation of functional

connectivity even with more aggressive motion censoring.

The inclusion of global signal regression resulted in a

statistically significant, although small, increase in the similarity of

each subject’s functional connectivity matrix to the group mean.

This could reflect improved denoising fromGSR. However, because

of the lack of ground truth in resting-state functional connectivity,

one should be cautious about using only QC criteria to guide

processing choices. If any of the nuisance regressors (global signal,

CSF signal, or white matter signal) contain effects of interest then

regressing them could distort functional connectivity estimates

despite improving QC metrics.

Another commonly used QC criteria is to exclude participants

with large or “gross” motion, that is, if any frame-to-frame

displacement exceeds a predefined threshold, such as 0.55mm

(Satterthwaite et al., 2012, 2013) or 5mm (Parkes et al., 2018). The

motivation behind this exclusion criterion is that larger motion

is more likely to be associated with B0-field changes, spin-history

effects, and RF coil sensitivity effects. However, if such large

motion occurs relatively infrequently (e.g., only a few times during

an imaging run), a recent study has shown ways to reduce the

effects of this large motion (Birn et al., 2022). For this reason, the

maximum motion was not used as a strict exclusion criterion in

the current QC study, but simply to flag potential subjects whose

functional connectivity maps should be more closely examined for

potential artifacts.

Another common problem is the alignment of the EPI data to

template space. Since the alignment of the T1 weighted structural

images in template space was highly similar across subjects, the

errors in the EPI alignment likely result from challenges in aligning

the EPI to the T1. Errors in the EPI-to-template alignment were

easy to identify using qualitative measures (visualization of the

data), but we were not able to find any quantitative metrics that

could accurately capture these errors. Misalignments between the

EPI and T1 could potentially be reduced by adjusting the EPI-

to-T1 alignment cost function or adjusting the parameters of the

brain extraction. For example, removal of non-brain tissue (“brain

extraction” or “skull-stripping”) that is too aggressive can cause

clipped regions of the T1 to be stretched to fit the boundaries

and gyri of the template brain. This is not often as visible on the

aligned T1s (since the borders of the brain match), but can cause

EPI data that is well-aligned to the T1 to be pushed outside the

template brain. The subject identified as having a misalignment

was designated as “uncertain” since modified processing may result

in a better alignment. Whether this subject should be excluded or

included depends on the effort an investigator is willing to expend

to find the processing options that result in an accurate alignment.

While the current study did not include B0-field maps, studies

that do include such measures could use both qualitative and

quantitative QC metrics to look at the effectiveness of B0-field

distortion correction. For example, the EPI and T1 could be

compared before and after correction to verify that the distortion

correction was applied in the correct orientation (as determined

by the phase encoding direction and polarity) and by the correct

amount (as determined by the echo spacing). A Dice coefficient

between the EPI and T1 could quantify this QC measure.

Qualitative measures, such as visualizing the data at different

points during the processing pipeline, are an indispensable tool

for quality control. One reason for this is the myriad number

of ways that the processing can go awry. This quality control

step can be quite time consuming, and therefore the challenge,

particularly for large studies, is making this process as efficient

as possible. One way to do this is to concatenate one image

(e.g., T1, EPI, or connectivity map in template space) from each

subject, and then scroll through the subjects manually or in a

movie format. This procedure was quite useful in identifying

subjects where the alignment of the EPI to template space was

not ideal. These errors in alignment were not captured very

well by the Dice coefficient between the EPI and T1-weighted

image. This may be because the Dice coefficient between the EPI

and T1 is also reduced by B0-field associated signal dropout in

the orbitofrontal and temporal lobes, which vary across subjects

depending on the shape of the subject’s head, the angle of the

head to the direction of the magnetic field, and the obliquity of

the slice prescription. This signal dropout results in a lower Dice

coefficient even with an accurate alignment between the EPI and

T1-weighted image.

Many of the measures discussed above are provided with the

QC output from the AFNI tool afni_proc.py. This QC output

includes an alternative way to visualize the alignment of the EPI-

to-T1 and T1-to-template—as outlines of the sulci and gray/white

matter boundaries on top of either the EPI or the aligned T1.

Since afni_proc.py was designed to output QC from individual

subject data, it does not provide a movie of the alignment across

subjects. However, such a movie could easily be generated by

extracting one volume (of the EPI, T1, or connectivity map

in template space) from each subject and concatenating the

datasets. Alternatively, the image snapshots provided by afni_proc’s

QC could be concatenated into a movie. Such movies can be

particularly useful in identifying outliers in the alignment in a large

group of subjects.

Conclusions

A number of quality control procedures and criteria are

recommended for the analysis of resting-state functional MRI data.

First, it is important to visualize the data at multiple points in

the processing pipeline. The accuracy of alignment to template

space can be evaluated by concatenating one brain volume from
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each subject, and then scrolling through the subjects manually or

in a movie format. Similarly, outliers in functional connectivity

can be determined by concatenating functional connectivity maps

from key seed regions in the brain that are known to be

part of robust functional networks consistently observed across

different subjects—specifically the posterior cingulate to identify

the default mode network, primary motor cortex to identify

the motor network, primary visual cortex to identify the visual

network, and primary auditory cortex to identify the auditory

network. Useful quantitative measures include the temporal signal-

to-noise ratio, the degrees of freedom remaining after motion

censoring and nuisance regression, and the total duration data

remaining after motion censoring. While band-pass filtering of

the data is currently the standard in the field, future studies may

want to re-evaluate the use of this processing step particularly

in studies that acquire limited amount of data. Finally, the

quality control thresholds used should be examined for each

study and may need to be adjusted based on the total amount

of acquired data. For example, the QC cutoff of 4min of good

data and 15 degrees of freedom was based on the duration

of the runs that were part of the study. Ideally one would

want as much data as possible for the best reliability, but this

needs to be balanced with the amount of data available and

the amount of denoising desired. It is essentially a trade-off

between including in the group analysis fewer subjects with

“cleaner” data (fewer artifacts) or more subjects with (potentially)

noisier data. The balance of this trade-off depends on the

levels of motion and other artifacts and the success of noise

reduction approaches.
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