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Magnetic Resonance Imaging (MR Imaging) is routinely employed in diagnosing

Alzheimer’s Disease (AD), which accounts for up to 60–80% of dementia cases.

However, it is time-consuming, and protocol optimization to accelerate MR

Imaging requires local expertise since each pulse sequence involves multiple

configurable parameters that need optimization for contrast, acquisition time,

and signal-to-noise ratio (SNR). The lack of this expertise contributes to the

highly ine�cient utilization of MRI services diminishing their clinical value. In

this work, we extend our previous e�ort and demonstrate accelerated MRI via

intelligent protocolling of the modified brain screen protocol, referred to as

the Gold Standard (GS) protocol. We leverage deep learning-based contrast-

specific image-denoising to improve the image quality of data acquired using the

accelerated protocol. Since the SNR of MR acquisitions depends on the volume of

the object being imaged, we demonstrate subject-specific (SS) image-denoising.

The accelerated protocol resulted in a 1.94× gain in imaging throughput. This

translated to a 72.51% increase in MR Value—defined in this work as the ratio of

the sum of median object-masked local SNR values across all contrasts to the

protocol’s acquisition duration. We also computed PSNR, local SNR, MS-SSIM, and

variance of the Laplacian values for image quality evaluation on 25 retrospective

datasets. The minimum/maximum PSNR gains (measured in dB) were 1.18/11.68

and 1.04/13.15, from the baseline and SS image-denoising models, respectively.

MS-SSIM gains were: 0.003/0.065 and 0.01/0.066; variance of the Laplacian (lower

is better): 0.104/−0.135 and 0.13/−0.143. The GS protocol constitutes 44.44%

of the comprehensive AD imaging protocol defined by the European Prevention

of Alzheimer’s Disease project. Therefore, we also demonstrate the potential for

AD-imaging via automated volumetry of relevant brain anatomies. We performed

statistical analysis on these volumetric measurements of the hippocampus and

amygdala from the GS and accelerated protocols, and found that 27 locations

were in excellent agreement. In conclusion, accelerated brain imaging with the

potential for AD imaging was demonstrated, and image quality was recovered

post-acquisition using DL-based image denoising models.
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1. Introduction

Dementia affected 50 million people worldwide in 2018, with

an estimated economic impact of US$ 1 trillion a year (Patterson,

2018; Banerjee et al., 2020). Alzheimer’s Disease (AD) accounts

for up to 60–80% of dementia cases and potentially begins upto

20 years before the first symptoms emerge (Bateman et al., 2012).

A global trend of longer lifespans has resulted in an increase

in the prevalence of dementia/AD (Silva-Spínola et al., 2022).

An accurate differential diagnosis of AD is crucial to determine

the right course of treatment (Vernooij and van Buchem, 2020).

Magnetic Resonance Imaging (MR Imaging) is a powerful imaging

modality to obtain valuable information about the brain structure

anatomy via the acquisition of high-resolution images. It is

routinely employed in AD diagnosis. Traditionally, structural MR

Imaging (sMRI) is used to exclude treatable and reversible causes

of dementia such as brain tumors, subdural hematomas, cerebral

infarcts, or hemorrhages (Falahati et al., 2015). The Alzheimer’s

Disease Neuroimaging Initiative (ADNI) has included sequences

in their standardized protocol to specifically image cerebrovascular

disease (Fluid Attenuation Inversion Recovery [FLAIR]) and

cerebral microbleeds (T∗
2 gradient echo) (Weiner et al., 2017).

Studies have demonstrated that atrophy of the hippocampus and

amygdala volume are reliable indicators of progression from pre-

dementia to AD (Simmons et al., 2011). These imaging biomarkers,

or image-derived phenotypes (IDP), can be obtained from sMRI.

The European Prevention of Alzheimer’s Disease (EPAD, https://

ep-ad.org/open-access-data/overview) prescribes four core and

five advanced sequences for AD imaging. The core sequences are

3D T1-weighted (T1w), 3D fluid-attenuated inversion recovery

(FLAIR), 2D T2-weighted (T2w), and 2D T∗
2-weighted (T∗

2w).

The advanced sequences are 3D T∗
2w, 3D susceptibility-weighted

imaging (SWI), diffusion-weighted imaging (DWI) or dMRI,

resting-state functional MR Imaging, and arterial spin labeling.

Mehan et al. (2014) reported on the adequacy of a four-sequence

protocol consisting of an axial T1w, axial T2w FLAIR, axial

DWI, and axial SWI images to evaluate new patients with

neurological complaints.

Despite MR Imaging’s critical utility in neuroimaging for

AD, there exist multiple challenges that lower the accessibility

of the technology to the general population. MR Imaging is

expensive and time-consuming, and subjects with MR-unsafe

materials (such as medical device implants, prostheses, etc.) are

not eligible for MR Imaging. Considerable research efforts have

been directed toward accelerating acquisition times by exploiting

the temporal or spatiotemporal redundancies in the images

(Tsao and Kozerke, 2012). However, protocol optimization to

accelerate MR Imaging requires local expertise. Each sequence

involves multiple configurable parameters that need optimization

for contrast, acquisition time, and signal-to-noise ratio (SNR). A

large number of these combinations exist–for example, 29 million

for 12 sequences in a protocol (Block, 2018)—and choosing an

optimal combination in real-time is difficult. Since the availability

and access to technical training are limited in under-served regions

(Geethanath and Vaughan, 2019), this results in a scarcity of

local expertise required to operate MR Imaging hardware and

perform MR Imaging examinations. These factors, along with

other cultural and temporal constraints contribute to the highly

inefficient utilization of MR Imaging services diminishing their

clinical value (Geethanath and Vaughan, 2019).

This combination of a very high-dimensional optimization

space and inadequate local expertise necessitates a data-driven

approach to augment the available manpower. Previous works

involve machine learning approaches for automated RF pulse

design (Shin et al., 2020), sequence design (Zhu et al., 2018),

or even a joint framework for sequence generation and data

reconstruction (Walker-Samuel, 2019; Loktyushin et al., 2021).

We believe that augmenting human expertise by leveraging deep

learning (DL) techniques across the MR Imaging pipeline can

consistently yield improved MR Value irrespective of where the

service is offered or the expertise involved. MR Value is an

initiative by the International Society of Magnetic Resonance in

Medicine to measure the utility of MR Imaging in the context

of constantly evolving healthcare economics (https://www.ismrm.

org/the-mr-value-initiative-phase-1/). We based our prior work

on this premise and demonstrated preliminary results from MR

Value-driven Autonomous MR Imaging, dubbed AMRI (Ravi and

Geethanath, 2020; Ravi et al., 2020).

In this work, we extend our previous effort and demonstrate

acceleratedMR Imaging via intelligent protocolling of the modified

brain screen protocol (dubbed Gold Standard, GS) employed at our

institution. We leverage deep learning-based image denoising to

improve the image quality of data acquired using the accelerated

protocol. The GS protocol consisted of six sequences: sagittal 3D

T1w, axial 2D T2w, axial 2D T2w FLAIR, axial 2D SWI, axial

DWI, and axial 2D T1w. Overall, the GS protocol constitutes

44.44% of the comprehensive EPAD imaging protocol and includes

all sequences deemed adequate for neuroimaging by Mehan

et al. (2014). Therefore, we also investigate the potential of the

accelerated protocol for AD-screening by benchmarking volumetry

of the hippocampus and amygdala against measurements from

the GS protocol. This volumetry can be used for early detection

of atrophy.

In the following sections, we first detail the implementations

of intelligent protocolling (Section 2.1), and image denoising using

deep learning (Section 2.2). Subsequently, we discuss the image

analyses that were performed, including the statistical evaluation

technique (Section 2.3) that was recommended by an expert

biostatistician with 23 years of experience. Finally, we describe the

four experiments performed.

Overall, the contributions of this work are:

1. Demonstrating look-up tables to achieve intelligent

protocolling by trading-off image quality for acquisition time.

2. Performing subject-specific image denoising using deep

learning to recover image quality post-acquisition.

3. Demonstrating potential for accelerated AD-imaging by

evaluating volumetries of AD-related IDPs.

2. Methods and materials

This section is organized as follows. Section 2.1 describes

intelligent protocolling—accelerating the routine brain screen

protocol employed at our institution by consulting a Look Up
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FIGURE 1

Overview of this work. (A) Intelligent protocolling: specific acquisition parameters (Degrees Of Freedom, DOF, Table 1) were varied and acquisition

duration (tacq) and relative SNR (rSNR) values were recorded from the vendor-provided user interface. All these values were recorded to construct a

sequence-specific Look Up Tables (LUTs). The “Fastest” protocol was assembled by querying these LUTs to obtain Pacq for each sequence. (B) Five

subjects were scanned using the Fastest protocol over five repeats to assemble the Fastest dataset. (C) Contrast-specific image denoising models

were trained to improve image quality of the Fastest dataset. (D) Automated volumetry was performed for the T1-contrast denoising model, and

manual volumetry for the remaining contrasts, to evaluate the performances. In addition, quantitative image quality metrics were computed.

Table (LUT). Section 2.2 presents the development of deep

learning models to achieve subject-specific (SS) denoising and

the explainability of the models. Section 2.3 discusses the

quantitative image quality metrics that were computed, and the

statistical analysis that was performed. The four experiments that

were performed to investigate the hypotheses are detailed in

Section 2.5. Finally, Section 2.6 describes visualizing intermediate

filter outputs for explainable AI. Figure 1 presents an overview of

this work by briefly illustrating the methods involved in intelligent

protocolling, data acquisition, DL-based image-denoising, and

quantitative evaluation.

2.1. Intelligent acquisition using look-up
tables

Table 1 lists the seven GS sequences and their corresponding

acquisition parameters and durations. The cumulative acquisition

time was 17:23 (minutes:seconds), as per the vendor console’s

user interface (UI). An experienced clinical application specialist

was consulted to collate a list of acquisition parameters that

could be varied without compromising image contrast for each

sequence in the GS protocol. These acquisition parameters were

referred to as degrees of freedom (DOF), also listed in Table 1.

Exhaustive combinations of these DOF or a hundred randomly

chosen combinations, whichever was smaller, were entered into the

vendor console’s UI. For each combination (Pacq), the acquisition

time (tacq), and relative signal-to-noise ratio (rSNR) value were

recorded. The Pacq, and corresponding tacq and rSNR values were

stored in a LUT. These were searched to obtain the optimal Pacq
yielding the lowest tacq. This procedure was repeated for each

sequence in the GS protocol. Once the sequence-specific LUTs

were constructed, they were consulted to derive sequence-specific

optimal Pacq to derive the fastest protocol. The search procedure is

described as follows, applicable to each sequence individually:

2.1.1. Compute percentage time allocated
First, the minimum time percentage value (y1) was computed

as the ratio of the shortest sequence acquisition time to the

shortest protocol acquisition time (x1). Similarly, the maximum

time percentage value (y2) was computed from the longest protocol

acquisition time (x2). Now, for an imposed protocol acquisition

time constraint (Tacq), the percentage time allocated (%TA) to a

sequence was derived from the straight line fitting the minimum

and maximum time percentage values, as described by Equation 1:

Percentage time allocated (%TA) = (
y2 − y1

x2 − x1
)∗(x− x1)+ y1 (1)

2.1.2. Compute weighted rank
The time allocated in seconds for this sequence (tacq) was

derived from the %TA value. The LUT was filtered by discarding

DOF combinations whose acquisition times exceeded tacq. Of

the remaining combinations, weighted differences of rSNR and

DOF values with the corresponding default values from the

GS protocol were computed. Higher weights were assigned to
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TABLE 1 Acquisition parameters and durations of the sequences constituting the gold standard (GS) and the Fastest (LUT-derived) protocols.

Sequence Imaging
plane
(2D/3D)

Flip
angle
(deg)

Echo
time/
repetition
time
[Inversion
time] (ms)

Slices
[Slice

thickness
(mm)]

Acquisition
time

(minutes:
seconds)

DOF

1 T1 MPRAGE Sagittal (3D) 13 [450] 172 [1.0] 2:44 Num, NEX, ST

2 DWI Axial (2D) Minimum/5554 47 [3.6] 0:44 Num, ASSET,

Dir, ST, TR

3 SWI Axial (2D) 15 Minimum

full/Minimum

72 [2.4] 2:30 Num, NEX, ST

G
o
ld

St
an
d
ar
d

4 T2 Axial (2D) 142 /6996 56 [3.0] 2:21 Num, ARC, ST,

TR

5 T2 FLAIR Axial (2D) 160 90/9000 [2477] 56 [3.0] 3:46 Num, ARC, ETL,

NEX, ST, TR

6 T1 MPRAGE Sagittal (3D) 13 [450] 172 [1.0] 2:44 Same as before

7 T1 Axial (2D) 111 24/2846 [1133] 56 [3.0] 2:34 Num, ARC, ETL,

NEX, ST, TR

17:23

1 T1 FLAIR Sagittal (3D) 111 24/2143.4

[724]

0:37

2 DWI Axial (2D) Minimum/2930 0:24

3 T∗
2 Axial (2D) 15 8/346.1 0:44

4 T2 Axial (2D) 142 102/4627 0:34

E
xp
er
t
E
xp
re
ss

5 T2 FLAIR Axial (2D) 160 90/9000 [2473] 27 [5.0] 1:21 NA

6 T1 FLAIR Sagittal (3D) 111 24/2143.4

[724]

0:37

7 T2

PROPELLER

Axial (2D) 130 /6301 0:44

8 T FLAIR

PROPELLER

Axial (2D) 142 /1000 [2365] 2:11 07:12

1 T1 MPRAGE Sagittal (3D) 13 [450] 172 [1.6] 1:41

2 DWI Axial (2D) Minimum/7500 32 [3.9] 0:30

F
as
te
st

3 T∗
2 Axial (2D) 15 13.5/580 31 [4.3] 0:34

4 T2 Axial (2D) 121/1204 27 [5.0] 1:30 NA

5 T2 FLAIR Axial (2D) 160 90/6900 [2191] 45 [3.8] 1:10

6 T1 MPRAGE Sagittal (3D) 13 [450] 172 [1.6] 1:41

7 T1 Axial (2D) [4.0] 13:28 08:52

Each protocol’s acquisition duration is presented above the arrow-outs. The degrees of freedom (DOF) represent the parameters that were varied to modify the GS protocol without

compromising the image contrast. Dir, diffusion directions; Num, number of slices; ARC/ASSET, acceleration options; ETL, echo train length; NEX, number of excitations; ST, slice thickness;

TR, repetition time.

DOF values contributing more significantly to the image contrast

(Supplementary Table 1). Finally, these weighted differences were

summed to obtain a rank for each DOF combination, and the

resulting LUT was sorted in ascending order of this rank value.

Thus, the combination achieving the lowest rank value had the

smallest difference in those DOF values which most significantly

contributed to the image contrast.

2.1.3. Obtain optimal combination
For each time constraint, the combination with the lowest rank

was chosen as the optimal set of acquisition parameters.

This process was repeated with lower imposed Tacq in each

iteration until an optimal Pacq could not be obtained for every

sequence in the GS protocol. In this way, the Fastest protocol was

derived by consulting the sequence-specific LUTs. Data acquired

utilizing the GS protocol were referred to as the GS dataset. Data

acquired from the Fastest protocol for Experiments 1, 2, and 4 (see

Section 2.5) were referred to as the Fastest dataset, collectively. The

SWI sequence in the GS protocol was replaced by a T∗
2w sequence in

the Fastest protocol. The experienced clinical application specialist’s

express protocol was dubbed the Expert Express (EE) protocol.

Data was also acquired from this protocol for comparison (refer

Experiment 2 in Section 2.5), referred to as the EE dataset.
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FIGURE 2

Forward modeling of noisy data using native noise for each contrast. (A) A random subject’s acquisitions are chosen from the Fastest dataset.

Brain-masked local SNR maps are computed, and these acquisitions are sorted in ascending order of median local SNR. The acquisition yielding the

lowest value is chosen as the “noisiest” acquisition. (B) Native noise is extracted from this noisiest acquisition by assigning all non-object voxels as

noise. These noise voxels are collaged to obtain a native noise block. (C) The noise-free public dataset is corrupted by native noise randomly

sampled from the native noise block and scaled by a noise factor. This scaling factor is determined by iteratively incrementing from an initial value of

0.5 until the median brain-masked local SNR of a randomly chosen volume from the public dataset that is corrupted by native noise matches that of

the noisiest acquisition.

2.2. Image denoising using deep learning

Two popular image denoising approaches are to directly predict

the denoised image or to obtain the denoised image as the

residual of the input noisy image and the predicted noise. We

adopt a ResNet-inspired network architecture demonstrated to

improve training performance and stability (He et al., 2016), to

directly predict the denoised output. Individual contrast-specific

denoising models were trained on pairs of noisy-denoised images

from publicly available brain MR Imaging datasets (see below).

Finally, SS denoising was performed by fine-tuning the models

on pairs of noisy-denoised images from the prospectively acquired

Fastest dataset.

2.2.1. Datasets, forward simulation, and data splits
Publicly available datasets were utilized to train the contrast-

specific image denoising models. T1 and T2 contrasts: IXI dataset

(https://brain-development.org/ixi-dataset/); T∗
2 : ADNI 3 (https://

adni.loni.usc.edu); T2 FLAIR: MSSEG-2 (Commowick et al.,

2021) and DWI: AOMICID-1000 (Snoek et al., 2021). Wherever

applicable, datasets were filtered to retain only the 3T data. Only

the central 50% slices were utilized, and the remaining slices were

discarded to avoid either unwanted anatomy or pure background

noise. Supplementary Figure 1 presents the search criteria that

were utilized to filter the ADNI 3 dataset for relevant results.

For DWI, only the b0 images were utilized from the AOMICID-

1000 dataset. All these datasets were assumed to be free of MR

image artifacts, referred to as “clean images”. Figure 2 presents the

forward modeling process to generate noise-corrupted data (“noisy

images”), described here as follows. First, the object-masked local

SNR maps were computed on all acquisitions of an arbitrarily

chosen subject from the Fastest dataset (see Experiment 4, Section

2.5). Object masking was based on the technique in Jenkinson

(2003) and resulted in all background values being set to zero.

All remaining non-zero values were considered to belong to the

samples, which were non-skull-stripped brain images. The local

SNR maps were computed based on the method reported in

Golshan et al. (2013). The volume yielding the lowest median SNR

was the “noisiest acquisition” (Figure 2A). Next, motivated by work

in Geethanath et al. (2021), Qian et al. (2022), native noise values

were extracted from this noisiest acquisition. These noise values

were collaged to form a native noise block (Figure 2B). This was

randomly sampled to obtain noise values, which were scaled and

added to the clean images to obtain noisy images (Figure 2C).

The scaling factor was determined using an iterative approach. A

volume was chosen at random from the public dataset. Starting

with an initial value of 1.0 (corresponding to no scaling), the scaling

factor was increased by 0.5 in each iteration until themedian object-

masked local SNR of the corrupted volume was lesser than that

Frontiers inNeuroimaging 05 frontiersin.org

https://doi.org/10.3389/fnimg.2023.1072759
https://brain-development.org/ixi-dataset/
https://adni.loni.usc.edu
https://adni.loni.usc.edu
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Ravi et al. 10.3389/fnimg.2023.1072759

FIGURE 3

Network architecture of the image denoising models and illustration of the explainable AI experiment. (A) The denoising model leverages multiple

ResBlocks (blue) and minimizes the Mix-L+FTD loss (Section 2.2) using the Adam optimizer (refer Table 2 for initial learning rates). (B) The explainable

AI experiment involves feeding a 128 × 128 DC biased input image. This is a collage of four 64 × 64 constant-valued image patches, as shown

(numbers represent the intensity values). As the input is transformed by each 2D convolution layer, all the filter outputs are collapsed into a single

image via maximum intensity projection. This is normalized to lie in the range [0, 1.0] and hard-thresholded to only retain values >0.75. All the 2D

convolution layers’ collapsed feature maps are collaged to investigate the mechanism of the denoising process by the network.

of the noisiest acquisition. We chose median over mean as the

guiding measure since it was less affected by skewed distributions.

An 85–10–5% subject-wise split was performed to form the train,

validation, and test sets.

2.2.2. Network architectures
Figure 3A is an illustration of the network architecture

common to all contrast-specific image-denoising models. To

predispose the network to learn denoising filters whilst being

anatomy agnostic, we adopted a patch-wise approach in this work.

Overlapping patches of size 64 × 64 were input to the network.

Thirteen ResBlocks leveraged skip connections to improve training

performance (He et al., 2016). Each ResBlock consisted of two

ReLU-activated (Nair and Hinton, 2010) 3 × 3 2D convolution

layers. In case of a mismatch in the number of filters between

the previous and current ResBlocks (N1, N2), the skip connection

included a 1 × 1 2D convolution with N2 filters. Otherwise, the

skip connection was an identity operation. Additionally, an identity

skip connection was used to add the input data to the pre-final layer

in the overall network. The final layer was a 3 × 3 2D convolution

layer with 1 filter. All 2D convolution layers were ReLU-activated,

and all development, training, and testing were performed using

Keras 2.6/TensorFlow 2.6.2 (Abadi et al., 2015, 2016) libraries.
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2.2.3. Loss functions
Zhao et al. report the superiority of their mixed loss (Mix-

L) function for image denoising, among other image quality

restoration applications (Zhao et al., 2016). This loss is a weighted

sum of l1 and MS-SSIM losses:

Mix− L = α (1 − MS− SSIM) + (1− α) l1 (2)

. . . where α was set to 0.84. We modified Mix-L to incorporate

a data-consistency term with the measured data in the Fourier

domain, referred to as Mix-L+FTD:

f = M ⊙
∣

∣F(ypred)− F(ytrue)
∣

∣ (3)

Mix− L+ FTD = Mix− L + β ||
f

||f ||2
||2 (4)

. . . where F was the 2D Fourier Transform and M was a mask to

only retain the central crop of the k-space of size 16 × 16. The ⊙

operator represented the Hadamard product and β determined the

trade-off between the denoising and data-consistency errors. We

investigated β = [0, 0.01, 0.1, 1] in our experiments. To determine

the best β , the RMSEs of the volumetric measures (RMSEvol)

were computed using an automated tool on T1 denoised outputs.

The β yielding the lowest mean RMSEvol was chosen to train the

denoising models for the remaining contrasts. Section 2.3 describes

the automated T1 volumetry tool and computing RMSEvol in detail.

2.2.4. Training
All contrast-specific denoising models were trained for 100

epochs with a batch size of 256. The Adam optimizer (Kingma

and Ba, 2015) was utilized to minimize the Mix-L+FTD loss with

the optimal β , determined as stated above. During training, every

input slice was cropped to a 64 × 64 patch. The bounds for

the random crop were manually determined by examining the

corresponding public dataset such that the random crops would

mostly include brain anatomy. A callback was utilized to save the

model achieving the lowest validation loss (corresponding to “best

performance”). At the end of the training process, this model was

chosen as the best model for evaluation, including to determine the

optimal β .

2.2.5. Subject-specific denoising
SSmedian local SNRswere computed onmasked brain volumes

from the Fastest dataset to verify the premise of SS denoising.

The values were computed only on the central 50% of the slices.

Next, the same noise scaling factors were utilized to corrupt each

subject’s noisiest acquisition from the Fastest dataset with native

noise. This data was used to fine-tune the baseline denoisingmodels

to achieve SS denoising. This approach posed SS denoising as

a self-supervised learning problem, mimicking the noisy-as-clean

method demonstrated in Xu et al. (2020). The initial learning rate of

the Adam optimizer was reduced to avoid largemodifications to the

weights which would otherwise harm the learned representations

(Table 2).

TABLE 2 Initial learning rates (LRs) for the contrast-specific baseline and

subject-specific (SS) denoising models.

Contrast Initial learning rate

Baseline Subject-specific (SS)

1 T1 2.5× 10−4 1× 10−5 , 1× 10−6

2 T2 1× 10−4 1× 10−5

3 T2 FLAIR 1× 10−4 1× 10−4

4 T∗
2 2.5× 10−4 NA

5 DWI 1× 10−4 1× 10−5

The baseline denoising models were finetuned on Fastest data to obtain the SS denoising

models. Therefore, the initial LRs were reduced to avoid harming the learned representations.

For T1 , one subject required a LR of 1× 10−6 since the loss values did not decrease with an LR

of 1 × 10−5 . For T2 FLAIR, the LR value was not changed since the model did not otherwise

converge to lower loss values.

2.3. Image analysis

Thomas et al. (2020) demonstrated an end-to-end pipeline for

fully automated mental health screening (Thomas et al., 2020). The

authors leveraged a DL model to segment the various subgroups.

Further development on the previous work includes a second DL

model to segment the brain tissues (white matter, gray matter,

cerebrospinal fluid). This second DL model was based on the

nnUnet (Isensee et al., 2021), and an evaluation of its performance

is presented in Supplementary File 1. We leveraged this tool to

perform automated volumetry to measure the performance of

the denoising models. HTML reports were generated containing

volumetric measures of 27 brain subregions and 3 brain tissues.

These were programmatically extracted and tabulated. RMSEvol
was calculated as the mean of RMSEs of each of the volumetric

measures. A benign White Matter Hyperintensity (WMH) was

identified in data acquired from one subject. The free, open-

source, and multi-platform 3D Slicer software [https://www.slicer.

org/, (Fedorov et al., 2012)] was used to performmanual volumetry

of this WMH on the T2, T
∗
2 , T2 FLAIR and DWI data by four

different raters with 3–8 years of MR Imaging experience. All

volumetries were performed on data acquired for Experiment 4 (see

Section 2.5.4).

Additionally, a set of image quality metrics were also computed

to evaluate the denoising models. These were: median object-

masked local SNR, Peak SNR (PSNR, dB), Multi-scale Structural

Similarity Index [MS-SSIM, (Wang et al., 2003)], the variance of

the Laplacian, referred to as var-Lap (Pech-Pacheco et al., 2000),

and MR Value. While local SNR, PSNR, and MS-SSIM metrics

are commonly used to measure image quality, we obtain var-

Lap values to measure the amount of blurring. We included this

metric in our evaluations since blurring negatively affected the

automated volumetry on T1 (preliminary experiments not reported

in this work).

2.4. Statistical analysis

The intra-class correlation coefficient (ICC) was calculated

based on the analysis of variance (ANOVA) with repeatedmeasures
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to assess the agreement of the volumetric measures amongst the

GS, denoised baseline, and denoised SS methods. The ICC values

greater than 0.9 indicate excellent agreement, values between 0.75

and 0.9 indicate good agreement, and values between 0.5 and 0.75

indicate moderate agreement.

2.5. Experiments

We performed four experiments to investigate hypotheses

regarding the throughput of the Fastest protocol, and the

image quality of the Fastest dataset. Supplementary Table 2 lists

the experiments performed, the protocols executed, numbers

of healthy volunteers imaged, the corresponding claims and

hypotheses investigated, and their respective evaluation criteria. In

total, 31 brain volumes were acquired from five volunteers across

the four experiments. The data acquired from the GS and Fastest

protocols are referred to as the GS and Fastest datasets, respectively.

2.5.1. Experiment 1–Throughput
The goal of experiment one was to investigate if the Fastest

protocol obtained from the LUT would yield an improvement in

throughput. One volunteer was imaged using the GS and Fastest

protocols, and a video recording of the entire imaging session was

captured. Throughput was computed as the ratio of the table time

measurement of the Fastest protocol to that of the GS protocol.

In this work, table time is defined as the duration between the

scanner bed reaching the center of the bore at the start of the

imaging and the scanner bed returning to the home position. We

also determined the MR Values of the GS and Fastest protocols,

calculated as the ratio of the cumulative median object-masked

local SNR values across all contrasts to the protocol’s acquisition

duration, Tacq:

MR Value =

∑Contrasts
c=1 median object−masked local SNRc

Tacq
(5)

The object-masked local SNR maps were computed on the

central 50% slices across all sequences in each protocol.

2.5.2. E2–Image quality
Experiment two quantitatively compared the image quality of

the GS, EE, and Fastest datasets using the followingmetrics: median

object-masked local SNR and var-Lap. PSNR and SSIM were not

used since they are not reference-less metrics.

2.5.3. E3–SNR recovery
We investigated the feasibility of employing the Fastest

protocol. It involved utilizing the image-denoising deep learning

models described in Section 2.2 to improve image quality. The

metrics described in Section 2.5 were utilized to determine if

denoising the Fastest dataset achieved comparable quality to the

GS dataset.

2.5.4. E4–Repeatability
A repeatability test to demonstrate the consistency of the

quantitative image quality metrics was performed. The GS and

Fastest protocols were employed to acquire data from five

subjects over five repeats. Automated and manual volumetry were

performed on the acquired data as described in Section 2.3.

2.6. Visualizing learned filters for
explainable AI

There are no formal definitions for interpretability and

explainability in the field of Artificial Intelligence and in the sub-

field of DL (Doshi-Velez and Kim, 2017; Lipton, 2018; Miller,

2019; Aggarwal et al., 2023). However, current explainable AI

practices can be cast as a type of model interpretability (Rahman,

2022). Image denoising is a combination of image synthesis and

regression, and explainable AI methods do not currently exist for

these tasks. Therefore, in this work, we choose to investigate the

intermediate outputs of the filters of the 2D convolution layers as

a method of explaining the denoising mechanism. The LUT search

algorithm is inherently explainable since the ranks are computed as

a weighted combination of the DOF. Explainability of the nnUnet

utilized in computing the AD-related volumetric measurements

is beyond the scope of this work. However, the performance of

the nnUnet is available in Supplementary File 1. A 256 × 256

collage of four panels was assembled. Each of the four 64 × 64

panels was made up of a single intensity from the following values:

[1.25, 3.75, 6.25, 8.75] × 10 −1. This collage was corrupted with

native noise from an arbitrarily chosen subject’s T1w acquisition.

Subsequently, it was denoised using the baseline denoising model

for the T1 contrast. The filter outputs of each 2D convolutional layer

were obtained, and maximum intensity projection was performed

to achieve dimensionality reduction. Therefore, this collapsed N

filter outputs into a single map. This was normalized to lie in

the range [0, 1.0]. Finally, this collapsed feature map was hard

thresholded to only retain values>0.75. Figure 3B briefly illustrates

this procedure.

3. Results

3.1. Intelligent acquisition using look-up
tables

rSNR was assigned the smallest weight when constructing the

LUT since the aim of this work was to achieve acceleration by

trading-off SNRwhich could be recovered post-acquisition via deep

learning methods. The total duration of the Fastest protocol that

was obtained by querying the LUTs was 8:34 (minutes:seconds).

This was a 50.71% reduction in acquisition time from the GS

protocol, which required 17:23. The EE protocol only required

7:12. It primarily achieved acceleration by employing the 3D T1

FLAIR sequence. This is not a true 3D acquisition and only required

0:37 when compared to 2:44 and 1:41 for the 3D T1w sequences

in the GS and Fastest protocols, respectively. Figure 4 is a collage

of one representative slice of an arbitrarily chosen subject, across

contrasts. The rows represent the different datasets–GS, EE, Fastest,
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FIGURE 4

Collage of one representative slice of an arbitrarily chosen subject, across contrasts (columns), across the Gold Standard (GS), and Fastest and Expert

Express (EE) protocols (rows). The subpanels have been individually windowed.

baseline denoised, and SS denoised. For the Fastest protocol, the

sagittal T1-MPRAGE sequence was accelerated by increasing the

slice-thickness from 1.0mm in the GS protocol to 1.6mm. Overall,

this resulted in increased signal intensities and decreased variance

of noise in the Fastest dataset. Therefore, the median local SNR of

GS data was lower than that of the Fastest data, as is expected.

3.2. Image denoising using deep learning

3.2.1. Datasets and forward-simulation
The T1w and T2w datasets consisted of 185/13,690 and

185/11,760 volumes/slices, respectively. For T∗
2 and T2 FLAIR,

this resulted in 89/2,188 and 40/6,792 volumes/slices, respectively.

Finally, the DWI dataset contained 81/2,430 volumes/slices. The

final noise scaling factors determined using an iterative local SNR-

guided approach were as follows. T1: 1.5; T2: 2.0; T
∗
2 : 1.0, T2

FLAIR: 1.0, DWI: 1.5. Supplementary Figure 2 plots the maximum,

minimum and mean (dashed line) local SNR values within a region

of interest across the GS and forward modeled datasets, for T1

contrast. It can be observed that the means of the GS and forward-

modeled data are comparable, which validates the iterative local

SNR-guided approach to determining the noise scaling factor.

3.2.2. Loss functions
Supplementary File 2 presents a tabulation of volumetric

measures of denoised data obtained from the automated volumetry

tool. It compares the values of data denoised using the models

trained on β = [0, 0.01, 0.1, 1]. The model trained on β = 1

achieved the lowest mean RMSE value, and all subsequent models

were trained with the same loss formulation.

3.2.3. Training
Supplementary Figure 3 shows a plot of training and validation

losses as a function of epochs for the baseline denoising

models, across contrasts. The corresponding approximate training

durations are also listed. Figure 5 presents the corresponding

mean changes in the image quality metrics computed on the

test sets. In each instance, the model with the lowest validation

loss was used. The largest gains in PSNR, MS-SSIM, and var-

Lap values are observed on the T2 contrast. Since the network

architecture was common to all contrast-specific denoising models,

this could be attributed to the larger noise scaling factor during the

forward modeling process. Consequently, this might have forced

the model to learn to denoise much noisier images during training

in comparison with the training data from other contrasts. The

lowest gains are observed on the T∗
2 contrast.

3.2.4. SS denoising
Figure 6 plots the subject-specific median local SNR values.

The subject-dependent variability of SNR validated our rationale

for subject-specific denoising. Figure 7 plots the mean changes

in PSNR, MS-SSIM, and var-Lap values across contrasts and
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FIGURE 5

Plots of quantitative evaluations of the contrast-specific baseline image denoising models on the test sets. The means of the changes in (A) PSNR

(dB), (B) MS-SSIM, and (C) variances of the Laplacian (var-Lap) values are reported. Lowest validation loss models were used in all instances. Higher

PSNR and MS-SSIM indicate larger improvements in the image quality of the denoised images. Higher var-Lap values indicate lower loss of sharpness

of the denoised images.

FIGURE 6

Subject-specific median local SNR. Plot comparing median local

SNR values for the two T1 MPRAGE sequences from the Gold

Standard protocol, across all 5 subjects and 5 repeats. This

subject-dependent variability of SNR is the premise of

subject-specific denoising in this work.

subjects. Similar to the baseline denoising models, the largest gains

are observed for the T2 contrast, and the least improvement is

observed for the T∗
2 contrast. In addition, T∗

2 SS model performed

significantly poorer than the baseline model, and therefore the

results have not been reported. We suspect this is due to the

mismatch in the training and fine-tuning datasets. The ADNI-3

training dataset consisted of T∗
2 GRE acquisitions with an echo

train length (ETL) of 3. On the other hand, the Fastest protocol

utilized an ETL of 1 in the T∗
2 GRE acquisitions. We attribute the

inherent mismatch in signal between the datasets to the poor fine-

tuned performance. Additionally, this potentially indicates that the

pre-processing steps in this work are inadequate.

3.3. Statistical analysis

Among the four methods for all 30 locations, 27 locations had

excellent ICC (>=0.93); 2 had a good ICC (>0.8), 1 had moderate

ICC (=0.651). Table 3 lists the individual ICC values for each of the

27 brain subregions and the 3 brain tissues. The 2 locations with

good agreement are highlighted in bold, and the 1 location with

moderate agreement is highlighted in underline.

3.4. Experiments

3.4.1. E1–Throughput
The cumulative acquisition times for the GS and Fastest

protocols as per the vendor UI were 17:23 and 8:34. The practical

acquisition times (obtained from the video recording) were 19:12

and 9:52. This discrepancy can be attributed to the time lost during

pre-scan calibration and shimming functions. Overall, imaging

one healthy volunteer using the Fastest protocol yielded a 1.94x

gain in throughput over the GS protocol. Supplementary File 3

presents the timestamps and calculations of durations derived from

the video recordings to obtain the final acquisition durations for

this experiment. The cumulative median object-masked local SNR

values for the GS and Fastest data were 243.354 and 215.767,

respectively. Finally, this translates toMRValues of 0.211 and 0.364,
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FIGURE 7

Plots comparing the quantitative evaluations of the contrast-specific baseline and subject-specific (SS) image denoising models on the test sets of

the Fastest dataset. The means of the changes in (A) PSNR (dB), (B) MS-SSIM, and (C) variances of the Laplacian (var-Lap) values are reported. Lowest

validation loss models were used in all instances. Higher PSNR and MS-SSIM indicate larger improvements in the image quality of the denoised

images. Higher varLap values indicate improvements in sharpness of the denoised images.

respectively. Overall, employing the Fastest protocol resulted in a

72.51% increase in MR Value. In comparison, the corresponding

SNR value for EE data was 264.136. Considering a practical

acquisition duration of 07:58, this resulted in anMRValue of 0.552.

3.4.2. E2–Image quality
Figure 8 is a bar graph plotting the median object-masked local

SNR and var-Lap values across contrasts, for the GS, EE, and

Fastest datasets. The mean values are presented at the bottom of

the individual bars. For local SNR, similar performance is observed

from the axial DWI and axial T2 FLAIR sequences, while not

for the other sequences. The higher median local SNR values of

the T1 contrast from the EE protocol can be attributed to the

Turbo Spin Echo-based FLAIR sequence. The GS and EE protocols

also perform better than the Fastest protocol in the T2 sequence,

attributed to the longer repetition times. Overall, the EE protocol

yields higher local SNR values due to higher slice thickness: 5mm

across all sequences, as opposed to ranges of 1.0–3.6mm and

1.6–5.0mm for GS and Fastest protocols, respectively. For var-

Lap, comparable performance is observed only in the T2 FLAIR

contrast. The Fastest protocol performs worse than both GS and

EE in T1, DWI and T2 contrasts.

3.4.3. E3–SNR recovery
Figure 7 presents the changes in median object-masked local

SNR, PSNR, MS-SSIM, and var-Lap values for the baseline and

SS denoising models tested on the Fastest datasets. The solid

and checker boarded bars correspond to the baseline and SS

denoising models, respectively. The T1 SS denoising model does

not improve PSNR over the baseline denoising model, and

only modestly improves SSIM. However, it results in a smaller

increase in blurriness. For T2, the SS denoising model yields

larger improvements across all metrics. For T2 FLAIR, similar

improvements are observed for PSNR andMS-SSIM, along with an

undesirable increase in blurriness–indicating the model potentially

denoised by primarily high-pass filtering. The T∗
2 SS denoising

models deteriorated image quality in every instance, and hence

their results are not presented.

3.4.4. E4–Repeatability
Figure 9 presents the plots of volumetric measures obtained

from the automated tool for T1 contrast. The top row plots values

ofWhite Matter (WM) and GrayMatter (GM), and the bottom row

corresponds to measures of two IDPs for AD–hippocampal and

amygdala volumes. For each of these anatomies, a representative

slice with the corresponding masks overlaid is illustrated in the

figure inset. Figure 10 is a plot of manual volumetric measures for

T2, T
∗
2 , T2 FLAIR and DWI contrasts.

3.5. Visualizing learned filters for
explainable AI

Figure 11 is a collage of intermediate layer outputs obtained

from denoising a DC-biased input using the baseline image

denoising model for the T1 contrast. The model appears to

perform denoising (akin to low-pass filtering) in the earlier layers.

Each MaxPool2D layer halves the spatial dimension, leading to

reduced resolution in the later layers (refer network architecture

in Figure 3A). In these layers, the model appears to be performing
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TABLE 3 Individual inter-class agreement coe�cient (ICC) values for

each of the 27 subregions and 3 tissues.

Subregion/tissue ICC

1 Amygdala 0.992

2 Basal ganglia 0.971

3 Cerebellum 0.995

4 Cerebrospinal fluid 0.651

5 Frontal 0.987

6 Frontal/parietal 0.928

7 Gray matter 0.985

8 Headfat 0.951

9 Hippocampus 0.993

10 Insular 0.996

11 Left amygdala 0.99

12 Left caudate 0.996

13 Left cortical white matter 0.997

14 Left hippocampus 0.989

15 Left pallidum 0.945

16 Left putamen 0.884

17 Left thalamus 0.954

18 Limbic 0.987

19 Occipital 0.961

20 Parietal 0.98

21 Right amygdala 0.989

22 Right caudate 0.993

23 Right cortical white matter 0.997

24 Right hippocampus 0.991

25 Right pallidum 0.972

26 Right putamen 0.946

27 Right thalamus 0.99

28 Temporal 0.96

29 Temporal/occipital 0.817

30 White matter 0.992

ICC values greater than 0.9 indicate excellent agreement, values between 0.75 and 0.9 indicate

good agreement (highlighted in bold), and values between 0.5 and 0.75 indicate moderate

agreement (highlighted in underline).

low-frequency denoising (high-pass filtering). Overall, no brain-

specific anatomy is identifiable across any of the intermediate

layer outputs (as desired), potentially attributed to the patch-wise

approach adopted in this work. Supplementary Figure 4 present

representative layer outputs for five other threshold values: 0.50,

0.60, 0.70, 0.80, and 0.90. In all cases, a similar pattern of low-

pass filtering in the earlier layers and high-pass filtering the

later layers is observed. However, for 0.50, 0.60, the resulting

intermediate outputs contain excessive high-frequency content

(Supplementary Figures 4, 5). On the other hand, for threshold

values 0.80 and 0.90, a large number of values are zeroed-out,

and hence the resulting outputs do not convey any relevant

information. Between threshold values 0.70 and 0.75, we chose

0.75 since we were able to better observe the denoising mechanism

(Supplementary Figure 6, Figure 11).

4. Discussion and conclusion

The LUT search to accelerate the GS protocol was automated. In

comparison, designing the EE protocol required human expertise

and manual hours. The LUT approach is also scalable–automated

recording of acquisition times and rSNR values from the vendor UI

for different Pacq can potentially enable the construction of high-

dimensional LUTs. Subsequently, high-dimensional constrained

search techniques can be explored to arrive at different Pacq.

Our LUT search formulation also allows optimizing for different

criteria. We optimized for shorter acquisition durations whilst

trading-off SNR. However, this can easily be modified to any

other criteria by suitably modifying the weights described in

Supplementary Table 1. Or, the LUT search can involve finding

optimal Pacq that satisfies an imposed acquisition time constraint,

as demonstrated in our previous work (Ravi and Geethanath,

2020; Ravi et al., 2020). Furthermore, since domain expertise is

involved in setting the weights for the DOF, the LUT search is

inherently explainable.

Initially, we trained our image-denoising models for T1 and

T2 contrasts on the Human Connectome Project dataset (HCP,

http://www.humanconnectomeproject.org/). Preliminary results

(not reported in this work) indicated poor accuracy on the

automated volumetry (high RMSEvol), although the denoising

performance was good. We attributed this to HCP data’s superior

image quality–HCP data were acquired on Siemens Prisma 3T

scanners with 80 mT/m gradient strength and 200 T/m/s slew rate.

A 3D T1 MPRAGE sequence was utilized with isotropic resolution

and repetition/echo times = 2,530/1.15ms. Therefore, the iterative

local SNR-guided approach resulted in a higher noise scaling factor

to degrade theHCP data tomatch themedian local SNRwith that of

the Fastest dataset.We suspect that the denoisingmodels trained on

this data caused excessive blurring, which subsequently affected the

automated T1 volumetry. Therefore, we chose to proceed with the

IXI dataset for T1 contrast, and also for T2 contrast to potentially

mitigate a similar issue.

For T∗
2 , the SS denoising models failed to demonstrate better

performance than the baseline denoising models. The baseline

model was trained on T∗
2 data of the ADNI 3 dataset corrupted

by native noise extracted from SWI data. However, fine-tuning the

baseline model involved training on T∗
2 data corrupted by native

noise extracted from T∗
2 data itself. We suspect this sequence-

specific noise distribution could have impacted the training process

of the SS models.

4.1. Limitations and future work

4.1.1. Intelligent protocolling
The T1 MPRAGE sequence in the Fastest protocol achieved

shorter scan durations due to higher slice thickness (1.6 vs. 1mm).

Future work could involve exploring the impact of interpolating
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FIGURE 8

Plots comparing the median object-masked local SNR and variance of the Laplacian values computed on the GS, EE and Fastest datasets, for

matched contrasts. The mean values are presented at the bottom of the individual bars. The EE protocol employed a T1 FLAIR sequence while the GS

and Fastest protocols leveraged T1 MPRAGE sequences instead. Similarly, T*
2 sequences are utilized in the EE and Fastest protocols instead of a SWI

sequence as in the GS protocol.

anisotropic data to achieve isotropic voxel resolutions on the

accuracy of automated volumetry (Deoni et al., 2022). Although

our LUT search formulation was designed to avoid modifying

image contrast, the Fastest dataset marginally deviates from the

GS dataset’s contrast. For example, this can be observed in

the T2 FLAIR contrast in Figure 4. Potentially, Virtual Scanner

(Tong et al., 2019) and its digital twinning capability (Tong

et al., 2021) can be leveraged to design a physics-informed LUT

optimization approach.

4.1.2. Data distribution
For detecting AD, volumetry from T1-MPRAGE sequence

is crucial. The denoising models were evaluated on a small

and healthy cohort of five volunteers. Their performance on

denoising pathological data has not been investigated. While

we have demonstrated the value of denoising in improving the

accuracy of volumetry, the robustness of the denoising models

on out-of-distribution data has not been considered. A thorough

evaluation will be required to assess the quality of data acquired
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FIGURE 9

Volumetric measures of White Matter (WM), Gray Matter (GM), Amygdala and Hippocampus obtained from baseline deep learning and

subject-specific deep learning (SS) denoising methods. Values across all 5 repeats are reported. Inset: Representative tissue, lobes and subregions

masks.

from pathological subjects and denoising using our models.

Alternatively, the training dataset could include pathological data

to improve the models’ generalization capabilities. Datasets which

have not undergone extensive preprocessing and/or stringent

quality control are valuable during the native noise extraction

process of our workflow. Future iterations could involve training on

a multi-site, multi-vendor, real-world dataset such as RadImageNet

(Mei et al., 2022).

4.1.3. Evaluation metrics
This work utilizes a combination of referenceless (local

SNR, var-Lap) and reference-based (PSNR, SSIM) image quality

metrics. The referenceless metrics were borrowed from the

broader computer vision community, and might not be ideal

for evaluating methods in medical imaging. In particular, since

the var-Lap metric is on an arbitrary scale, it does not

allow performance comparisons without controlling for the

testing dataset. The reference-based metrics inherently require

a gold standard (GS), and hence do not lend themselves to

evaluation on real-world data which, by nature, do not have

reference data.

4.1.4. Inference on denoising models
While the patch-wise implementation enables flexibility of

input data sizes, this approach significantly increases the inference

durations-−4× on 256 × 256 input and 8× on 512 × 512 input,
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FIGURE 10

Volumetric measures of incidental benign White Matter Hyperintensity (WMH) finding from one subject. Four di�erent raters with 3–8 years of MR

experience manually measured WMH volumes in data from T2, T
*
2, T2 FLAIR and DWI contrasts.

when compared with full input size approaches. Furthermore, the

preprocessing step of converting a full-size image into 64 × 64

patches adds an overhead that is directly proportional to the

dimensions of the input image. Currently, our denoising models

require approximately 3.679 seconds per slice if the input image

dimensions are 512 × 512, and 2.575 seconds per slice if

the input image dimensions are 256 × 256. Potentially, this

could approximately be reduced 0.459 seconds and 0.321 seconds

per slice, respectively, if a full input size were instead adopted.

The denoising models are also not implemented in an end-to-

end workflow—currently, the data needs to be transferred to a

designated system via physical storage media. Future work will

potentially involve streamlining file I/O to further accelerate DL

denoising durations and packaging the pipeline to be tested for

deployment at beta site.

4.1.5. Explainable AI
While there exist multiple methods that aid in interpretability

classification models (Zhou et al., 2016; Selvaraju et al., 2017;

Shrikumar et al., 2017; Smilkov et al., 2017), image-to-image model

outputs are difficult to explain. Explainable AI techniques such

Concept Activation Vectors (CAV) (Clough et al., 2019) allow

probing the latent spaces of convolutional models to determine

which human-friendly concepts the models are most sensitive

to. However, this technique can only be applied to network

architectures that include a bottleneck layer, such as U-Nets

(Ronneberger et al., 2015), autoencoders [or variants thereof, such

as variational-quantized autoencoders (VanDenOord et al., 2017)].

To the best of our knowledge, there is no prior work on applying

CAVs to investigate the performance of image-denoising models.

Future work could involve exploring these network architectures to

leverage CAVs for explainability.

4.2. Conclusion

This work demonstrates an end-to-end framework tailored

for AD imaging. The framework involved implementing a LUT

to shorten the acquisition duration of an existing brain imaging

protocol that was employed at our institution, by sacrificing image

quality. Accelerated brain imaging using this faster protocol was

demonstrated, and image quality was recovered post-acquisition

using DL-based image denoising models. Furthermore, MR

Imaging physics dictates that the amount of signal captured relates

to the volume of the subject being imaged, as this directly affects the

size of the proton population. This variability of SNR depending on

subject size motivated the authors to implement and demonstrate

subject-specific image denoising. Code to reproduce methods, and

pre-trained models will be shared upon fair request. An earlier

version of code to search look-up tables is publicly available

at: https://github.com/imr-framework/amri-ip/tree/ISMRM_2020.

Frontiers inNeuroimaging 15 frontiersin.org

https://doi.org/10.3389/fnimg.2023.1072759
https://github.com/imr-framework/amri-ip/tree/ISMRM_2020
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Ravi et al. 10.3389/fnimg.2023.1072759

FIGURE 11

Collage of intermediate 2D convolutional layer outputs. The filter outputs from each layer were collapsed into a single image via maximum intensity

projection. Subsequently, this image was normalized to lie in the range [0, 1.0] and then thresholded to only retain values >0.75.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Ethics statement

The studies involving human participants were reviewed and

approved by Institutional Review Board. The patients/participants

provided their written informed consent to participate in this study.

Author contributions

KR contributed to the conception and design of the study,

performed data acquisition and method development, and wrote

the manuscript and created the figures and tables. GN, NT, and

ML contributed to the method development. EQ, MJ, and PP

contributed to the data acquisition and method development. ZJ

contributed to the design of the study and performed the statistical

analysis. PQ, MF, GS, and JV contributed to the design of the

study. PQ and MF contributed to the method development. SG

contributed to the conception and design of the study and the

method development. All authors contributed to the manuscript

revision, read, and approved the submitted version.

Funding

PMX funded this work as a part of the “Autonomous

MRI for Dementia” project (grant number: 22-0674-00001-01,

PI: SG). PMX is responsible for the translation of research

outcomes. The authors acknowledge support from the Biomedical

Engineering and Imaging Institute, Dept. of Diagnostic, Molecular

and Interventional Radiology, Icahn School of Medicine, Mt.

Sinai, New York, NY, USA. Data collection and sharing for this

project was funded by the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) (National Institutes of Health Grant U01

AG024904) and DOD ADNI (Department of Defense award

Frontiers inNeuroimaging 16 frontiersin.org

https://doi.org/10.3389/fnimg.2023.1072759
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Ravi et al. 10.3389/fnimg.2023.1072759

number W81XWH-12-2-0012). ADNI is funded by the National

Institute on Aging, the National Institute of Biomedical Imaging

and Bioengineering, and through generous contributions from

the following: AbbVie, Alzheimer’s Association; Alzheimer’s

Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.;

Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate;

Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company;

EuroImmun; F. Hoffmann-La Roche Ltd. and its affiliated company

Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen

Alzheimer Immunotherapy Research & Development, LLC.;

Johnson& Johnson Pharmaceutical Research&Development LLC.;

Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics,

LLC.; NeuroRx Research; Neurotrack Technologies; Novartis

Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier;

Takeda Pharmaceutical Company; and Transition Therapeutics.

The Canadian Institutes of Health Research is providing funds to

support ADNI clinical sites in Canada. Private sector contributions

are facilitated by the Foundation for the National Institutes of

Health (www.fnih.org). The grantee organization is the Northern

California Institute for Research and Education, and the study is

coordinated by the Alzheimer’s Therapeutic Research Institute at

the University of Southern California. ADNI data are disseminated

by the Laboratory for Neuro Imaging at the University of

Southern California.

Acknowledgments

The authors acknowledge grant support from PMX, Chicago,

IL (22-0674-00001-01-PD, “Autonomous MRI for Dementia

screening”, PI: SG). Data used in the preparation of this article were

obtained from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) database (adni.loni.usc.edu). The ADNI was launched in

2003 as a public-private partnership, led by Principal Investigator

Michael W. Weiner, MD. The primary goal of ADNI has

been to test whether serial magnetic resonance imaging (MRI),

positron emission tomography (PET), other biological markers,

and clinical and neuropsychological assessment can be combined

to measure the progression of mild cognitive impairment (MCI)

and early Alzheimer’s disease (AD). For up-to-date information,

see www.adni-info.org.

Conflict of interest

GN, NT, ML, and GS were employed by PMX. PQ andMF were

employed by GE Healthcare.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

The authors declare that this study received funding from

PMX. The funder had the following involvement in the study: data

analysis and preparation of the manuscript.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fnimg.2023.

1072759/full#supplementary-material

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., et al. (2015).
TensorFlow: Large-scale machine learning on heterogeneous systems. Available online
at: http://tensorflow.org (accessed March 29, 2023).

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., et al. (2016).
“TensorFlow: A system for large-scale machine learning,” in Proceedings of the 12th
USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016.

Aggarwal, K., Jimeno, M. M., Ravi, K. S., Gonzalez, G., and Geethanath, S. (2023).
Developing and deploying deep learning models in brain MRI: a review. arXiv
Prepr arXiv230101241.

Banerjee, D., Muralidharan, A., Hakim Mohammed, A. R., and Malik, B. H. (2020).
Neuroimaging in dementia: a brief review. Cureus. 12, e8682. doi: 10.7759/cureus.8682

Bateman, R. J., Xiong, C., Benzinger, T. L. S., Fagan, A.M., Goate, A., Fox, N. C., et al.
(2012). Clinical and biomarker changes in dominantly inherited Alzheimer’s disease.N.
Engl. J. Med. 367, 795–804. doi: 10.1056/NEJMoa1202753

Block, K. T. (2018). “Creating New Value Through Innovation,” in ISMRM
Workshop on High-Value MRI.

Clough, J. R., Oksuz, I., Puyol-Antón, E., Ruijsink, B., King, A. P., Schnabel, J.
A., et al. (2019). “Global and local interpretability for cardiac MRI classification,” in
Artificial Intelligence and Lecture Notes in Bioinformatics (Lecture Notes in Computer
Science). doi: 10.1007/978-3-030-32251-9_72

Commowick, O., Cervenansky, F., Cotton, F., and Dojat, M. (2021). “MSSEG-2
challenge proceedings: Multiple sclerosis new lesions segmentation challenge using a

data management and processing infrastructure,” in MICCAI 2021-24th International
Conference on Medical Image Computing and Computer Assisted Intervention 126.

Deoni, S. C. L., O’Muircheartaigh, J., Ljungberg, E., Huentelman, M., andWilliams,
S. C. R. (2022). Simultaneous high-resolution T2-weighted imaging and quantitative T
2 mapping at low magnetic field strengths using a multiple TE and multi-orientation
acquisition approach.Magn. Reson. Med. 88, 1273–1281. doi: 10.1002/mrm.29273

Doshi-Velez, F., and Kim, B. (2017). Towards a rigorous science of interpretable
machine learning. arXiv Prepr arXiv170208608.

Falahati, F., Fereshtehnejad, S. M., Religa, D., Wahlund, L. O., Westman, E.,
Eriksdotter, M., et al. (2015). The use of MRI, CT and lumbar puncture in dementia
diagnostics: Data from the svedem registry. Dement. Geriatr. Cogn. Disord. 39, 81–91.
doi: 10.1159/000366194

Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J. C., Pujol, S.,
et al. (2012). 3D Slicer as an image computing platform for the Quantitative Imaging
Network.Magn. Reson. Imaging. 30, 1323–1341. doi: 10.1016/j.mri.2012.05.001

Geethanath, S., Poojar, P., Ravi, K. S., and Ogbole, G. (2021). MRI denoising using
native noise,” in ISMRM and SMRT Annual Meeting and Exhibition, nd.

Geethanath, S., and Vaughan, J. T. (2019). Accessible magnetic resonance imaging:
A review. J. Magn. Reson. Imaging. 49, e65–77. doi: 10.1002/jmri.26638

Golshan, H. M., Hasanzadeh, R. P. R., and Yousefzadeh, S. C. (2013). An MRI
denoising method using image data redundancy and local SNR estimation. Magn.
Reson. Imaging. 31, 1206–1217. doi: 10.1016/j.mri.2013.04.004

Frontiers inNeuroimaging 17 frontiersin.org

https://doi.org/10.3389/fnimg.2023.1072759
http://www.fnih.org
http://adni.loni.usc.edu
http://www.adni-info.org
https://www.frontiersin.org/articles/10.3389/fnimg.2023.1072759/full#supplementary-material
http://tensorflow.org
https://doi.org/10.7759/cureus.8682
https://doi.org/10.1056/NEJMoa1202753
https://doi.org/10.1007/978-3-030-32251-9_72
https://doi.org/10.1002/mrm.29273
https://doi.org/10.1159/000366194
https://doi.org/10.1016/j.mri.2012.05.001
https://doi.org/10.1002/jmri.26638
https://doi.org/10.1016/j.mri.2013.04.004
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Ravi et al. 10.3389/fnimg.2023.1072759

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition,” in Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. doi: 10.1109/CVPR.2016.90

Isensee, F., Jaeger, P. F., Kohl, S. A. A., Petersen, J., and Maier-Hein, K. H.
(2021). nnU-Net: a self-configuring method for deep learning-based biomedical image
segmentation. Nat. Methods. 18, 203–211. doi: 10.1038/s41592-020-01008-z

Jenkinson, M. (2003). Fast, automated, N-dimensional phase-unwrapping
algorithm.Magn. Reson. Med. 49, 193–197. doi: 10.1002/mrm.10354

Kingma, D. P., and Ba, J. L. (2015). “Adam: A method for stochastic optimization,”
in 3rd International Conference on Learning Representations, ICLR 2015 - Conference
Track Proceedings.

Lipton, Z. C. (2018). The mythos of model interpretability: In machine learning,
the concept of interpretability is both important and slippery. Queue. 16, 31–57.
doi: 10.1145/3236386.3241340

Loktyushin, A., Herz, K., Dang, N., Glang, F., Deshmane, A., Weinmüller, S., et al.
(2021). MRzero - Automated discovery of MRI sequences using supervised learning.
Magn. Reson. Med. 86, 709–724. doi: 10.1002/mrm.28727

Mehan,W. A., González, R. G., Buchbinder, B. R., Chen, J.W., Copen,W. A., Gupta,
R., et al. (2014). Optimal brain MRI protocol for new neurological complaint. PLoS
ONE. 9, e110803. doi: 10.1371/journal.pone.0110803

Mei, X., Liu, Z., Robson, P. M., Marinelli, B., Huang, M., Doshi, A., et al. (2022).
RadImageNet: An open radiologic deep learning research dataset for effective transfer
learning. Radiol. Artif. Intell. 4, e210315. doi: 10.1148/ryai.210315

Miller, T. (2019). Explanation in artificial intelligence: Insights from the social
sciences. Artif. Intell. 267, 1–38. doi: 10.1016/j.artint.2018.07.007

Nair, V., and Hinton, G. E. (2010). “Rectified linear units improve Restricted
Boltzmann machines,” in ICML 2010 - Proceedings, 27th International Conference on
Machine Learning.

Patterson, C. (2018).World Alzheimer Report 2018 - The State of the Art of Dementia
Research: New frontiers. Alzheimer’s Dis Int London, UK.

Pech-Pacheco, J. L., Cristóbal, G., Chamorro-Martinez, J., and Fernández-Valdivia,
J. (2000). “Diatom autofocusing in brightfield microscopy: a comparative study,”
in Proceedings 15th International Conference on Pattern Recognition, Vol. 3 (IEEE),
314–317.

Qian, E., Poojar, P., Vaughan, J. T., Jin, Z., and Geethanath, S. (2022). Tailored
magnetic resonance fingerprinting for simultaneous non-synthetic and quantitative
imaging: A repeatability study. Med. Phys. 49, 1673–1685. doi: 10.1002/mp.
15465

Rahman, M. M. (2022). Deep interpretability methods for neuroimaging.
Dissertation, Georgia State University.

Ravi, K. S., and Geethanath, S. (2020). Autonomous magnetic resonance imaging.
Magn. Reson. Imaging. 73, 177–185. doi: 10.1016/j.mri.2020.08.010

Ravi, K. S., Geethanath, S., Quarterman, P., Fung, M., and Vaughan, J. T. (2020).
Intelligent Protocolling for Autonomous MRI,” in ISMRM& SMRT Virtual Conference
and Exhibition.

Ronneberger, O., Fischer, P., and Brox, T. (2015). “U-net: Convolutional networks
for biomedical image segmentation,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
234–41. doi: 10.1007/978-3-319-24574-4_28

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D., et al.
(2017). “Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based
Localization,” in Proceedings of the IEEE International Conference on Computer Vision
618–26. doi: 10.1109/ICCV.2017.74

Shin, D., Ji, S., Lee, D., Lee, J., Oh, S. H., Lee, J., et al. (2020). Deep Reinforcement
Learning Designed Shinnar-Le Roux RF Pulse Using Root-Flipping: DeepRFSLR. IEEE
Trans. Med. Imag. 39, 4391–4400. doi: 10.1109/TMI.2020.3018508

Shrikumar, A., Greenside, P., and Kundaje, A. (2017). “Learning important features
through propagating activation differences,” in 34th International Conference on
Machine Learning, ICML 2017.

Silva-Spínola, A., Baldeiras, I., Arrais, J. P., and Santana, I. (2022). The road
to personalized medicine in Alzheimer’s Disease: the use of artificial intelligence.
Biomedicines. 10, 315. doi: 10.3390/biomedicines10020315

Simmons, A.,Westman, E., Muehlboeck, S., Mecocci, P., Vellas, B., Tsolaki, M., et al.
(2011). The AddNeuroMed framework formulti-centreMRI assessment of Alzheimer’s
disease: Experience from the first 24 months. Int. J. Geriatr. Psychiatry. 26, 75–82.
doi: 10.1002/gps.2491

Smilkov, D., Thorat, N., Kim, B., Viégas, F., and Wattenberg, M. (2017).
Smoothgrad: removing noise by adding noise. arXiv Prepr arXiv170603825.

Snoek, L., van der Miesen, M. M., Beemsterboer, T., van der Leij, A., Eigenhuis,
A., Steven Scholte, H., et al. (2021). The Amsterdam Open MRI Collection, a set
of multimodal MRI datasets for individual difference analyses. Sci. Data. 8, 85.
doi: 10.1038/s41597-021-00870-6

Thomas, N., Perumalla, A., Rao, S., Thangaraj, V., Ravi, K. S., Geethanath, S., et al.
(2020). “Fully Automated End-to-End Neuroimaging Workflow for Mental Health
Screening,” in Proceedings - IEEE 20th International Conference on Bioinformatics and
Bioengineering, BIBE 2020. doi: 10.1109/BIBE50027.2020.00109

Tong, G., Geethanath, S., Jimeno, M., Qian, E., Ravi, K., Girish, N., et al.
(2019). Virtual Scanner: MRI on a Browser. J. Open Source Softw. 4, 1637.
doi: 10.21105/joss.01637

Tong, G., Vaughan, J. T., and Geethanath, S. (2021). “Virtual Scanner 2.0 enabling
the MR digital twin,” in Proceedings of 2021 ISMRM and SMRT Annual Meeting and
Exhibition 2021 ISMRM and SMRT Annual Meeting and Exhibition.

Tsao, J., and Kozerke, S. (2012). MRI temporal acceleration techniques. J. Magn.
Reson. Imaging. 36, 543–560. doi: 10.1002/jmri.23640

Van Den Oord, A., Vinyals, O., and Kavukcuoglu, K. (2017). “Neural discrete
representation learning,” in Advances in Neural Information Processing Systems.

Vernooij, M. W., and van Buchem, M. A. (2020). “Neuroimaging in
dementia,” in Dis Brain, Head Neck, Spine 2020–2023 Diagnostic Imaging 131–42.
doi: 10.1007/978-3-030-38490-6_11

Walker-Samuel, S. (2019). “Using deep reinforcement learning to actively,
adaptively and autonomously control of a simulated MRI scanner,” in Proceedings 27th
Annual Meeting of ISMRM.

Wang, Z., Simoncelli, E. P., and Bovik, A. C. (2003). “Multiscale structural similarity
for image quality assessment,” in The Thrity-Seventh Asilomar Conference on Signals,
Systems & Computers, Vol. 2 (IEEE), 1398–1402.

Weiner, M. W., Veitch, D. P., Aisen, P. S., Beckett, L. A., Cairns, N. J., Green,
R. C., et al. (2017). Recent publications from the Alzheimer’s Disease Neuroimaging
Initiative: Reviewing progress toward improved AD clinical trials. Alzheimer’s Dement.
13, e1–85. doi: 10.1016/j.jalz.2016.11.007

Xu, J., Huang, Y., Cheng, M.-M., Liu, L., et al. (2020). Noisy-as-Clean: Learning
Self-Supervised Denoising From Corrupted Image. IEEE Trans. Image Process. 29,
9316–9329. doi: 10.1109/TIP.2020.3026622

Zhao, H., Gallo, O., Frosio, I., and Kautz, J. (2016). Loss functions for
image restoration with neural networks. IEEE Trans. Comput. Imaging. 3, 47–57.
doi: 10.1109/TCI.2016.2644865

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Torralba, A. (2016).
Learning Deep Features for Discriminative Localization,” in Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
doi: 10.1109/CVPR.2016.319

Zhu, B., Liu, J., Koonjoo, N., Rosen, B. R., and Rosen, M. S. (2018). “AUTOmated
pulse SEQuence generation (AUTOSEQ) using Bayesian reinforcement learning in an
MRI physics simulation environment,” in Proceedings of Joint Annual Meeting ISMRM-
ESMRMB.

Frontiers inNeuroimaging 18 frontiersin.org

https://doi.org/10.3389/fnimg.2023.1072759
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1038/s41592-020-01008-z
https://doi.org/10.1002/mrm.10354
https://doi.org/10.1145/3236386.3241340
https://doi.org/10.1002/mrm.28727
https://doi.org/10.1371/journal.pone.0110803
https://doi.org/10.1148/ryai.210315
https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/10.1002/mp.15465
https://doi.org/10.1016/j.mri.2020.08.010
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1109/TMI.2020.3018508
https://doi.org/10.3390/biomedicines10020315
https://doi.org/10.1002/gps.2491
https://doi.org/10.1038/s41597-021-00870-6
https://doi.org/10.1109/BIBE50027.2020.00109
https://doi.org/10.21105/joss.01637
https://doi.org/10.1002/jmri.23640
https://doi.org/10.1007/978-3-030-38490-6_11
https://doi.org/10.1016/j.jalz.2016.11.007
https://doi.org/10.1109/TIP.2020.3026622
https://doi.org/10.1109/TCI.2016.2644865
https://doi.org/10.1109/CVPR.2016.319
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org

	Accelerated MRI using intelligent protocolling and subject-specific denoising applied to Alzheimer's disease imaging
	1. Introduction
	2. Methods and materials
	2.1. Intelligent acquisition using look-up tables
	2.1.1. Compute percentage time allocated
	2.1.2. Compute weighted rank
	2.1.3. Obtain optimal combination

	2.2. Image denoising using deep learning
	2.2.1. Datasets, forward simulation, and data splits
	2.2.2. Network architectures
	2.2.3. Loss functions
	2.2.4. Training
	2.2.5. Subject-specific denoising

	2.3. Image analysis
	2.4. Statistical analysis
	2.5. Experiments
	2.5.1. Experiment 1–Throughput
	2.5.2. E2–Image quality
	2.5.3. E3–SNR recovery
	2.5.4. E4–Repeatability

	2.6. Visualizing learned filters for explainable AI

	3. Results
	3.1. Intelligent acquisition using look-up tables
	3.2. Image denoising using deep learning
	3.2.1. Datasets and forward-simulation
	3.2.2. Loss functions
	3.2.3. Training
	3.2.4. SS denoising

	3.3. Statistical analysis
	3.4. Experiments
	3.4.1. E1–Throughput
	3.4.2. E2–Image quality
	3.4.3. E3–SNR recovery
	3.4.4. E4–Repeatability

	3.5. Visualizing learned filters for explainable AI

	4. Discussion and conclusion
	4.1. Limitations and future work
	4.1.1. Intelligent protocolling
	4.1.2. Data distribution
	4.1.3. Evaluation metrics
	4.1.4. Inference on denoising models
	4.1.5. Explainable AI

	4.2. Conclusion

	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


