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Functional magnetic resonance imaging (fMRI) has revolutionized human brain

research. But there exists a fundamental mismatch between the rapid time

course of neural events and the sluggish nature of the fMRI blood oxygen

level-dependent (BOLD) signal, which presents special challenges for cognitive

neuroscience research. This limitation in the temporal resolution of fMRI puts

constraints on the information about brain function that can be obtained with

fMRI and also presents methodological challenges. Most notably, when using

fMRI to measure neural events occurring closely in time, the BOLD signals

may temporally overlap one another. This overlap problem may be exacerbated

in complex experimental paradigms (stimuli and tasks) that are designed to

manipulate and isolate specific cognitive-neural processes involved in perception,

cognition, and action. Optimization strategies to deconvolve overlapping BOLD

signals have proven e�ective in providing separate estimates of BOLD signals

from temporally overlapping brain activity, but there remains reduced e�cacy of

such approaches in many cases. For example, when stimulus events necessarily

follow a non-randomorder, like in trial-by-trial cued attention or workingmemory

paradigms. Our goal is to provide guidance to improve the e�ciency with which

the underlying responses evoked by one event type can be detected, estimated,

and distinguished fromother events in designs common in cognitive neuroscience

research. We pursue this goal using simulations that model the nonlinear and

transient properties of fMRI signals, and which use more realistic models of

noise. Our simulations manipulated: (i) Inter-Stimulus-Interval (ISI), (ii) proportion

of so-called null events, and (iii) nonlinearities in the BOLD signal due to both

cognitive and design parameters. We o�er a theoretical framework along with

a python toolbox called deconvolve to provide guidance on the optimal design

parameters that will be of particular utility when using non-random, alternating

event sequences in experimental designs. In addition, though, we also highlight

the challenges and limitations in simultaneously optimizing both detection and

estimation e�ciency of BOLD signals in these common, but complex, cognitive

neuroscience designs.
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1. Introduction

Functional magnetic resonance imaging (fMRI) is a powerful

method for understanding the functional anatomy of the

human brain (e.g., Kwong et al., 1992; Ogawa et al., 1992;

Glover, 2011). In cognitive neuroscience, fMRI has provided

a rich view on the organization of human perception and

cognition (e.g., Corbetta et al., 2008; D’Esposito and Badre,

2012). Event-related fMRI is highly effective for analyzing data

from common cognitive-experimental designs (e.g., McCarthy

et al., 1997; Buckner, 1998; Huettel, 2012; Liu, 2012). For

example, such approaches are regularly applied to answer

questions about perception, cognition, and action (Kastner

et al., 1999; Corbetta et al., 2000; Jha and McCarthy, 2000;

Hopfinger et al., 2001; Winterer et al., 2002; Ranganath et al.,

2003).

One challenge for event-related methods in cognitive

neuroscience is the sluggish and delayed nature of the brain’s

hemodynamic response. The hemodynamic response unfolds over

the course of seconds, whereas the underlying associated neural

processes take place with millisecond timing. Therefore, the events

of interest in the brain in many experimental designs may occur

more closely together in time than can be easily resolved from the

blood oxygenation-level dependent (BOLD) signals we acquire

with fMRI. These basic facts present challenges, the first being

to measure brain responses to the events of interest separately

from those related to other temporally and spatially overlapping

events (e.g., one sensory signal vs. another) (e.g., Burock et al.,

1998).

Optimization strategies to deconvolve overlapping BOLD

signals have proven effective in providing separate estimates

of BOLD signals from temporally overlapping brain activity. A

number of studies have shown highly reliable event-related fMRI

estimates using randomized event sequences with second and

even sub-second interstimulus intervals (ISIs) (Buckner, 1998;

Burock et al., 1998; D’Esposito et al., 1999; Hinrichs et al.,

2000). Josephs and Henson (1999) characterized the relative

fitness and efficiency of random event sequences. They generated

random event sequences that encompass the space of varying

parameters of ISIs of stochastic and jittered variations in event

onset times (Burock et al., 1998; Friston et al., 1999). Dale

(1999) suggested jittering the time interval between onsets of

consecutive stimuli, recommending that the average of these

intervals should be kept small. Later, this deconvolution approach

was further generalized by Friston et al. (1999) for different

combinations of conditions, increasing the efficiency of fMRI

analyses. This was an important advancement because most

cognitive neuroscientists are interested in multiple contrasts

in a single study, for instance, the difference in activation

between different conditions and the baseline, or the difference

between a treatment and a control condition (Huettel, 2012; Liu,

2012).

These strategies have also helped in determining the most

efficient sequence and timing of events for experimental designs.

However, they are based on strategies such as randomization

of events, orthogonal design of the design matrix (Liu et al.,

2001), deterministic jitter of their onset timings, and specialized

sequencing (m- sequences) (Buračas and Boynton, 2002; Kao et al.,

2009), which may be difficult or impossible to implement in

some common cognitive neuroscience experiments. For example,

in some designs the order of events cannot be fully randomized,

such as in cue-target attention paradigms where the events

(cue stimuli and target stimuli) repeat in an alternating fashion

(Hopfinger et al., 2000b; Taylor et al., 2008; Rajan et al.,

2019). In such alternating event-related designs, the sequence

of events is fixed and predetermined. These paradigms typically

involve presenting a cue to direct a participant’s attention,

followed by a target stimulus that requires a response. The

order of events (cues and targets) remains fixed throughout

the design. During each case, a cue is always followed by

a corresponding target. Figure 1A illustrates a basic cue-target

paradigm with a single cue (C) - target (T) pair repeating on

a trial-by-trial basis (CTCTCT. . . ), while Figure 1B demonstrates

its extension to multiple cue-target pairs (example codes can be

found in the toolbox repository: https://github.com/soukhind2/

deconv).

Over the years, some studies have attempted to address the

analytic challenges in these situations where events alternate and

cannot, therefore, be completely randomized. Some have examined

various fitness criteria for alternating event-related designs (Josephs

and Henson, 1999; Liu and Frank, 2004; Ruge et al., 2009), while

others have tried to explore different parameters to minimize

the overlap (Huettel et al., 2004; Lütkenhöner, 2010; Liu, 2012).

Recently, Prince et al. (2022) developed GLMsingle, a data-driven

single-trial approach to deconvolve events close together in time.

It uses techniques such as appropriate hemodynamic response

function (HRF) fitting, data-driven denoising of signals, and

regularization of weights in fMRI regression models to estimate

single-trial responses and optimize detection efficiency (see also,

Turner et al., 2012; Abdulrahman andHenson, 2016). Nevertheless,

as it can only be employed after fMRI data collection, it is

insufficient to determine the best parameters during the initiation

and design phase of any experiment (though it can be used with

already available fMRI datasets to get some inference). Therefore,

despite such important efforts, there has been no direct and

detailed quantification of the parameters used to assemble a

sequence of constrained and repetitive events for a design (for

example, bounds of inter-stimulus-interval, proportion of null

trials, contextual factors). Despite these important efforts, there

has been no detailed quantification of the parameters used to

assemble a sequence of constrained and repetitive events for a

design (for example, bounds of inter-stimulus-interval, proportion

of null trials, and contextual factors). Furthermore, it is unclear

how changing specific design parameters affects their efficacy

in creating efficient event-related designs. We aim to bridge

this gap by exploring a large range of combinations of design

parameters and strategies that are appropriate for alternating

event-related designs in cognitive neuroscience research. Finally,

we introduce, deconvolve, a Python-based toolbox to facilitate

the implementation of the theory and techniques used in this

work.

Using simulations, our approach involves a comprehensive

search for estimation efficiency and detection power over the

space defined by the bounds of typical design parameters. We

Frontiers inNeuroimaging 02 frontiersin.org

https://doi.org/10.3389/fnimg.2023.1068616
https://github.com/soukhind2/deconv
https://github.com/soukhind2/deconv
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Das et al. 10.3389/fnimg.2023.1068616

FIGURE 1

Schematic representation of the entire simulation framework. Divided into two distinct pipelines, the (A) portion of the figure represents the noise

pipeline, and the (B) shows the response signal pipeline. Finally, they are added together to obtain the final simulated signal for a specific set of

parameters.

implemented a realistic model of nonlinearity for our simulations.

We also included a more realistic noise component in our

simulations by using the excellent tools provided in fmrisim,

a python package developed by Ellis et al. (2020), which

extracts statistically accurate noise properties from fMRI data.

In addition, we attempt to consider the nonlinear properties

of BOLD signals that are introduced in many event-related

experimental designs. We will describe a “fitness landscape”, whose

dimensions are governed by the different parameters of interest.

This landscape will serve as a reference for creating optimal

experimental designs for many common cognitive neuroscience

research questions.

2. Methods

2.1. Modeling alternating event-related
responses

In this section, we describe the methods and theory behind our

simulation model. Figure 2 shows the entire simulation framework.

Primarily, there are two distinct pipelines in our model, the

realistic fMRI noise and the signal consisting of alternating

event sequences, that are combined to generate the realistic

brain signal.

2.1.1. Nonlinear response
In order to enable the model to describe the neuronal

and neurophysiological nonlinear dynamics of the human brain,

we use Volterra series (Wray and Green, 1994), as initially

described in Friston et al. (1998). This approach has the

ability to capture ‘memory’ effects; that is, it can be used

for system identification where the output of a nonlinear

system depends on the input to the system at all other

times. It can be represented as a natural extension of the

classical linear system representation and has the general

form:

y(t) = h0 +

∫

R
h1(τ1) · u(t − τ1)dτ1

+

∫∫

R
h2(τ1, τ2) · u(t − τ1) · u(t − τ2)dτ1dτ2

+

∫∫

R
h3(τ1, τ2, τ3) · u(t − τ1) · u(t − τ2) · u(t − τ3)dτ1dτ2dτ3

+ ...

(1)

Mathematically, y(t) is an output signal, in our case the

hemodynamic signal or the fMRI response, u(t) is the stimulus or

event sequence, hn(τ1, τ2. . ..τn) is the n
th order Volterra kernel. For

simplicity, we reduce the series to its 2nd order, and use a causal

form as derived in Friston et al. (1998),

y(t) = f

(

∫ T

0
h1(τ1) · u(t − τ1)dτ1

)

(2)

where f (.) is a nonlinear scalar function. Expansion of f (.) as a

McLaurin series gives us the 2nd order Volterra series,

y(t) = f (0)

+ f
′

(0)

∫ 0

T
h1(τ1) · u(t − τ1)dτ1

+ f
′′

(0)

∫ T

0

∫ T

0
h1(τ1) · h1(τ2) · u(t − τ1) · u(t − τ2)dτ1dτ2

(3)

Equation 3 demonstrates the mathematical similarity to a

2nd order Volterra series, with its first order kernel h1(τ1) as

the canonical double gamma hemodynamic response function

identified in a least-squares approximation or a linear regression
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FIGURE 2

Schematic representation of the entire simulation framework. Divided into two distinct pipelines, the top portion of the figure represents the noise

pipeline, and the bottom shows the response signal pipeline. Finally, they are added together to obtain the final simulated signal for a specific set of

parameters.

analysis (Friston et al., 1995, 1998). The second-order kernel

is a product of the first-order kernel with itself. Or in other

words, h2(τ1, τ2) is replaced by h1(τ1).h1(τ2). This model can be

expressed as a convolution of the stimulus function with the

first-order kernel (the latent hemodynamic response function)

and then expressing it as a higher-order (e.g., second-order)

polynomial of itself. Figure 3 shows the results of a typical

simulation. This represents the average response, integrated

over a 441s stimulus train. The data were simulated based

on a single event presented at different rates, the duration of

the interval (or ISI) being jittered uniformly and modulated

by the bounds of ISI. Each point or pixel in the space

represents the corresponding average response integrated over

the entire sequence. Figure 3A represents the estimated response

when nonlinear effects are taken into consideration (using both

the first and second-order kernels). Figure 3B represents the

same in the absence of nonlinear effects (i.e., by setting the

second-order kernel to zero). Contrasting Figures 3A, B, the

saturation of response at or below 2s ISI in the latter case

shows that nonlinearities become important at short ISIs at

∼ 2s and less. These results are in agreement with what

was described in Figure 3 of Friston et al. (1998). It can be

noted that the average response increases asymptotically as the

ISI becomes shorter which is not the case when the second-

order kernels are taken into account (Figure 3). (To compare

the optimality measures in absence of Volterra Kernels, refer to

Supplementary Figure 1).

2.1.2. Event sequence and transient temporal
profile

Another issue that is important to consider for our simulation

is whether the hemodynamic response itself varies with varying

parameters, such as the time between events. In our modeling,

we are focusing on a particular type of experimental design that

has a systematically alternating stimulus sequence, such as a cue-

target design, typical of studies of attention (e.g., Posner and

Raichle, 1994; Corbetta et al., 2000; Hopfinger et al., 2000a). A

prime question in this design context is how the stimulus-onset

asynchrony (SOA) between cue and target affects the ability to

deconvolve the overlapping hemodynamic responses. On the one

hand, as a general principle, as the SOA becomes longer, the overlap

between the cue-related and target-related hemodynamic responses

is reduced, and so on the face of it, one should simply use longer

SOAs (e.g., Hopfinger et al., 2000a). However, on the other hand,

there are psychological, experimental, and practical reasons not to

simply use very long SOAs (e.g., 10 s and over). Since these types

of cognitive neuroscience studies manipulate human behavior as

the goal, longer cue-target SOAs undoubtedly also affect how the

subject performs (explicitly or implicitly) the task, and likely related

to this, the shape of the hemodynamic response. For example,

studies of working memory have shown delay period activity in the

hemodynamic response that appears as an increased duration of

the response (e.g., Jha and McCarthy, 2000); put another way, the

hemodynamic response does not return to baseline as rapidly as

it would in response to a simple sensory or motor event requiring
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FIGURE 3

Nonlinear interactions in stimulus sequences. Integrated response over a simulated 441s single event stimulus sequence as a function of lower and

upper bounds of ISI. Each dot pixel represents the magnitude of integrated response in units. (A) Response in presence of nonlinear e�ects. (B)

Response in absence of nonlinear e�ects.

no subsequent cognitive processing. This delay period activity can

be attributed in different paradigms to cognitive functions such

as attention shifting, attention engagement, memory encoding,

retention, or retrieval, motor preparation, cognitive task set, and

other cognitive processes (Jha and McCarthy, 2000; Hopfinger

et al., 2001; Ranganath et al., 2003; Slagter et al., 2007; Noah et al.,

2020). We modeled this non-linearity in our study, referring to it

as transient temporal profiling (TTP), using sub-impulse functions

(amplitude < 1 ).

The event sequence, u(t) from Equation (3) in Section 2.1.1. is

modeled as follows,

u(t) = u1(t)+ u2 + ...+ un(t) (4)

where,

ui(t) =

{

1 event

0 noevent
, i = 1, 2, 3...n (5)

ui(t) is the event sequence for an individual event type.

In the event sequence, the occurrence of a brief event or

task is represented with a 1 lasting for a duration of 1 TR

step, where 1 TR has been set to 1.5s. The value of 0 is set

to indicate either no event (stimulus) or the baseline activity.

Throughout the study, the spacing (SOA) between two events

is jittered uniformly as a function of the lower (LISI) and

upper (UISI) bound of the time interval (for example, 2–8 s).

In order to incorporate a TTP in our model related to the

stimulus sequence, we modified the method proposed by Ruge

et al. (2009) and implemented it to create the neural input

functions for different paradigms and interval parameters. In

addition to modeling the neural input function for an event

as 1.0, Ruge et al. (2009) created graded amplitude profiles to

mimic the preparatory processes as observed in selective attention

experiments. For short delays between events, they used graded

amplitudes of 1.0 and 0.66, and for longer delays, they used 1.0,

0.66, 0.66, 0.66 and 0.66. We modified their approach and further

broadened it to comprehensively model more TTPs related to

selective attention and working memory across different ranges

of lower and upper bounds of ISI. Specifically, we adapted the

amplitudes of their graded profiles (1.0 for event-related activity

and 0.66 for preparatory activity) but placed them in a different

sequence and order of delays. Thus, TTPs 1 and 2 were created

following their method, and TTPs 3–6 were created by modifying

them as described below. This modification was important to

accurately emulate the different cases of preparatory activity

during selective attention or working memory experiments that

use non-randomized alternating sequences of stimuli (e.g., cue-

target designs).

We explored a limited range of patterns theoretically possible

for experimental designs common in attention and working

memory-related studies, modeling the TTPs accordingly. The

different profiles are shown in Figure 4. Profiles 1–4 are

implemented to emulate paradigms related to attentional control,

while 5 and 6 are for workingmemory. Each profile is used tomimic

neural activity throughout the entire interval period. The sub-

impulse functions (amplitude< 1) are placed in between the events

to represent delay period activity. Note that the BOLD response

in the presence of TTPs (Figure 4, solid green lines) is different

from when modeled just using the stimulus functions (Figure 4,

broken green lines). This maintenance of BOLD activity raised

above baseline during the delay period not only plays a significant

role in non-linear interactions as discussed in Friston et al. (1998)

but is also crucial in accurately modeling the activity during the
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FIGURE 4

Transient temporal profiles (TTPs) used in the simulation. (Solid Green Line: BOLD response in the presence of sub-impulse functions; Dotted Green

Line: BOLD response in the absence of sub-impulse functions). (A) Profiles 1–4 was designed for an attentional control paradigm. (B) Profile 5 and 6

was designed for a working memory paradigm.

interval period- as reported in Medendorp et al. (2006), Sylvester

et al. (2008), and Liu et al. (2016).

For attentional control experiments, as discussed earlier, the

event sequence is designed as cues followed by targets. In order

to account for the possible variations in the BOLD signal during

the interval between a cue and target related to attentional control,

Profile 1 was designed with two amplitudes [1, 0.66] lasting 2 TR

steps for short delays between a cue and target (short LISI andUISI).

Similarly, Profile 2 has amplitudes [1, 0.66, 0.66, 0.66, 0.66] lasting

5 TR steps, and is used for intervals having short LISI but long UISI .

Profiles 3 and 4 are analogous to 1 and 2, respectively, with the only

exception being in the case of longer LISI designs. The brief delay

period in Profiles 3 and 4 between stimulus onset andmaintenance-

like activity lasting for LISI / 2 TR steps, is intended to mimic a

subject’s relaxation period prior to preparatory activity when the

subject estimates a somewhat definitive long interval (longer LISI)

before the upcoming target. Figure 5A shows how different TTPs

for attentional control are implemented across the map of LISI
and UISI .

For experiments related to working memory, Profiles 5 and

6 were constructed to account for ongoing maintenance-like

activity. Profile 5 was designed with varying amplitudes of

[1,0.66.0.66. . . ...until next event], to model an extremum of the

constant maintenance of BOLD signal between two events when

they are spaced close to each other (short LISI and UISI). Profile

6 designed for intervals having longer LISI , is similar to 5, with

an exception of the inclusion of a brief delay in the onset of

maintenance-like activity. Figure 5B describes the usage of TTPs

5–7 for the case of working memory across the map of LISI
and UISI .
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FIGURE 5

Transient Temporal Maps (TTPs). TTP map encompassing the space defined by the bounds of the inter stimulus interval. (A) Usage map of profiles 1 -

4 designed for an attentional control paradigm. (B) Usage map of profiles 5 and 6 for a working memory paradigm.

Most importantly, for all the TTPs, the exact values were chosen

following the approach of Ruge et al. (2009). Also, the duration of

the brief delay period in TTP Profiles 3, 4, and 6 was deliberately

chosen as LISI/2, tomodel the situations thatmay arise in cue-target

designs with longer delays such as subject delaying the engagement

of the cognitive operations of interest until they decide to, or

the time it takes for the brain to ramp up to reach maintained

levels of activity. We retained the primary profiles because other

similar scenarios produced highly similar parameter estimates and

optimality results (see Supplementary Figures 2–4).

2.1.3. Noise source
Noise in the fMRI environment consists of physiological noise

related to cardiac and respiratory activity, head/body movements,

system and task-related noise, drift, and autoregressive/ moving

average (AMRA) noise related to the machine. We used

fmrisim (Ellis et al., 2020) to extract the different noise

parameters and to generate a similar noise template from a real

fMRI dataset. For our analysis, we used the publicly available

dataset (Bejjanki et al., 2017), (http://arks.princeton.edu/ark:/

88435/dsp01dn39x4181). We used a rest run data from the dataset

in order to estimate and generate the noise to be included in

the model. Finally, the response generated as described in Section

2.1.1 was combined with the noise template to obtain a realistic

brain response for a particular experiment. The noise pipeline in

the simulation is presented in the upper half of Figure 2. The

graphical representation of the simulation framework including

the generation of the BOLD sequence is presented in Figure 6.

In addition, we found a significant effect of the noise source in

modeling the responses as well as the optimality measures (see

Supplementary Figure 5). Our statistical models fit significantly

better when using realistic fMRI noise as compared to other types

of noise.

2.2. Parameterizing design optimality

To parameterize the optimality of our simulated designs and

estimate the underlying signal, we implemented the statistical

methods used in previous works (Dale, 1999; Josephs and Henson,

1999; Wager and Nichols, 2003; Henson, 2007; Kao et al., 2009).

It involves generating a predicted response by convolving the

hemodynamic response function with the stimulus sequence

(Figure 6), which is then compared to the actual simulated

response using General Linear Models (GLM). To deal with

the autocorrelational nature of the fMRI signal, we used a

prewhitening approach to generate the covariance matrix of the

parameter estimates for GLM. This is discussed in detail in the

Supplementary material.

2.3. Simulations

In this section, we consider alternating event-related fMRI

sequence simulations with two event types namely a cue and a

target in a sequence, where a target is always preceded by a cue.

The magnitude of TR was set to 1.5s and the generation length was

set to 294 TRs (equal to the duration of the noise template from

fmrisim). The contrast matrix C was chosen to be [1 0], due to our

primary interest in the cue-induced activity (in attention-related
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FIGURE 6

Graphical representation of the simulation framework. The stimulus train (left) is convolved nonlinearly with the hemodynamic response function

(inset between stimulus train and noise template), followed by addition of the noise template (middle) to generate the simulated data (right).

experiments), its convolution pattern with other signals, and the

interval between a cue and its successive target. In addition, we used

the canonical HRF, a mixture of two Gamma functions that elicit

a peak at around 5s followed by a subsequent undershoot (SPM12,

http://www.fil.ion.ucl.ac.uk/spm). The duration of the HRFwas 30s

where the response returned to baseline after 16 s. All the reported

simulations included the second-order nonlinear model as derived

from Equation 3.

2.3.1. Simulation 1
We first investigated how ISI influenced design optimality. We

generated a fitness landscape of detection power and estimation

efficiency by exploring every combination of LISI and UISI from 1s

to 20s with increments of 1s. The efficiency measure for each point

in the fitness landscape was derived by taking the mean optimality

as the population reference of 100 random event sequences. The

ISI was uniformly jittered between the bounds of LISI and UISI .

The magnitude of activation of cues and targets (or events A and

B - whose amplitude were set to 1 in the stimulus sequence) were

set to be equal to each other i.e., equal to 1. Simulations were

separately carried out for attentional control TTPs and working

memory TTPs.

2.3.2. Simulation 2
Past work has suggested that in any event-related fMRI

experimental design with a rapid presentation of events, the

introduction of null—events at random positions can ameliorate

the efficiency of a design (Friston et al., 1999; Josephs and Henson,

1999). Null events can be considered as non-occurrence of an event

that should have occurred in a given generated sequence. In this

simulation, we set a certain proportion of targets to be null events,

and we call them “null-targets,” and thus the null targets are the

non-occurrence of a target when the target would normally occur

in the design. Since one cue followed by one target constitutes a

“trial,” a cue followed by a null target is referred to here as a “partial

trial.” We varied the proportion of partial trials in a sequence from

0% to 50%. For instance, if a sequence is made up of 100 trials, a

proportion of 10% partial trials would mean 90 complete trials and

10 partial trials, or in other words, any 10 random cues will not

be followed by their respective targets. Along with that, we further

varied the UISI from 2 to 20 with an increment of 2, with LISI held

constant, to explore how these parameters affect the optimality of

a design. In a similar fashion to Simulation 1, the magnitude of

activation of all the events was set as equal to each other. This

simulation was carried out in the paradigm of attentional control

only (TTP 1–4).
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2.4. Computation time

All simulations were coded in Python 3.7.1 and run on anApple

MacBook Pro 2017 with a 2.3 GHz Intel Core i5 and 8GB 2133MHz

DDR3 RAM. For a generation size of 294 TRs, Simulation 1 took 2

min and 27 s to complete. Simulation 2, having limited iterations,

took less than a minute. On another note, when simulation 1 was

carried out separately with a longer generation size of 660 TRs,

required∼ 18 min to conclude.

3. Results

3.1. Simulation 1

The fitness landscape for the attentional cueing paradigm in

Figure 7A shows the detection power as a function of LISI and UISI .

Each pixel in the landscape represents the corresponding detection

power as a function of a given LISI and UISI . For shorter ISIs ∼

1 − 2s, the results depict a sharp drop in detection power. Further,

we find that the maximum power to detect a signal is when both

the bounds of ISI are around 5-15s (LISI and UISI respectively), as

observed in Figure 7A. These results replicate the findings ofWager

and Nichols (2003) (their Figure 6, simple nonlinear assumption)

and Josephs and Henson (1999) (their Figure 2A, alternating DE).

We have also observed the effects of TTPs separately on the

optimality of design sequences. In general, TTPs of various forms

contribute toward increasing the entropy of the signal thus aiding

the detection of peaks in modest ISI ranges (LISI 2-3s, UISI 3-6s,

Supplementary Figure 6).

Figure 7B provides the estimation efficiency as a function of ISI

bounds for the attentional cueing simulations. Results as expected,

tend to peak at low LISI and high UISI . This suggests that the higher

the bounds of jitter of interval is, the better the shape of the HRF

is retained in the response signal; that is, there is less overlap in

the HRFs, leading to less distortion. In order to visualize the effects

of the optimality measures across parameters, we investigated the

individual BOLD time courses. Figure 9 compares the different

simulated responses. Note that region II (LISI ∼ 5,UISI ∼ 9) has

the highest detection power. This can also be corroborated by its

corresponding time course, which has clear variations in the signal

and the individual hemodynamic response peaks are resolvable

thus optimizing the detection power. On the contrary, the poor

shape of individual responses reduces estimation efficiency to a

large extent.

On another note, region III ((LISI ∼ 3,UISI ∼ 19) has the

most optimal HRF estimation efficiency. In Figure 9, at the top

left is the underlying hemodynamic response function (canonical

double gamma HRF) of all simulations. Precise similarities can be

observed between the shape of the underlying response function

and that of individual responses in the time course of region II,

thus maximizing estimation efficiency. It can be argued that having

such distinctive and resolvable peaks of the individual responses for

regions III and IV, the detection power should also be high. But it

is also the case that having extremely long intervals between stimuli

reduces the total number of trials in a particular sequence (since the

total time is limited), thus indirectly affecting statistical power and

detection of the signal. It can also be noted that as events are spaced

close together in time as defined by parameters of region I, the time

course shows minimal variation in the signal, thus containing no

meaningful information to either detect or estimate the response.

On a side note, if the events were randomized and rapidly presented

as per the parameters at region I, as performed in Burock et al.

(1998), the time course would have hadmuch better estimates about

detection and estimation. Since the alternating designs cannot

exploit the power of randomization, rapid presentation of stimuli

being challenging is a less sought-after choice.

3.2. Simulation 2

In Simulation 1, we showed the influence of ISI on the

optimality of a design sequence. In this Simulation 2, we further

assess the effect of both ISI and the proportion of partial trials

(null events) on design optimality. In this design, partial trials

were randomly distributed, and their proportion was varied in a

sequence. Figures 10A, B, respectively, show how detection power

and estimation efficiency are modulated by the inclusion of partial

trials and parameters of ISI. The extended delay interval in partial

trials now provides an added baseline in a design that directly

influences the optimality. From Figure 10A, we see that inclusion of

partial trials primarily affected the detection power at shorter ISIs.

As the UISI increased, with LISI held constant at 2, the detection

power for all partial trial proportions converged. This pattern

reflects that individual responses to events that are close together

in time, overlap with each other, thus making it difficult for the

predictors in the design matrix to explain the variance in the BOLD

response. Thus, the inclusion of partial trials effectively spaces out

events (and introduces a larger jitter in the ISI), which reduces

overlap between individual responses, and as a result, increases the

detection power. Additionally, this effect diminishes as the bounds

of the jittered delay interval are increased, to a point (∼ 14s) where

the overlap is minimized due to the spacing of events. These results

are in agreement with Friston et al. (1999) (their Figure 6B, dotted

line).

The estimation efficiency measures, shown in Figure 10B,

depict an asymptotic relationship between efficiency and ISI

bounds for all proportions of included partial trials. It can also

be seen that there is a benefit even with only 10% partial trials

included in the design sequence, compared to having no partial

trials. These findings were further extended and corroborated by

running different simulations that considered greater fixed LISI
(Supplementary Figures 7, 8).

4. Discussion

The aim of the present simulation study was to identify the

optimal design parameters for event-related fMRI experiments that

include alternating stimuli (e.g., cue-target designs). Our analyses

included a simple but realistic model of nonlinearity and the noise

profile of BOLD signals in fMRI. Our simulations considered the

roles of (i) cue-to-target ISI (ii) size of the ISI jitter (iii) effects of

nonlinearity that is related to experimental factors, such as whether

the shape of the HRFwould be expected to be different as a function

of, for example, maintenance like activity during working memory
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FIGURE 7

Fitness landscapes for Simulation 1–Attention. Each pixel in the landscape represents the corresponding measure of optimality as a function of lower

and upper bounds of ISI for attentional control transient profiles (TTP 1-4). (A) Detection power. (B) Estimation E�ciency.

or attention, and (iv) the proportion of partial-trials i.e., cues not

followed by targets.

We found that contrary to typical assumptions in fast,

randomized event-related designs (Burock et al., 1998, at short ISIs

around 2–4 s, detection power falls off dramatically in alternating

designs. This is likely because of the saturation of the signal when

events are placed close to each other in time in an alternating

sequence. When saturation occurs, the individual signal peaks for

each event overlap with each other to large extents, thus making

it difficult to deconvolve one from the other. In addition, at

short ISIs, the sluggish time course of the HRF is too slow to

capture the high-frequency components of the underlying neural

processes associated with the closely placed events. We found that

the optimal detection power for alternating event-related fMRI

designs was obtained at intermediate ISIs having LISI and UISI

of around 5-15s. Such an ISI space, with a mean ISI of around

9 s, gives us an inter-event interval (interval between events of

the same type, e.g., cue-to-cue) of around 18 s, which closely

resonates with the dominant frequencies of the assumed HRF.

Finally, when the duration of ISI is increased over 16 s, we

observe a sharp drop in detection power. This can be attributed

to weighing against the number of allowable trials with increasing

ISI since the total duration of the experimental sequence is finite

in our simulations; this was done because we want to investigate

real-world parameters, which include limitations of time in the

scanner. Thus, to consistently maintain high detection power for

finite-length experiments, researchers should avoid the asymptotic

bounds of ISI. We found similar ranges of optimal parameters of

detection power for our simulations of designs in working memory

tasks (Figures 8A, B).

On the contrary, we found that the highest estimation efficiency

can be achieved with maximum jitter during the delay period i.e.,

with the lowest LISI and highest UISI . Our results indicate that

estimation efficiency starts to peak at ∼ 16s. Since our assumed

HRF was modeled to be 16s long before returning to baseline,

a jittered ISI having low LISI , and UISI greater than 16s was

better able to estimate the variance in the response signal at each

corresponding time point of the HRF as dictated by our assumed

basis functions.

However, the key question still remains, as, what are the

best parameters for optimal detection and estimation of a brain

signal? Past studies (Liu et al., 2001; Wager and Nichols, 2003),

have demonstrated that there is an orthogonal trade-off between

detection power and estimation efficiency, i.e., one cannot optimize

both at the same time. As discussed in detail in Liu et al. (2001),

optimal detection power is achieved when the predictors of the

design matrix are orthogonal, or in other words, in a block

design. On the contrary, optimal estimation efficiency is achieved

with maximum variance in the stimulus sequence (Equation

5). Therefore, maximum detection power comes at the cost of

minimum estimation efficiency and vice versa. In agreement with

previous studies, we found completely opposite regions in the

space of parameters where each optimality criterion is optimized

for a certain event sequence (Figures 7, 8). Through our design

framework, it is evident that when events are placed close to

each other, signals overlap and add up thus making it easier to

detect a change in activity and achieve maximum detection power

(Region I, Figure 9). However, the problem with such a design is

the lack of information about the shape of an individual response

thus resulting in the lowest estimation efficiency. On the flip

side, maximum estimation efficiency can be achieved by inducing

longer and jittered delay intervals between stimuli (Region III,

Figure 9) so that the individual responses do not overlap. Despite

the obvious shortcoming of this inverse relation, it should be
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FIGURE 8

Fitness landscapes for Simulation 1–Working Memory. Detection power (A) and estimation e�ciency (B) as a function of lower and upper bounds of

ISI for working memory transient profiles (TTP 5 & 6).

noted that the apportionment of detection power and estimation

efficiency is completely dependent on the specific aims of the

experiment. Designs that maximize detection power are ideal for

experiments that intend to establish which region(s) in the brain

is active in response to a specific event. On the other hand,

designs that boost estimation efficiency is ideal for experiments

that aim to characterize the shape of the hemodynamic response

in a prespecified region of interest in the brain. Nevertheless, we

propose, at a cost to both, an ISI of around LISI = 2s andUISI = 10s

would be ideal to optimize both criteria as demonstrated in Figure 9

with a star marker.

In addition to how the cue-to-target ISI and its jitter influence

design optimality, we also demonstrate the relation between the

proportion of null events and the optimality of a design. Our results

indicate how null trials can benefit a design in terms of detection

power only at shorter ISIs whereas its effect on estimation efficiency

is significant throughout the entire parameter space even when a

mere 10% of all trials are set as null (Figure 10B). By varying the

upper bound of ISI with the lower bound kept fixed at 2, we find the

increase in detection power to be directly proportional to the ratio

of null trials and this effect diminishes beyond 10s. Conversely,

it is effective in estimation efficiency throughout the variation

of the upper bound of ISI. This relation is directly proportional

and somewhat monotonic up to 8s followed by an asymptotic

course. Often, it has been debated in the past that null events or

no-go events, can introduce bewilderment, failure of anticipation

of the next event in the subject, and oddball effects. From the

design perspective, this would mean a sudden truncation of the

current trial. This would prompt several different brain networks

to activate, which might lead to misleading data. As a cautionary

note, partial trials should be followed by events not related to the

experiment describing the end of a certain trial. For instance, a

note on the screen saying, “END OF TRIAL,” or a certain sound

pre-instructed to the subject that would mean the end of that

current trial.

Apart from the design parameters, it is also important to

discuss the novel factors of our simulation study that facilitate

the modeling of BOLD signals. It can be noted that when events

occur closely in time, there is strong evidence that nonlinear

effects predominate (Friston et al., 1999; Wager et al., 2005).

The optimization strategies developed in the past to evaluate

and select optimal parameters for fMRI designs, though efficient,

were based on the limited assumption that the convolutional

nature of BOLD signals is linear. Therefore, by assuming a linear

response (Dale, 1999; Liu and Frank, 2004) or an oversimplified

nonlinear model (Wager and Nichols, 2003; Kao et al., 2009),

past studies do not predict an accurate and reliable model of

the saturation of the signal. In addition, their assumed noise

models—such as temporally uncorrelated white noise, the addition

of a constant nuisance parameter, or a stationary noise model—

were oversimplified representations of the noise in real data.

Contrary to previous studies, we demonstrate the functional and

statistical significance of utilizing amore realistic fMRI noise source

as opposed to random noise (Supplementary Figure 5, improved

GLM fit for fMRI noise models). Similarly, we demonstrate

the contribution of nonlinear interactions (Volterra kernels) and

transient states between events (Supplementary Figure 6). These

minute interactions must be taken into account in order to

precisely estimate the optimal parameters of any event sequence.

The integration of practical BOLD signal characteristics and

psychological task parameters in our work yields highly accurate

results and in turn enhances the existing modeling procedures.

Note that most of the assumptions and models that have been

discussed in this work are based on the investigation of the same
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FIGURE 9

Individual time courses of hemodynamic responses corresponding to di�erent regions of the fitness landscapes. (Top Left) Underlying hemodynamic

response function of the time courses. (Top Right) Di�erent regions of the fitness landscapes. (Bottom) Corresponding time courses; (I)-

[LISI ∼ 2,UISI ∼ 3], (II)- [LISI ∼ 5,UISI ∼ 9], (III)- [LISI ∼ 2,UISI ∼ 19], (IV)- [LISI ∼ 18,UISI ∼ 19]; Region V [LISI ∼ 2,UISI ∼ 10], denoted by an asterisk would

be ideal for experiments optimized for both detection power and estimation e�ciency. (Note: These time courses have been simulated without any

noise to better display the details of the individual responses). This figure has been updated for better readability and to fix annotation errors.

voxel. That is, the effects of different types/classes of stimuli were

assumed to affect all voxels in the same fashion. In reality, say for

an attentional cueing experiment, it is not the case that a cue and

target will elicit the same degree of response in any given voxel,

because the physical stimuli themselves may be very different (e.g.,

a central arrow or even auditory cue vs. peripheral visual field target

stimulus), and the perceptual and cognitive activity evoked may be

in quite different brain networks (e.g., attention control networks

vs. sensory networks). Thus, the work we present represents the

extreme case when both a cue and target activate the same voxel

with equal intensities. It models the most extreme scenarios for

the convolution of signals, that is when the consecutive conditions

evoke identical responses, which if close together, can lead to

significant overlap. We present our results from the perspective

of the cue-evoked response, that is, what is the detection power

or estimation efficiency of the cue-evoked response? The results

will be different if the target and cue were modeled as dissimilar

responses. A stronger target response would be unfavorable to cue

optimality and vice-versa. These conditions have been simulated,

and the results can be found in the Supplementary Figures 6, 7.

Our work helps mitigate but does not eliminate, the challenges

of deconvolution of overlapping hemodynamic responses in

many common experimental situations using non-randomized

sequences. The field of cognitive neuroscience has developed

efficient routines to achieve high statistical efficiency in fMRI

designs. However, in many cases, studies that use non-randomized

alternating event sequences have not considered the problems

discussed here (see however, Woldorff et al., 2004). This leads

to severe overlapping of adjacent brain responses which can

potentially lead to poor efficiency. Our work discusses different
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FIGURE 10

Optimality measures from Simulation 2 Optimalities are as a function of the proportion of partial trials and ISI. (A) Detection power. (B) Estimation

e�ciency.
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parameters and their limits that are considered for designing

such alternating event sequences. By carefully choosing the design

parameters for an alternating sequence, such overlapping brain

responses can be deconvolved to a great extent. Our results serve

as a reference to cognitive neuroscientists who intend to develop

optimal designs for alternating sequences in their research.

5. Deconvolve: an fMRI deconvolution
toolbox as python module

Themethods presented in this work have been compiled into an

open-source Python toolbox called deconvolve, which can be found

at https://github.com/soukhind2/deconv. This toolbox supports

a wide range of design parameters, including event durations,

ISI bounds, jitters in the interval between events, and nonlinear

interactions between events (Friston et al., 1999). Additionally, it

includes tools for modeling various HRF functions to construct

time courses. It can generate diverse stimuli (multiple cues and

targets as well as null events), ISI jitters (uniform, exponential,

or stochastic), and response amplitudes for each event. In a

future release, the toolbox will support versatile functions to

manipulate trial-to-trial variability (Abdulrahman and Henson,

2016) including specifiable spatial covariance in neighboring voxels

(Mumford and Nichols, 2006; Wu et al., 2021) and scan variability

(McGonigle et al., 2000).

This toolbox extends the limitations of existing Python and

MATLAB modules/toolboxes. Contrary to them, deconvolve uses

nonlinear interactions, an fMRI noise source that is more realistic,

inter-interval transient states (TTPs), unequal response amplitudes,

and versatile timing parameters to model event sequences.

Furthermore, it is specifically designed to simulate alternating

event sequences in addition to random sequences. We provide

a seamless framework to cognitive neuroscientists, who wish to

simultaneously modulate several factors of the BOLD signal and

standard timing parameters to initiate and design their alternating

event-related fMRI experiments.

6. Conclusion

In this simulation study, we investigate the optimal design

parameters for event-related fMRI studies where stimuli occurring

closely in time may result in overlapping BOLD signals. We

focused on a particularly challenging experimental design type,

where alternating event sequences (non-randomized sequences,

e.g., cues-targets) result in poor results for many common analytic

approaches. We present a model structure that provides insight

into how the performance of an alternating event sequence varies

based on different experimental design parameters. Through our

assumption of a practical nonlinear model for the refractoriness

of the hemodynamic response, implementation of a realistic noise

model of fMRI data–and taking into account the various transient

temporal profiles–we have identified the design parameters for

reliable estimates of optimality for alternating event-related

fMRI designs.

We found that long ISI designs are less efficient in terms

of detection power, although they work well, as expected, for

characterizing the hemodynamic waveform (i.e., efficiency). As

expected, we found that for a particular design sequence, it is

difficult to simultaneously optimize both detection power and

efficiency. We included simulations showing how the inclusion of

null events at different ISIs can optimize alternating designs; in

alternating event-related fMRI designs with rapid presentation of

stimulus, the inclusion of null events (partial trials) is critical for fast

rates (shorter ISIs) as it increases the detection power of a design

many folds. In addition, we found a direct relationship between the

proportion of null trials and an increase in estimation efficiency.

We also introduced transient temporal profiles using graded

stimuli, which is a novel factor to characterize the maintenance-

like activities in an event-related fMRI experiment and should be

considered to optimize the design of an alternating event-related

fMRI experiment. Their use made our framework more practical

by factoring in the pivotal maintenance-like activity that is usually

present in alternating event-related fMRI designs and influences

their optimality.

Our aim here was to provide some additional information that

will permit cognitive neuroscience researchers to develop optimal

designs for many common experimental designs used in fMRI.

Nonetheless, future developments for event-related fMRI studies

using alternative event designs will need to focus on (i) multiple

trial type designs and their contrasts, where there are multiple cues

and targets; (ii) assessing parametric characteristics of the design

matrix, from a mathematical point of view, and (iii) the different

types of jitters such as exponential, fixed, and dynamic, stochastic,

and so on.
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