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Toward deep learning replacement
of gadolinium in neuro-oncology:
A review of contrast-enhanced
synthetic MRI

Elisa Moya-Sáez*, Rodrigo de Luis-García and

Carlos Alberola-López

Laboratorio de Procesado de Imagen, ETSI Telecomunicación, Universidad de Valladolid, Valladolid, Spain

Gadolinium-based contrast agents (GBCAs) have become a crucial part of MRI

acquisitions in neuro-oncology for the detection, characterization and monitoring

of brain tumors. However, contrast-enhanced (CE) acquisitions not only raise safety

concerns, but also lead to patient discomfort, the need of more skilled manpower

and cost increase. Recently, several proposed deep learning works intend to reduce,

or even eliminate, the need of GBCAs. This study reviews the published works

related to the synthesis of CE images from low-dose and/or their native —non CE—

counterparts. The data, type of neural network, and number of input modalities for

each method are summarized as well as the evaluation methods. Based on this

analysis, we discuss the main issues that these methods need to overcome in order

to become suitable for their clinical usage. We also hypothesize some future trends

that research on this topic may follow.
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1. Introduction

Magnetic resonance imaging (MRI) is a non-invasive imaging technique widely used in
clinical practice for the study of neuroanatomy. Gadolinium-based contrast agents (GBCAs)
have become a crucial part of MRI acquisitions in the brain for the detection, characterization
and monitoring of a wide range of diseases, such as multiple sclerosis (Silver et al., 1997),
brain tumors (Zahra et al., 2007), and Alzheimer’s disease (Khan et al., 2014; Montagne et al.,
2016), among others. Indeed,∼40% of all MRI examinations in Europe and in the United States
are performed with GBCAs (Runge, 2016). Particularly, for high-grade gliomas, where there is
usually damage of the blood brain barrier (BBB), GBCAs are essential to improve lesion detection
and monitoring due to the contrast enhancement visible in the T1-weighted images after the
GBCA injection (Warntjes et al., 2018).

However, compared to the acquisitions without GBCAs (hereinafter referred to as native),
the usage of GBCA in MRI results in patient discomfort during intravenous injection and
increases the need of skilled manpower, hardware and thus, costs (Shankar et al., 2018). In
addition, longer scan times in contrast-enhanced (CE) acquisitions reduce the accessibility to
MR scans and might also lead to motion artifacts and, consequently, to extra efforts in re-
acquiring or post-processing (Xie et al., 2022). Additionally, safety concerns have recently arisen
due to the possible deposition of the GBCAs in the brain (Gulani et al., 2017), especially, in
patients who need several follow-up acquisitions, as it is the case of oncological patients. Finally,
GBCAs are known to be water pollutants, leading to environmental issues (Inoue et al., 2020).
All of these issues encourage the avoidance of GBCAs in MRI routine exams.
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Safety and environmental concerns of GBCAs could be tackled by
the usage of new contrast materials (Wesolowski and Kaiser, 2016) or
novel sequences in which the injection is not required, such as amide
proton transfer (APT) imaging (Zhou et al., 2003) or arterial spin
labeling (ASL) (Petersen et al., 2006). Nevertheless, these techniques,
albeit promising, still require complex and expensive acquisition
schemes. In addition, the resulting images are usually more difficult
to analyze.

Deep learning (DL) could also be a potential solution for
minimizing GBCA exams due to the impressive results that this
technique has achieved in a wide range of image processing
applications, such as reconstruction (Yang et al., 2017), segmentation
(Akkus et al., 2017) and synthesis (Chartsias et al., 2017). Actually,
the literature contains a growing corpus of DL works which aim
at reducing, or even eliminating, the need of GBCAs in MRI;
specifically, these works propose approaches for the synthesis of full-
dose CE MRI from either low-dose or native acquisitions, using
different network architectures.

In this paper we review the state of the art related to the synthesis
of CE MR images that use DL techniques. Only journal papers
are taken in consideration for the sake of brevity. In addition, we
also analyze the evaluation methods used, current applications and
possible future trends, as well as the main limitations that could
hinder their clinical usage.

2. Deep learning synthesis methods

The DL methods included in this review were selected
with a search within the well-known repositories Scopus and
Web of Science (WOS). The search consisted in the Scopus
query: TITLE-ABS-KEY[("contrast enhanced" OR

"post contrast" OR gadolinium OR gbca* OR

multimodal*) AND (synthesi* OR virtual) AND

mri AND ("deep learning") AND ("brain tumor*"

OR glioma OR glioblastoma OR *oncology)] AND

LANGUAGE(english) AND SRCTYPE(j), and was adapted
accordingly for WOS. The query retrieved 20 and 19 manuscripts
in Scopus and WOS, respectively. After a first reading, eight out-of-
scope manuscripts were discarded from the former repository and 10
from the latter. Finally, eliminating coincidences we ended up with a
total of 12 manuscripts.

The methods that focus on the synthesis of CE weighted images
could be divided into two main groups depending on the nature of
the inputs (i.e., lose-dose vs. only native inputs). Both groups are
discussed below, and a summary of the main characteristics of each
of these methods can be found in Table 1.

2.1. Decreasing the dose of gadolinium

Methods that focus on the reduction of GBCAs range from 25%
of the dose (Ammari et al., 2022) to 10% of the dose (Gong et al., 2018;
Luo et al., 2021; Pasumarthi et al., 2021). As a reference, 100% of the
dose typically corresponds to 0.1 mm/kg. As can be seen in Table 1a,
all of these methods use as input the native T1-weighted (T1w) and
the low-dose CE T1w (ceT1w). In Ammari et al. (2022), the T2-
weighted (T2w) FLAIR (T2w-FLAIR) and the apparent diffusion
coefficient (ADC) are also considered as inputs. The main difference

between Gong et al. (2018) and Pasumarthi et al. (2021) is the size of
the dataset employed, being considerably higher in the latter.

Regarding network architectures, all of the authors used a
convolutional neural network (CNN) and, specifically, a UNet
(Ronneberger et al., 2015) which includes a contracting path that
encodes the input into a set of feature maps followed by a
(symmetrical) expansive path that decodes these features. Some
differences could be found in the data dimensionality processed by
the networks (i.e., 2D slices or 3D volumes). Notice that Luo et al.
(2021) and Pasumarthi et al. (2021) use a 2.5D network because the
network processes the data by chunks of 7 slices to avoid inconsistent
image enhancement across slices.

2.2. Bypassing gadolinium injection

A complete bypass of the GBCA injection is sought by other
authors; their methods are summarized in Table 1b. While earlier
methods used several input modalities to compensate for the lack
of GBCA-related information in the inputs, a trend for reduction
of the number of inputs has been since observed. Actually, the
last two entries in the table (Wang et al., 2022; Xie et al., 2022)
report the synthesis from only one input modality; to this end, in
Xie et al. (2022), a more sophisticated synthesis method is used,
which consists in two steps, namely, a 3D Retina UNet module
and a synthesis module. UNet architectures are also common
among these methods (Kleesiek et al., 2019; Hu et al., 2021;
Preetha et al., 2021; Xie et al., 2022), but other authors opt for
different configurations of generative adversarial networks (GANs)
(Dai et al., 2020; Sharma and Hamarneh, 2020; Preetha et al.,
2021; Wang et al., 2022). Still, the UNet is widely used as the
backbone (i.e., generator network) of the GANs as in Dai et al.
(2020), Sharma and Hamarneh (2020), and Wang et al. (2022).
Interestingly, methods in this section use larger datasets than those
in Section 2.1.

2.3. Discussion about the methods

One of the main questions about the synthesis of CE weighted
images is the number and the relevance of the required input
modalities. First, the inclusion need of a low-dose CE image should
be assessed. Assessing whether native image modalities have all the
information required for a truthful prediction may be controversial.
For example, in Bône et al. (2021) — a previous conference paper
of the same authors than Ammari et al. (2022), see Table 1a—, the
authors identified that the low-dose ceT1w was key for the synthesis,
and the performance of the synthesis method systematically and
significantly dropped when the low-dose image was not provided as
input. However, the authors referred to in Table 1b achieved high
quality synthesis only with native image modalities as inputs, at
the expense of larger datasets. Note that in some methods such
as Gong et al. (2018) and Pasumarthi et al. (2021) the testing sets
are larger than the training sets, which is an unusual practice for
which the authors do not provide a clear explanation. The former
conducted a quantitative evaluation of the model on a separate
dataset of gliomas to test if performance varied for a specific clinical
indication, and the latter focused on achieving a balanced training
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TABLE 1 Summary of the DL synthesis works reviewed.

Ref. Inputs Outputs Dataset
#Scans

#Institutions Vendors #Scanners Network
(Training∗/Test)

a) Decreasing gadolinium dose

Gong et al. (2018)
T1w and

ceT1w
30 mixed-conditions 60

1 GE 6 2D UNet
ceT1w10%dose and 30 glioma (10/50)

Pasumarthi et al. (2021)
T1w and

ceT1w 640 heterogeneous
640

3
GE, Siemens

8 2.5D UNet
ceT1w10%dose (69/571) and Philips

Luo et al. (2021)
T1w and

ceT1w 83 heterogeneous
83

1 Philips 1 2.5D UNet
ceT1w10%dose (30/53)

Ammari et al. (2022)
T1w, T2w-FLAIR, ADC

ceT1w
145 primary brain tumors 145

1 GE 2 3D UNet
and ceT1w25%dose or brain metastases (107/38)

b) Bypassing gadolinium injection

Kleesiek et al. (2019)
T1w, T2w, T2w-FLAIR,

ceT1w
82 healthy 116

– Siemens 2 3D BayesUNet
DWI (x3)† and SWI (x4)†† or glioma (104/12)

Dai et al. (2020)∗∗
T1w, T2w, T1w, T2w,

274 glioma
274

BRATS2015 – – StarGAN
T2w-FLAIR, ceT1w T2w-FLAIR, ceT1w (220/54)

Sharma and Hamarneh (2020)∗∗
T1w, T2w, T1w, T2w,

285 glioma
285

BRATS2018 – – 2D (Multi-Modal) GAN
T2w-FLAIR, ceT1w T2w-FLAIR, ceT1w (270/15)

Hu et al. (2021)∗∗
T1w, T2w, T1w, T2w,

800 glioma
800 BRATS2017

>1 >1 UNet + CNN
T2w-FLAIR, ceT1w T2w-FLAIR, ceT1w (533/267) + TCGA + 1

Preetha et al. (2021)
T1w, T2w, T2w-FLAIR,

ceT1w 2061 glioblastoma
6929

230 – –
3D UNet or

and (optionally) ADC (5005/1924) 3D CGAN

Chen et al. (2022) T1w, T2w, and ADC ceT1w 300 brain tumors
426

1 Siemens 1 3D CNN
(411/15)

Xie et al. (2022) T1w ceT1w 369 glioma
369

BRATS2020 – –
3D Retina UNet +

(200/169) Synthesis module

Wang et al. (2022) T2w-FLAIR ceT2w-FLAIR 221 unkown
221

2
GE, Siemens

4
2D-to-3D GAN +

(148/73) and Canon 3DGAN (synthesis)

a) Methods that propose the synthesis of full-dose CE images from their low-dose counterparts. b) Methods that propose the synthesis of full-dose CE images from only native images. Note that the dash indicates the absence of that datum in the manuscript. The image

modalities are T1-weighted (T1w), CE T1w (ceT1w), T2-weighted (T2w) fluid-attenuated inversion recovery (T2w-FLAIR), CE T2w-FLAIR (ceT2w-FLAIR), apparent diffusion coefficient (ADC), diffusion weighted imaging (DWI), and susceptibility weighted imaging

(SWI).
∗Training value refers to the summation of training and validation data for the manuscripts in which these two values are given separately.
∗∗Multimodal method: it allows the synthesis with different configuration of inputs and outputs. Contrast-enhanced T1w image modality could be among the outputs.
†Diffusion weighted imaging (DWI) group: b = 0, 1,200 mm2/s and the ADC map.
††Susceptibility weighted imaging (SWI) group: SWI, magnitude SWI, phase SWI, and a minimum intensity projection SWI.
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set by including approximately an equal number of studies from
all the institutions and scanner manufacturers. These two aspects,
together with the fact that both studies performed data augmentation
to enlarge the size of the training subset, may be the reasons behind
these decisions.

Network architecture and loss function also have important
implications for the quality of synthesized images. In Preetha
et al. (2021) performance significantly improved when using
a CGAN as opposed to a UNet. In addition, the loss function
has been tailored in the different works to improve the
overall synthesis quality: Pasumarthi et al. (2021) introduced a
combination of weighted L1 loss, adversarial loss, and perceptual
loss, while Chen et al. (2022) weighted the tumor regions;
Xie et al. (2022) incorporated the tumor contours as prior
knowledge to focus on the contrast enhanced lesions. On the
other side, Wang et al. (2022) proposed atrous spatial pyramid
pooling (Chen et al., 2017), improved residual blocks and deep
supervision for better lesion location and anatomical and texture
detailed synthesis.

Additionally, some experiments have also been conducted to
find out the importance of each native input. Chen et al. (2022)
showed that the usage of T1w as the only input obtains a satisfactory
performance, albeit the inclusion of T2w and ADC provides an
improvement, with the former modality proving more relevant for
the synthesis than the latter. These results seem approximately in
line with those reported by Preetha et al. (2021), who found that
including ADC in addition to native anatomical images (i.e., T1w,
T2w and T2w-FLAIR) did not increase performance. In this case,
they found that T1w was the most relevant image, followed by T2w-
FLAIR and T2w. It is true that in Chen et al. (2022) the inclusion
of ADC did slightly improve performance, but it could be caused by
the fact that T2w-FLAIR was not used in that work. Nevertheless,
Kleesiek et al. (2019) obtained completely different results since they
found that T2w followed by the DWI group (b= 0, 1,200 mm2/s and
ADC) were the most influential image modalities for the synthesis.
Yet, these results do not fully agree with Bône et al. (2021), who
found that T2w-FLAIR, followed by ADC and T1w was the order of
modality removal with less impact in the quality of the synthesized
images. These questions need further research until a consensus
is reached.

In contrast, some works follow a complete different approach
and propose multimodal methods (Dai et al., 2020; Sharma
and Hamarneh, 2020; Hu et al., 2021) in which the input
and output modalities are not fixed. Thus, they can deal with
a variety of synthesis combinations including the synthesis of
ceT1w images. The synthesis of different CE image modalities
simultaneously is an interesting—and challenging—application
of CE synthetic MRI. However, we are not aware of any
published paper that pursues this sort of contrast-enhanced
joint synthesis.

3. Evaluation

The quality of the synthesized images needs to be assessed in
order to ensure their actual utility. These evaluations are commonly
accomplished in terms of quantitative and qualitative analyses. Some
authors also study the utility of the synthesized images in different
clinical applications.

3.1. Image quality metrics

Most of the authors (Gong et al., 2018; Kleesiek et al., 2019; Dai
et al., 2020; Sharma and Hamarneh, 2020; Pasumarthi et al., 2021;
Preetha et al., 2021; Ammari et al., 2022; Chen et al., 2022; Wang
et al., 2022; Xie et al., 2022) perform a quantitative and nonsubjective
analysis of the synthesized images. Metrics commonly used are peak
signal-to-noise ratio (PSNR) and structural similarity index (SSIM).
Whereas PSNRmeasures voxelwise differences between acquired and
synthesized images, SSIM measures nonlocal structural similarity
between both. These metrics are computed between the acquired and
the synthesized CE images.

Additionally, some authors use othermetrics such asmean square
error (MSE) (Sharma and Hamarneh, 2020), mean absolute error
(MAE) (Wang et al., 2022), normalized MAE (NMAE) (Dai et al.,
2020; Xie et al., 2022), Pearson correlation coefficient (PCC) (Xie
et al., 2022), visual information fidelity (VIF) (Dai et al., 2020),
naturalness image quality evaluator (NIQE) (Dai et al., 2020), and
area under the curve (AUC) of the receiver operating characteristic
(ROC) curve (Kleesiek et al., 2019; Ammari et al., 2022; Wang et al.,
2022).

3.2. Reader studies

Subjective visual quality of the synthesized CE images is also
usually assessed by means of qualitative analysis with board-certified
neuroradiologists. Different reader studies are considered: in Gong
et al. (2018), readers were asked to evaluate the synthesized CE
images with 5-point Likert scales (1, poor; 5, excellent) regarding
image quality, suppression of aliasing/motion artifacts, and the
enhancement degree compared to native images. Also a 5-point scale
was employed for the readers in Ammari et al. (2022) to evaluate
image quality. Qualitative assessment including image quality and
lesion detection, enhancement, and conspicuity, were performed in
Luo et al. (2021). In Kleesiek et al. (2019), the authors performed
a Turing Test; readers were asked whether they could distinguish
between acquired and synthesized CE images. Finally, in Pasumarthi
et al. (2021) readers were asked to classify each image regarding the
presence of enhanced and non-enhanced structures, and the effect of
vessel conspicuity on clinical diagnosis was also studied.

3.3. Clinical applications

To evaluate the impact that these methods could have in clinical
practice, whether quantitative algorithms can reliably work with these
synthesized images needs to be tested and the value of these images
for improving clinical decision making should also be quantified.

3.3.1. Tumor segmentation
Quantitative tumor segmentation is one application used to

validate the agreement between acquired and synthesized CE images.
To this end, Pasumarthi et al. (2021) automatically segment the tumor
core with a DLmethod (Myronenko, 2018) using only the CE images.
Segmentations were carried out twice, once on the acquired CE image
and then on the synthesized image. The average segmentation Dice
score between the acquired and the synthesized images was 0.88 ±
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0.06 with a median value of 0.91, and the tumor segmentation masks
showed good visual agreement. Preetha et al. (2021) also perform two
CE tumor segmentations but using a multimodal input to the DL
segmentationmethod (Kickingereder et al., 2019) consisting of native
T1w, T2w, T2w-FLAIR, and ceT1w; in each segmentation either the
acquired or the synthesized ceT1w was used along with the other
three native images. The results shows a median underestimation of
7% of the tumor volume as compared with acquired ceT1w, but, in
general, a good correlation between both. However, this multimodal
segmentation approach could hide the actual implications of the
synthesis in the segmentation, since an overall aggregated effect is
measured.

3.3.2. Tumor response assessment
In Preetha et al. (2021) the authors performed a volumetric tumor

response assessment in patients with different follow-up exams.
First, they computed the CE tumor volume on both the acquired
and the synthesized ceT1w images. Next, they assessed the time to
progression by analyzing the longitudinal change in tumor volumes
for both cases. A median time to progression of 4.2 months (95%
CI 4.1–5.2) was reported with the synthesized ceT1w, whereas with
the acquired ceT1w they obtained a median time to progression
of 4.3 months (4.1–5.5). Finally, the two values of the time to
progression were employed as surrogate endpoints for predicting the
patient’s overall survival with time-dependent Cox regressionmodels.
Using the data derived from the synthesized ceT1w, the hazard ratio
predicted was 1.749 (95% CI 1.282–2.387, p = 0.0004), which is
similar to the 1.799 (95% CI 1.314–2.464, p = 0.0003) obtained with
the data derived from the acquired ceT1w.

4. Limitations

The synthesized CE images present, overall, a good visual
resemblance and high quality metrics. Actually, the reader study
in Ammari et al. (2022) showed how the synthesized images were
preferred over the acquired by the radiologists in some cases.
However, the image smoothness and the network failures in the
synthesis of small structures, with the small vessel and the small-sized
lesions being especially challenging cases, are common problems
found by most of the authors.

Except multimodal methods (Dai et al., 2020; Sharma and
Hamarneh, 2020; Hu et al., 2021), the rest of them can only deal
with the scenario in which both input and output image modalities
are fixed; however, this is not the typical case in the clinical routine.
Thus, ideally, models should be able to adapt to variations of images
modalities. Specifically, the requirement of a large amount of different
image modalities as input could be especially problematic, since this
availability could be limited in real-world practice. For example, in
Kleesiek et al. (2019) as many as 10 input channels are required
for a correct synthesis. In addition, all the input images should
be perfectly registered, and this is not only laborious but could
also lead to potential synthesis inaccuracies. Indeed, misregistration
of input images is a recurrent problem across the methods. This
registration failure creates fake intensities outside the region of
actual enhancements which could have implications in the diagnosis.
In contrast, the implicit motion-artifact correction and aliasing
suppression are upsides of these methods.

FIGURE 1

A representative axial slice of parametric maps computed by the

self-supervised CNN and the synthesized images. (A) Acquired and

corresponding synthesized native T1w from the computed T1, T2, and

PD maps. (B) Acquired and corresponding synthesized

contrast-enhanced T1w (ceT1w) from the contrast-enhanced T1

(ceT1), T2, and PD maps. (C) native T1 map. (D) ceT1 map. (E)

Corresponding enhancement map computed as the subtraction

between (C) and (D). T1 and ceT1 maps are measured in seconds (s),

whereas the enhancement map is measured in (%).

Other methods carry out the synthesis from only a
few native image modalities (Dai et al., 2020; Sharma and
Hamarneh, 2020; Chen et al., 2022) or even from only one
native input (Xie et al., 2022). However, these methods were
solely validated with image quality metrics (SSIM, PSNR,
etc.), which might not fully represent the actual utility of the
synthesized images in quantitative clinical applications. Thus, more
validation is required in order to assess their true clinical value
for diagnosis.

Although there are some exceptions such as Pasumarthi et al.
(2021) and Preetha et al. (2021), who have validated their methods
with large multi-institution, multi-vendor datasets, generally
speaking the proposed approaches need to be validated with larger
datasets including acquisitions from different institutions, vendors,
and scanner characteristics in order to ensure their robustness and
reproducibility. In addition, the trained networks will probably
not be able to synthesize those lesions or abnormalities that
were not included in the training dataset. Thus, for the sake of
generalization, the training dataset should be as heterogeneous
as possible.

Finally, common to most DL synthesis methods, the lack of
interpretability is also an important limitation which could hinder
their clinical usability. Having a model that could self-explain
which are the most informative parts of the input images for the
synthesis would allow us to get further insight into the image
generation procedure.

5. Future trends

In clinical practice it is customary that contrast enhancement is
estimated by subjective visual comparison between native T1w and

Frontiers inNeuroimaging 05 frontiersin.org

https://doi.org/10.3389/fnimg.2023.1055463
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Moya-Sáez et al. 10.3389/fnimg.2023.1055463

ceT1w images or by using rules of thumb such as full width at half
maximum for tumor or scar extension. This is because the intensity
of weighted images has an arbitrary scale. However, parametric
maps are known to have an absolute scale and to be more robust
against scanner imperfections, which are relevant ingredients for
them to qualify as biomarkers of tumor burden. Indeed, some studies
show how parametric maps might provide means for accurate
identification and quantification of contrast-enhanced regions
(Blystad et al., 2020; Pirkl et al., 2021). Hence, combining synthetic
MRI approaches with Quantitative MR may be a promising next
step in order to quantify the enhancement without the need of
GBCAs.

Recently, we have proposed a self-supervised synthetic MRI
approach for the computation of T1, T2, and PD parametric
maps and the synthesis of non-acquired weighted images from
only two acquired weighted images (Moya-Sáez et al., 2022).
Self-supervised learning allowed us to compute the parametric
maps without the need of reference parametric maps for
network training.

Following this method we have performed an experiment
aimed at quantifying the reliability of this synthesis methodology;
specifically, starting with the data available inMoya-Sáez et al. (2022),
we have modified the self-supervised network there described in
order to perform the synthesis from only the T1w modality. This
way, we can train the network with only the T1w images and the
T1, T2, and PD parametric maps could be generated from only
that input. The training was performed with the same leave-one-out
scheme and hyper-parameter setting as in Moya-Sáez et al. (2022).
Afterwards, in production mode (i.e., once the network is trained),
a ceT1w image is input to the network. Under the assumption that
the only difference between both images (native T1w and ceT1w)
is the GBCA intake, the resulting maps should correspond to the
CE parametric maps. In this case, the subtraction between the T1
map and the ceT1 map should give us a quantification of the
enhancement map.

Experiment results are shown in Figure 1, in which we can
observe a representative slice of the resulting synthesized weighted
images out of the computed parametric maps for both the native
and the ceT1w images—figures (A) and (B) respectively—used
as input; these synthesized weighted images [right hand side of
figures (A) and (B)] can be visually compared with the actually
acquired counterparts (left hand side) and visual resemblance is
noticeable. In addition, Figure 1C shows the T1 and ceT1 maps
computed by the self-supervised CNN—and used to calculate the
synthesized images in figures (A) and (B)—. Finally, figure (E)
shows the enhancement map computed as the normalized difference
between the T1 and ceT1 maps, specifically, 100 ∗

|T1−ceT1|
ceT1 [%].

For the sake of visibility the enhancement map intensity is cropped
between 10 and 150%. Interestingly, the reduction of the T1
values within the enhanced region in the enhancement maps can
be noticed.

In terms of architectures, the onset of solutions based on attention
mechanisms may give rise to new actors in the scene that could
leverage the synthesis quality. Some interesting activity has been
carried out in the image synthesis field using attention gates (Liu
et al., 2022) and transformers (Dalmaz et al., 2022), although not

applied to CE synthesis in neuro-oncology. The former proposes
the synthesis of ceT1w from native T1w, albeit it is applied to
brain aging of healthy subjects and Alzheimer’s disease patients
with remarkable results; the latter focuses on the synthesis of native
weighted images, but the synthesis of CE weighted images is not
considered.

6. Conclusion

The synthesis of CE weighted images could have high impact
on clinical practice, not only by reducing costs and shortening
protocols, but also by alleviating safety concerns about GBCAs usage.
Several DL methods have been recently proposed for the synthesis
of CE images from low-dose or even from only native images,
with promising outcomes. In the future, the confluence of Synthetic
MRI and Quantitative MRI could be a keystone toward automated
diagnosis and prognosis in neuro-oncology.
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