AUTHOR=Schulman Jacob Benjamin , Sayin Ece Su , Manalac Angelica , Poublanc Julien , Sobczyk Olivia , Duffin James , Fisher Joseph A. , Mikulis David , Uludağ Kâmil TITLE=DSC MRI in the human brain using deoxyhemoglobin and gadolinium—Simulations and validations at 3T JOURNAL=Frontiers in Neuroimaging VOLUME=2 YEAR=2023 URL=https://www.frontiersin.org/journals/neuroimaging/articles/10.3389/fnimg.2023.1048652 DOI=10.3389/fnimg.2023.1048652 ISSN=2813-1193 ABSTRACT=Introduction

Dynamic susceptibility contrast (DSC) MRI allows clinicians to determine perfusion parameters in the brain, such as cerebral blood flow, cerebral blood volume, and mean transit time. To enable quantification, susceptibility changes can be induced using gadolinium (Gd) or deoxyhemoglobin (dOHb), the latter just recently introduced as a contrast agent in DSC. Previous investigations found that experimental parameters and analysis choices, such as the susceptibility amplitude and partial volume, affect perfusion quantification. However, the accuracy and precision of DSC MRI has not been systematically investigated, particularly in the lower susceptibility range.

Methods

In this study, we compared perfusion values determined using Gd with values determined using a contrast agent with a lower susceptibility—dOHb—under different physiological conditions, such as varying the baseline blood oxygenation and/or magnitude of hypoxic bolus, by utilizing numerical simulations and conducting experiments on healthy subjects at 3T. The simulation framework we developed for DSC incorporates MRI signal contributions from intravascular and extravascular proton spins in arterial, venous, and cerebral tissue voxels. This framework allowed us to model the MRI signal in response to both Gd and dOHb.

Results and discussion

We found, both in the experimental results and simulations, that a reduced intravascular volume of the selected arterial voxel, reduced baseline oxygen saturation, greater susceptibility of applied contrast agent (Gd vs. dOHb), and/or larger magnitude of applied hypoxic bolus reduces the overestimation and increases precision of cerebral blood volume and flow. As well, we found that normalizing tissue to venous rather than arterial signal increases the accuracy of perfusion quantification across experimental paradigms. Furthermore, we found that shortening the bolus duration increases the accuracy and reduces the calculated values of mean transit time. In summary, we experimentally uncovered an array of perfusion quantification dependencies, which agreed with the simulation framework predictions, using a wider range of susceptibility values than previously investigated. We argue for caution when comparing absolute and relative perfusion values within and across subjects obtained from a standard DSC MRI analysis, particularly when employing different experimental paradigms and contrast agents.