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The analysis of task-related fMRI data at the level of individual participants

is commonly based on general linear modeling (GLM), which allows us to

estimate the extent to which the BOLD signal can be explained by the

task response predictors specified in the event model. The predictors are

constructed by convolving the hypothesized time course of neural activity

with an assumed hemodynamic response function (HRF). However, our

assumptions about the components of brain activity, including their onset and

duration, may be incorrect. Their timing may also di�er across brain regions or

from person to person, leading to inappropriate or suboptimal models, poor

fit of the model to actual data, and invalid estimates of brain activity. Here, we

present an approach that uses theoretically driven models of task response

to define constraints on which the final model is computationally derived

using actual fMRI data. Specifically, we developed autohrf–an R package

that enables the evaluation and data-driven estimation of event models for

GLM analysis. The highlight of the package is the automated parameter search

that uses genetic algorithms to find the onset and duration of task predictors

that result in the highest fitness of GLM based on the fMRI signal under

predefined constraints. We evaluated the usefulness of the autohrf package

on two original datasets of task-related fMRI activity, a slow event-related

spatial working memory study and a mixed state-item study using the flanker

task, and on a simulated slow event-related working memory data. Our results

suggest that autohrf can be used to e�ciently construct and evaluate better

task-related brain activity models to gain a deeper understanding of BOLD task

response and improve the validity ofmodel estimates. Our study also highlights

the sensitivity of fMRI analysis with GLM to precise event model specification

and the need for model evaluation, especially in complex and overlapping

event designs.
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1. Introduction

fMRI remains one of the most advanced and widespread

methods for studying brain function while participants perform

various cognitive tasks. The standard for analyzing task-

based fMRI data at the level of individual participants is

using general linear modeling (GLM), which aims to explain

the underlying brain activity. Predictors in the model are

commonly constructed by convolving the hypothesized time

course of brain activity with an assumed hemodynamic response

function (HRF). In most cases, model construction is driven by

predefined assumptions about the components of brain activity

and their timing, which are usually based on the task design

and the specific aims of the study. However, our assumptions

about the onset and duration of component processes may be

incorrect. They may also differ from brain region to brain region

or from person to person. This may lead to inappropriate or

suboptimal prediction models, poor fit of models to data, and

invalid estimates of brain activity. In this paper, we present

a novel approach that uses theoretical assumptions of task

response to define constraints based on which the final model

is computationally derived from the actual data. Specifically,

we developed autohrf–an R package that enables data-driven

estimation of event models for GLM analysis of task-related

fMRI data. While in this paper we focus on the challenge

of specifying an optimal event model across participants and

regions, the approach can be extended to optimize event models

for individual participants and brain regions.

The goal of task-based fMRI data analysis is to identify

neural responses related to task stimuli and manipulation.

In fMRI studies, neural activity is measured indirectly as

the blood-oxygenation-level-dependent (BOLD) signal, which

reflects changes in blood flow in response to neural activity.

Neural activity and the BOLD signal are assumed to have a

linear relationship that is invariant over time (Boynton et al.,

1996; Cohen, 1997; Logothetis et al., 2001; Lindquist, 2008;

Poldrack et al., 2011). The linearity of the relationship is reflected

in the observation that changes in the BOLD signal scale

linearly with changes in neural activity and neural responses to

multiple task events are assumed to sum, suggesting that the

BOLD signal reflects this summation of individual responses

(Lindquist, 2008; Poldrack et al., 2011). This is particularly

relevant for event-related study designs, where task events are

presented at shorter time intervals leading to an overlap in their

individual hemodynamic responses (Huettel, 2012; Liu, 2012).

This linear relationship allows the use of linear statistical models

that describe the time course of the BOLD signal given the

expected time course of neural activity during a cognitive task,

which provides the estimation of the contribution of individual

responses to the measured BOLD time series.

In the GLM analysis, the BOLD signal is modeled as a

convolution of task events and an assumed HRF. This approach

relies on several assumptions. For instance, the model relies

on prior knowledge of the experimental design and assumed

cognitive processes during the task performance. In the case of

most controlled studies, it is reasonable to postulate that the

observed BOLD response is determined by individual responses

to the stimuli as presented in the task design (Lindquist, 2008).

However, it is often difficult to predict the exact number, timing,

and duration of individual responses. Additionally, the model

often uses a predefined HRF shape that is assumed to be stable

across brain areas and individuals (e.g., Friston et al., 1994b,

1998; Boynton et al., 1996). However, studies have suggested

considerable variability in hemodynamic responses between

brain areas and participants (Aguirre et al., 1998; Miezin et al.,

2000; Handwerker et al., 2004; Badillo et al., 2013), or related

to different brain disorders (Yan et al., 2018; Rangaprakash

et al., 2021). The correct choice of HRF is critical to ensure a

good fit of the GLM predictors to the BOLD time series. For

example, Handwerker et al. (2004) compared the performance

of an assumed canonical HRF and empirically derived HRF in

the detection of neural responses based on simulated BOLD

time series. They have shown that empirically derived HRF

gave more accurate estimates of response magnitude and higher

statistical power. Therefore, the assumptions we make about

neural responses significantly affect the results when using

the GLM approach (Handwerker et al., 2004; Lindquist, 2008;

Pernet, 2014). Even small errors in assumptions can lead to

significant losses in statistical power or inflated false-positive

detection (Handwerker et al., 2004; Lindquist, 2008; Loh et al.,

2008). Hence, to obtain valid and accurate estimates of task

response it is important to construct a model of neural activity

that best fits the actual BOLD responses to neural activity.

Quite some effort has been exerted toward addressing the

issue of variable HRF in task-based fMRI analysis. For example,

several authors have proposed various methods for more flexible

modeling of HRF that can account for different HRF shapes

across brain areas and individuals (e.g., Lange and Zeger,

1997; Buxton et al., 1998; Friston et al., 1998; Glover, 1999;

Lindquist and Wager, 2007; Badillo et al., 2013; Aggarwal et al.,

2015; Pedregosa et al., 2015; Arias et al., 2017). Several studies

have investigated the variability of HRF parameters and used

that knowledge to improve the estimation of task activation

(Badillo et al., 2013; Aggarwal et al., 2015; Pedregosa et al.,

2015; Arias et al., 2017) or resting state functional connectivity

(Rangaprakash et al., 2018; Wu et al., 2021). Nevertheless, not

many studies have focused on alleviating the issue of how to

specify the correct task event predictors. Some authors (Luo

and Nichols, 2003; Loh et al., 2008) have attempted to develop

techniques that provide a graphical representation of model fit

to actual data, although these techniques still leave researchers

guessing as to what would be a valid model. Because fMRI

analysis involves large amounts of data, it is impractical or

sometimes impossible to test the validity and fitness of themodel
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using standard diagnostic measures (Lindquist, 2008). For these

reasons, most task-based fMRI studies have not verified the

validity of their event model, making their results unreliable

(Lindquist, 2008). A better and more efficient approach to

designing task event predictors might be to use data-informed

models that are derived from the actual BOLD response. Such

an approach could also take into account the variability of BOLD

responses and construct separate models that fit each individual

or specific brain regions.

The aim of our study was to provide a method that would

allow the construction and evaluation of event models based on

the actual fMRI data. Specifically, we developed the autohrf

package that allows the estimation of the onset and duration of

task predictors, which result in the highest fitness of GLM based

on the fMRI signal under predefined constraints. We evaluated

the usefulness of the autohrf package on two original datasets

of task-related fMRI activity. In the first dataset (37 participants,

20 women, 19–30 years), we analyzed a slow event-related spatial

working memory task. In the second dataset (30 participants, 15

women, 24–52 years), we analyzed a mixed state-item designed

flanker task. The focus of our analysis was the comparison of

theoretical and automatically derived models provided by the

autohrf package, and the results based on them. Here, we

were interested in any qualitative differences in the obtained

results, in addition to changes in the fitness of the models and

effect sizes of the resulting GLM estimates. We assumed that

data-driven models based on the automated parameter search

would provide higher fitness of the models, improve effect

sizes, and give qualitatively more reliable results. We also tested

generalizability of event models obtained with autohrf by

performing cross-validation and investigated their validity based

on simulated fMRI time series.

2. Methods

autohrf is available in the form of an open-source R

package (licensed with GNUGeneral Public License v3.0) and its

code is stored in a public GitHub repository: https://github.com/

demsarjure/autohrf. The package is also available on CRAN

so users can install it via R’s install.packages function.

The core functionality of the package can be divided into

two groups—functions for model evaluation and functions for

automatic search for optimal event timing.

2.1. Evaluating pre-defined models

The evaluate_model function can be used to evaluate

the fit of predefined event models to the acquired BOLD data. A

predefined model is one that we define manually by specifying

the onset and duration of each event within the BOLD time

series under study. In R, the model is defined by storing this

information in the form of a data frame:

event start_time duration

---------------------------------

event_1 0.00 2.50

event_2 2.50 5.00

...

event_n 10.00 3.00

To evaluate the model, we need to provide the

evaluate_model function with a data frame that contains

the BOLD data and the information about the BOLD sequence

repetition time (TR). The BOLD data must be stored in a data

frame with three columns, name of the region of interest (ROI),

timestamp (t) and the value of the BOLD signal (y):

roi t y

-------------------------

ROI_1 0 2.445844

ROI_2 0 2.155406

ROI_3 0 2.345234

...

ROI_n 0 2.536729

ROI_1 2.5 7.725104

ROI_2 2.5 4.436729

...

The evaluate_model function first generates an HRF

using either the Boynton (Boynton et al., 1996) or the SPM

(Statistical Parametric Mapping) method (Friston et al., 1994a,

1998). The main difference between the two methods is that the

Boynton approach uses a single-gamma function to model HRF,

while SPM uses a double-gamma approach. Both methods are

implemented using the descriptions in the original manuscripts

and parameters are set to the default values specified in the

manuscripts (Boynton et al., 1996; Friston et al., 1998). However,

users can fine-tune the parameters using the p_boynton and

p_spm parameters.

Once the HRF is constructed, it is convolved with neural

time series generated from the event descriptions. To allow high

precision in the computation of the predicted BOLD time series,

the neural time series and the HRF are created with a high

temporal resolution, defined as TR/f . The up-sampling factor

f is provided as an optional parameter with a default value of

100. After computation, the signals resulting from convolution

are first down-sampled by the factor f to match the resolution

of the empirical BOLD signal. Finally, to evaluate the quality

of the predefined event model a linear multiple regression of

the predicted BOLD time series is performed based on the

empirical BOLD time series. Detailed equations used in the

construction of HRF and linear regression are presented in the

Supplementary material.

The function returns the fit of the model in terms of

the R2 (i.e., coefficient of determination) and BIC (Bayesian
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Information Criterion). BIC is based on the information theory

and estimates the amount of information lost by a model

(McElreath, 2020). To some extent, BIC also takes into account

the complexity of the model, so a higher BIC value when

using a more complex model may be a sign of overfitting.

It should be noted that overfitting cannot be detected by

the use of information criteria alone (McElreath, 2020), but

additional model comparison procedures (e.g., cross-validation)

are required.

Since fitting is performed on each ROI independently, the

function outputs several values—the mean, the median, the

minimum, and the weighted R2 and BIC. The mean and median

are calculated across all ROIs, while theminimum gives the value

for the ROI where the model performed worst. The weighted

score can be used if we want to put more weight on how the

model fits a particular subset of ROIs compared to the rest of

the ROIs. To accomplish this, we can specify weights for specific

ROIs using the parameter roi_weights in the form of a

data frame containing the name of the ROI and the weight we

want to assign to it. By default, each ROI has a weight of 1.

To allow for more in-depth analysis of how the model fits the

data, the evaluate_model function also returns the quality

of the fit for each of the used ROIs. This information is stored

in the by_roi data frame that can be found within the object

returned by the function. For a full list of input parameters and

a description of outputs for the evaluate_model function

please consult the official documentation of the autohrf

package.

The quality of the fit computed with the

evaluate_model function can be visually inspected

using the plot_model function. The input to this function

is the output of the evaluate_model function. Example

visualizations resulting from the plot_model function can be

found in the two study examples presented later in the paper in

Sections 3 and 4.

2.2. Automated parameter search

The automated parameter search functionality provides the

tuning of event parameters used in task-related GLM analysis

in a data-driven manner. This is done using the autohrf

function. Here, we start by defining the constraints of our model

using the model_constraints parameter in the form of a

data frame:

event start_time end_time

--------------------------------

event_1 0.00 2.50

event_2 2.50 6.00

...

event_n 10.00 15.00

With the above data frame, we specify that event_1 must

not start before time 0 s and must end before or exactly at 2.5

s. We specify similar constraints for other events. By adding

additional, optional columns to this data frame, we can impose

further constraints. The first of these is called min_duration,

which we can use to define the minimum duration of an event.

Similarly, we can add max_duration to limit the maximum

length of an event. We can specify either one such data frame

or multiple data frames with different constraints. The function

will then try to find the optimal model for each set of constraints

independently. In this case, the function will return the best

model for each of the specified sets of constraints.

Besides the model constraints, the only other twomandatory

parameters of the autohrf function are the data frame

containing BOLD data, which is the same as described in the

previous section, and the TR. The function will then try to find

an optimal model that satisfies the given constraints.

The automated parameter search in autohrf uses genetic

algorithms (Holland, 1992). Genetic algorithms are a family

of search algorithms that simulate natural evolution to find

parameters that provide the best (or near best) solution to

a given problem. The process begins with the creation of

the initial population, a set of random solutions that satisfy

the given constraints. The size of the population is defined

by the population parameter. Once we have the starting

population, the fitness of each member is evaluated using the

weighted R2 score, as described in Section 2.1.

Next, a specified percentage of the best solutions, defined

by the elitism parameter, is automatically copied to the

next population. To maintain the same population size, the

remaining solutions are generated by shuffling solutions from

the current population. This involves mixing two solutions

from the current population (parent) to create a new solution

(child) for the next population. Solutions that have a good score

(weighted by R2 in our case) have a higher probability of being

selected as parents. This mechanism ensures that the parameters

of good solutions have a higher probability of being propagated

to the next population, which mimics the survival of the fittest

in nature, where individuals with "good" genes have a higher

probability of passing on their traits to subsequent generations.

Once the parents are selected, a new child solution is

generated by taking the parameters for the first half of the

events from the first parent and the parameters for the second

half of the events from the second parent (in the case of an

odd number of events, an additional event is taken from the

first parent). In addition, an event called mutation can be

triggered (the exact equation used in autohrf can be found in

the Supplementary material). This, in turn, mimics the natural

phenomenon where genes in the DNA of species can randomly

mutate and change as a result. In our case, mutation slightly

changes the value of the onset or offset of an event. For each

event and start/end time, there is a probability equal to the

mutation_rate that a mutation event will be triggered.
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FIGURE 1

A visualization of the logic behind genetic algorithms. (A) An

example of constraints for a model with three events. For

example, the constraints for event_1 specify that the onset for

this event must be greater than 0 s and the end time must be

less than 3 s. (B) The two parents selected to produce a child for

the new generation. In this case, the values in the tables are not

constraints, but the actual parameters of the events. For

example, event_1 starts at 0 s and ends at 2.5 s. (C) A newly

created child. Half of the events (+1, since we have an odd

number of events) and their parameters come from the first

parent (colored blue), while the rest of the parameters come

from the second parent (colored red). The yellow colored

parameter was taken from the first parent, but here a mutation

event was triggered. This event reduced the final time of

event_2 from 12.5 to 12 s.

With mutations, we ensure that genetic algorithms not only

search for the best solution within the randomly generated

initial population, but also explore new solutions that may be

better than those in the existing population. See Figure 1 for a

visualization of how two parent solutions are used to generate a

new child solution.

The process of parent selection and child creation repeats

until the new population size equals the value of the

population parameter. Once they are equal, we have a new

population and the first iteration of the process is complete.

Next, the entire process is repeated—each solution is evaluated,

the best solutions are copied to the new population, the rest are

generated by the child creation process, and so on. We repeat

the process until we reach the number of iterations specified by

the iter parameter. For a full list of input parameters and a

description of outputs for the autohrf function please consult

the official documentation of the autohrf package.

Besides the autohrf function, there are additional helper

functions that make the process more user-friendly. The

plot_fitness function should be used as a diagnostic tool

to check if the solutions have converged. The function plots how

the fitness (the weighted R2) of the best model changes through

iterations for each of the specified model constraints. Given a

sufficient number of iterations, the fitting will always converge,

ideally to the global maximum. Increasing the population size or

mutation rate will help in cases where the process is trapped in

a local maximum. The only input parameter for this function

is the output of the autohrf function. See Figure 2 for an

illustration of how plot_fitness can be used to investigate

whether the autohrf run converged.

The plot_best_models function is used to plot the best

model for each of the given constraints. Example visualizations

for this function can be found in the study examples in

Sections 3 and 4.

The get_best_models function returns and prints

the parameters of the best model for each of the specified

model constraints. The output of this function can be

used for further analysis and also as an input to the

function for evaluating predefined models. By setting the

return_fitness parameter to TRUE, the function will not

return parameters of the best models but their fitness.

3. Spatial working memory task

To test and evaluate the utility of the autohrf package,

we used the data collected in a spatial working memory

study, previously presented in Purg et al. (2022). The

aim of the study was to investigate neural correlates of

different spatial working memory strategies and related

representations that are used depending on specific task

demands. We used fMRI to record brain activity during the

task performance.

To estimate the activity on individual task trials, we used

a slow event-related study design, which allowed enough time

for the BOLD response to return to baseline during an inter-

trial interval (ITI). However, each trial consisted of several

events that were assumed to trigger overlapping hemodynamic

responses. We employed the GLM approach to differentiate

between these individual responses. The challenge that we faced

in constructing the event model to be used in GLM analysis

was specifying the number, timing and duration of individual

events that would result in valid estimates of brain responses

to task events of interest. For that purpose, we used autohrf

to evaluate different theoretical event models and to provide

additional insights into the properties of BOLD responses

during the task using event models optimized in an automated

data-driven process.

In this paper, we present an example procedure of

selecting the most appropriate model using autohrf, while

simultaneously evaluating the generalizability of event models

obtained with autohrf and the reliability of their results.

Additionally, we test the validity of obtained event parameters

based on simulated fMRI time series.

Frontiers inNeuroimaging 05 frontiersin.org

https://doi.org/10.3389/fnimg.2022.983324
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Purg et al. 10.3389/fnimg.2022.983324

FIGURE 2

Diagnosing model fitness with plot_fitness function. In this case, we used three di�erent model constraints, hence we computed three

models. (A) For illustrative purposes we ran autohrf for only 5 iterations with a population of 10. It is clear that the solutions at the end did not

converge as the fitness is still rising. In such cases, we should increase the number of iterations or the population size and repeat the process.

We could also rerun autohrf and set its autohrf parameter to the outputs of the previous run, which will continue the automated parameter

search by using the results of the previous run. (B) In this case, we ran autohrf with the same model constraints, but this time we used the

default settings (100 iterations with a population size of 100). It is clear that the solutions here converged as the optimal solution did not change

for any of our constraints in the last 40 iterations.

3.1. Data information

The analysis included 37 healthy adults (20 women, M

= 21 years, SD = 3 years, range = 19–30 years). The study

was approved by the Ethics Committee of the Faculty of Arts,

University of Ljubljana, Slovenia, and the National Medical

Ethics Committee, Ministry of Health of the Republic of

Slovenia. Participants gave written informed consent before

participating in the study.

In the spatial working memory task (Figure 3A), each trial

began with a presentation of a target stimulus (red disk) for

0.1 s on a screen with a constant radius and at different angles

from the center of the screen, followed by a 0.05 s masking

pattern. Participants were asked to remember the position of the

target stimulus and to maintain it during the following 9.85 s

delay period. After the delay period, participants responded by

moving a probe (gray disk) to the position of the remembered

target using a joystick. The response time was fixed, such that

the position of the probe after 3 s was recorded as the response

position. Individual trials were separated by ITIs whose duration

varied randomly (15, 16 or 17 s with a ratio of 3 : 2 : 1) to

allow for better decomposition of task-related BOLD responses.

The task consisted of two conditions—center and off-center.

In the center condition, the response probe always appeared

at the center of the screen, whereas it appeared off-center

with a constant radius but at a random angle to the target

position in the off-center condition. The two task conditions

were designed to differentiate between different spatial working

memory strategies (for a detailed description of the task see Purg

et al., 2022).

Brain activity during the task performance was measured

with simultaneous fMRI and EEG recording in one to

three recording sessions (6 participants with one session, 12

participants with two sessions, and 19 participants with three

sessions). Consecutive sessions of the same participant were

separated on average by five weeks (range = 2–13 weeks).

In this paper, we report results based only on fMRI data.

Data from participants who attended multiple sessions were

combined across sessions. Each task condition was performed in

a separate BOLD run with 24 trials within individual sessions.

The order of the task conditions was pseudorandomly varied

in the first session and counterbalanced across participants. The

order of task conditions was then reversed for each subsequent

session of the same participant. MRI data were collected

with Philips Achieva 3.0T TX scanner. T1- and T2-weighted

structural images, spin-echo field map images and BOLD images

were acquired for each participant. Detailed MRI acquisition

parameters are described in the Supplementary material.

3.2. Data analysis

MRI preprocessing and analysis were performed using

Quantitative Neuroimaging Environment & Toolbox (QuNex,

v0.94.14; Ji et al., 2022). Parts of the analysis and visualizations

were prepared using R (v4.2.1; R Core Team, 2022) and

Connectome Workbench (v1.5.0) tools. MRI data were

preprocessed with the Human Connectome Project (HCP)

minimal preprocessing pipelines (Glasser et al., 2013 for

details see the Supplementary material). Further analyses

were performed on parcellated whole-brain data, which were

obtained by extracting the mean signal for each ROI as

identified in the HCP-MMP1.0 parcellation (Glasser et al.,

2016).
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FIGURE 3

Modeling of the spatial working memory task trial using di�erent event models. (A) The design of the spatial working memory task. Participants

were asked to remember the position of a briefly presented target stimulus and, after a delay period, to give a response by moving a probe using

a joystick to the previously remembered target position either from the center of the screen (center condition) or a random o�-center position

(o�-center condition). (B) The timing and duration of di�erent assumed events in the task, which were aligned to TR = 1 s used in the fMRI

recording. (C–F) The evaluation of specific models. The models were evaluated using the evaluate_model function with double-gamma HRF

based on the average activity during a task trial for individual ROIs. The individual plots were prepared using the plot_model based on the

activity in six example ROIs (i.e., R_V1, right primary visual cortex; R_V4, right fourth visual area; R_FEF, right frontal eye fields; R_AIP, right

anterior intraparietal area; R_POS1, right parieto-occipital sulcus area 1; R_A1, right primary auditory cortex; Glasser et al., 2016) that di�ered in

BOLD responses during a spatial working memory task. The black line shows the average BOLD response, the pink line the modeled BOLD

response and the thin colored lines depict individual responses to specific events. The reported R2 and BIC represent mean values across all 360

ROIs in the HCP-MMP1.0 parcellation (Glasser et al., 2016).

We performed the activation analysis using a GLM approach

in which event predictors were convolved with the assumed

double-gamma HRF (Friston et al., 1994a, 1998). We prepared

several models that were either based on theoretical assumptions

of the number and timing of processes in the task or

automatically derived based on the actual BOLD response under

predefined restrictions using the autohrf package. Using

these models, we then modeled the BOLD signal during each
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task condition, separately for each participant, and estimated

β coefficients for each task event predictor in the model.

We also modeled trials with outlier behavioral responses as

a separate event in the GLM and excluded these trials from

further analysis. Statistical analyses at the group level were

performed based on the obtained β estimates using permutation

analysis (500 permutations, tail acceleration) in PALM (Winkler

et al., 2014). To identify activation and deactivation during

individual events, we performed two-tailed one-sample t-tests

with FDR multiple comparison correction. We also directly

compared the two task conditions by performing two-tailed

paired t-tests with FDR correction. The significance threshold

was set at q < 0.05.

For the cross-validation of models derived using autohrf,

we used the same GLM approach as described earlier,

but this time each fMRI recording session was modeled

separately. Based on the obtained β estimates we then

performed a hold-out cross-validation based on 31 participants

that attended at least two recording sessions, among them

there were 19 participants with three recording sessions.

The fMRI data obtained at the first session were used for

the training of the models using the autohrf function,

while the data from the second and third sessions were

used to test the models using the evaluate_model

function.

We additionally tested autohrf on simulated fMRI data.

We generated simulated BOLD responses to a working memory

trial based on four different event models. All four models

included the same number and type of event predictors, but

differed in the specific onset and duration of the events.

They were based either on theoretical assumptions about

processes in the spatial working memory task (Models A and

B; Supplementary Figure S1) or on autohrf estimates based

on empirical data (Models C and D; Supplementary Figure S1).

For each model, a set of BOLD time series was generated

by convolving the event time series with an assumed

double-gamma HRF (Figure 6A). In generating the data, we

systematically varied the HRF properties and noise level. We

used HRF with 4 s, 5 s, and 6 s time-to-peak. This included the

autohrf default value of 5 s and roughly covered the range

of empirically measured HRFs (Aguirre et al., 1998; Miezin

et al., 2000; Handwerker et al., 2004). We generated data at

five different noise levels by adding time series of random

Gaussian noise with different SD values (i.e., 0, 0.067, 0.1,

0.15, 0.225) to the generated BOLD signal. For each of the

described combinations of event model, HRF, and noise level,

data time series were generated for 10 hypothetical ROIs that

differed in the amplitudes of modeled responses to specific

events. Next, we performed automatic parameter search for

each of the 60 simulated datasets with two sets of predefined

constraints, a strict model and a more permissive model. We

evaluated the results obtained with autohrf in two ways. First,

we compared the estimated event models with the simulated

models to evaluate the extent to which autohrf identified the

underlying event structure. Second, we generated new synthetic

data with a larger set of 216 simulated ROIs and then compared

the β estimates obtained with the two theoretical and two

autohrf-optimized models with the values used to generate

the data (see Supplementary material for details on the data

simulation).

3.3. Results

3.3.1. The comparison of models with di�erent
number of event predictors

In the analysis of BOLD signal underlying the performance

of the spatial working memory task, we were faced with the

challenge of choosing an event model that would fit our data

well and provide valid estimates of brain responses to individual

task events. In the construction of the most appropriate model,

we were first faced with the question of how many and which

task events we should include in the model. To that end,

we prepared and evaluated several models containing different

types and numbers of events (Figure 3B). To evaluate models,

we used the evaluate_model function with the double-

gamma HRF based on the average activity during a task trial for

individual ROIs.

We started the analysis with the most simple model

consisting of three events (Model 1; Figure 3C), the encoding

(onset = 0 s, duration = 0.15 s), delay (onset = 0.15 s, duration =

9.85 s) and response (onset = 10 s, duration = 3 s). To investigate

changes during the delay period of the task, we prepared a

separate model (Model 2; Figure 3D) where the delay period

was separated into two events, an early delay (onset = 0.15

s, duration = 4.85 s) and a late delay (onset = 5 s, duration

= 5 s). Additionally, we took into account that the encoding

and response phases include a progression of several individual

processes. For example, the response period of the task starts

with the presentation of a probe stimulus which is assumed to

trigger sensory and attentional processes, followed by motor-

related activity of the required hand response. To reflect that,

we constructed a model that included encoding (onset = 0 s,

duration = 0.15 s), delay (onset = 0.15 s, duration = 9.85 s),

probe (onset = 10 s, duration = 0.5 s) and response (onset = 10.5

s, duration = 2.5 s) events (Model 3; Figure 3E). Similarly, the

encoding phase can be split into temporally separated events

for the initial sensory processing of the target stimulus and

a following encoding process. To address this possibility, we

included a model with stimulus (onset = 0 s, duration = 0.15 s),

encoding (onset = 0.15 s, duration = 1.85 s), delay (onset = 2 s,

duration = 8 s), probe (onset = 10 s, duration = 0.5 s) and response

(onset = 10.5 s, duration = 2.5 s) events (Model 4; Figure 3F).

The comparison of these models revealed considerable

differences in the fitness of the models, as well as the obtained

estimates of individual responses. An increase in the number
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of events resulted in a higher mean fitness, with the worst

fitness observed in the model with three events (R2 = 0.67,

Figure 3C) and the highest in the model with five events (R2 =

0.83, Figure 3F). This result was expected since a model with

more predictors offers more degrees of freedom in modeling

and is able to explain more data variance. However, models

with a higher number of predictors can lead to data overfitting

and poor generalizability. To avoid that, we also compared

BIC values between models, where relatively higher values in

more complex models may indicate a possibility of overfitting.

Our results showed decreasing BIC values from Model 1 to 3

(Figures 3C–E), whereas theBICmeasure increased at theModel

4 (Figure 3F), suggesting that separating encoding and response

periods into two phases may lead to overfitting.

Additionally, qualitative inspection of the obtained estimates

showed generally less valid results with increasing number

of events. For example, the visualization of GLM estimates

based on example ROIs (Figures 3C–F) sometimes revealed

counterintuitive estimates, such as negative β estimates during

positive BOLD responses. In addition, individual responses

sometimes appeared to be overestimated or underestimated

with increasing number of events. The results suggested that

additional regressors primarily addressed the variability in the

HRF shape, rather than providing insight into temporally

separable events. We concluded that the apparent reduction of

the validity of β estimates offsets the increased fitness of more

complex models. For that reason, we decided to use the first two

models (i.e., Model 1 and 2; Figure 3B) for further analysis, as

they exhibited sufficient fitness and produced β estimates with

highest face validity for the task events of interest.

3.3.2. The comparison of theoretically and
automatically derived event models

Next, we wanted to determine the optimal timing of

individual task event predictors for the chosen models. For

example, we were unsure when the encoding phase ends and

the delay phase starts, how soon after the delay period the

response phase starts, how long are individual processes in the

task, etc. For that purpose, we used the autohrf package to

compute and evaluate different onsets and durations of events

in the models based on theoretical assumptions of the event

time course in the task or using the automated parameter search

based on the actual fMRI data. Particularly, we compared the

fitness of theoretical and automatically derived models, along

with the obtained effect sizes and any qualitative changes in the

results obtained with each model.

We used two models selected based on the previous

analysis (i.e., Model 1 and 2; Figure 3B). Specifically, we

first modeled BOLD signal with events encoding, delay, and

response (Figure 4), whereas in the secondmodel we additionally

modeled the delay phase with separate regressors for early

and late delay (Supplementary Figure S3). For each of the

two models, we first evaluated the event timing that was

defined based on theoretical assumptions. Since the theoretical

assumptions might not match with actual processes in the

task, we also prepared two models with automatically derived

event onset and duration based on the BOLD signal using the

autohrf function, one with stricter predefined restrictions

and one with looser predefined restrictions. The stricter model

allowed an automatic adjustment of the event duration, while

the event onset and offset boundaries were kept the same as in

the theoretical model. In the more permissive model, the event

onset and offset settings allowed a deviation from the theoretical

model for 1 s in each direction, while the duration was set to

reach at least a half of the theoretically assumed duration. We

ran the automated parameter search on a predefined selection

of 80 ROIs in the frontoparietal network, visual, and motor-

related brain areas that were expected to show responses to

the task.

The comparison of theoretically and automatically

derived models showed better model fit for the automatic

compared to theoretical models (Figures 4B,C and

Supplementary Figures S3B,C). The automatically derived onset

and duration of events differed considerably from the theoretical

parameters. Specifically, the onset of all events was generally

estimated at later times in the automatic compared to theoretical

models, whereas the duration of events was generally decreased

(Figures 4A,C and Supplementary Figures S3A,C). A qualitative

inspection of the obtained β estimates of individual responses

on example ROIs (Figure 4D and Supplementary Figure S3D)

indicated estimates with high face validity for the encoding

and response phases across all models, whereas the delay

estimates appeared to be slightly overestimated in the automatic

models, especially in the case of a single delay predictor

(Figure 4D).

We were also interested in any differences in the results

of statistical analyses based on β estimates obtained from

theoretical and automatically derived models. Specifically, we

examined significant activation and deactivation during

individual task events modeled in the GLM analysis,

separately for the center and off-center task conditions.

We also contrasted β estimates between center and off-center

conditions to identify any significant differences in the

observed responses. The models indeed resulted in slightly

different patterns of identified task-related (de)activations

and differences between task conditions. For instance,

the estimates of delay-related activity obtained using the

automatically derived event models were generally higher

in the somatomotor and early visual areas, and lower in

the temporal brain regions compared to the estimates

obtained with the theoretically based event model (Figure 5A).

Further, contrasting of task conditions revealed less ROIs

with a higher activity for the center compared to the off-

center condition in the somatomotor areas, and additional

ROIs in the prefrontal and insular cortices showing
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FIGURE 4

Specification and performance of theoretical and automatically derived event models in the spatial working memory study. Here, we compare

three models di�erentiating between encoding, delay and response events, a theoretically derived model based on the assumed timeline of

events in the task and two automatically derived models based on the empirical BOLD signal using the autohrf function that di�ered in the

predefined constraints, the permissive model was allowed larger deviations from the theoretical model than the strict model. The models were

fit to the activity of a predefined selection of 80 ROIs in the frontoparietal network, in addition to visual and motor-related brain areas that were

assumed to show responses to the task. (A) A visualization of task event predictors convolved with double-gamma HRF obtained using the

plot_best_models, where the colored lines depict individual responses to specific events and the black line shows the summation of these

responses in the BOLD signal. Rectangles at the bottom visualize the onset and duration for each of the events in the model. (B) The

convergence of the model fitness in the automated parameter search based on the population of 100 and 500 iterations. The plot was obtained

using the plot_fitness. (C) Theoretical and data-driven onset and duration of task events in the models. The R2 shows the mean fitness of

the models across the selected 80 ROIs. (D) The evaluation of the models on six example ROIs (i.e., R_V1, right primary visual cortex; R_V4, right

fourth visual area; R_FEF, right frontal eye fields; R_AIP, right anterior intraparietal area; R_POS1, right parieto-occipital sulcus area 1; R_A1, right

primary auditory cortex; Glasser et al., 2016) with di�erent types of BOLD response during a spatial working memory task. The plots were

prepared using the plot_model, where the black line shows the average BOLD response, the pink line the modeled BOLD response and the

thin colored lines depict individual responses to specific events.

higher activity for the off-center condition when using

automatically derived compared to theoretically based

event models. Similar qualitative differences were observed

also during encoding (Supplementary Figures S4A, S6A)

and response (Supplementary Figures S5A, S9A) phases, in

addition to the two separate estimates for the delay-period

activity, early (Supplementary Figure S7A) and late delay

(Supplementary Figure S8A). We additionally compared

Z-values for different brain maps between theoretical and

automatically derived models, which showed substantial
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differences in Z-values that were highly variable between specific

comparisons (Figure 5B and Supplementary Figures S4B–9B).

In general, Z-values tended to be increased for the results based

on automatically derived event models.

3.3.3. The generalizability of automatically
obtained models across di�erent fMRI
recording sessions

To test the generalizability of models obtained with

autohrfwe performed a hold-out cross-validation using fMRI

data collected at different recording sessions for 31 participants

with two or three sessions. Specifically, we tested two models,

one with stricter predefined restrictions and one with looser

predefined restrictions, as described in Section 3.3.2. The fMRI

data obtained at the first session were used for the training

of the models using the autohrf function, while the data

from the second and third sessions were used to test the

models using the evaluate_model function. Both models

were trained and tested based on a predefined selection of 80

ROIs that were expected to show responses to the task. During

the model training (Session 1; Supplementary Figure S10), the

permissive model showed a higher mean fitness (R2 = 0.89)

compared to the strict model (R2 = 0.87). In comparison,

the mean fitness of the theoretical model on the same dataset

was R2 = 0.86. During the evaluation of the models

based on the data from the second and third recording

sessions, the mean model fitness was again the highest for

the permissive model (Session 2: R2 = 0.88; Session 3:

R2 = 0.89), second highest for the strict model (Session 2:

R2 = 0.85; Session 3: R2 = 0.86), and the lowest for the

theoretical model (Session 2: R2 = 0.84; Session 3: R2 =

0.85). Since the model fitness remained similar even during

the testing compared to the training of the models, these

results suggest high generalizability of models obtained using

autohrf.

Next, we were also interested in the consistency of event

parameters when the autohrf function is given the same

set of predefined constraints, but the model is trained based

on different datasets. For that purpose, we used the data

from 19 participants with three recording sessions and ran

an automatic parameter search using strict and permissive

restrictions based on each separate recording session. Our

results showed generally very consistent event onset and

duration across sessions for both, strict and permissive, models

(Supplementary Figure S11). To quantitatively estimate the

consistency of event parameters across sessions, we calculated

the percentage of overlap in event timing during a task trial

across sessions in relation to the total time interval covered by

the event in at least one of the sessions, separately for encoding,

delay, and response events (Supplementary Figure S11B). For the

strict model, we observed a 100% overlap for the encoding,

89% for the delay, and 87% for the response. Similarly,

the permissive model returned an overlap across sessions

of 49% for the encoding, 100% for the delay, and 79% for

the response.

3.3.4. The evaluation of automatically obtained
event models based on simulated fMRI data

Even though our results suggest good reliability and

generalizability of event models obtained with autohrf,

the problem with evaluating the validity of event models

based on empirical fMRI data is that we do not know

what kind of cognitive processes actually gave rise to the

measured BOLD signal and thus cannot be sure that the

obtained event parameters are valid. This can be addressed

by running autohrf on simulated fMRI data with known

event parameters that are used to generate the BOLD signal.

Additionally, there are other factors that may influence the

validity of estimates obtained with autohrf. For instance,

we were interested to what extent different noise levels

interfere with reliable estimates. Moreover, since the automated

parameter search in autohrf uses predefined and fixed HRF

timing, we wanted to check the sensitivity of autohrf results

to the variability in the HRF timing in the measured BOLD

signal.

In analyzing and evaluating the simulation results, we first

focused on the reconstructed timing and duration of the events.

To assess the robustness to noise, we calculated the relative

overlap between event reconstructions at different noise levels

for each combination of simulated event models and HRF

timings. The results showed relatively high overlap for the delay

and response events and moderate overlap for the encoding

(Figure 6B). To assess the accuracy of the reconstructed timing,

we then calculated the percent overlap of the reconstructed

events with the simulated events for all simulated event models,

HRFs and noise levels (Figure 6C). The overlap was highest for

the longest event (i.e., delay) and smallest and most variable for

the shortest event (i.e., encoding). This is to be expected, since for

shorter events even the smallest change in timing leads to large

changes in overlap. Finally, to assess the sensitivity of autohrf

to differences in HRF timing, we compared the overlap between

the simulated and estimated events for different HRF times-

to-peak. The results showed the highest overlap for the 5 s

HRF time-to-peak, which was matched with the default HRF

timing in autohrf, and lower overlap for the unmatched HRF

times-to-peak (Figure 6D). Again, the differences in relative

overlap were more pronounced for shorter events than for

longer ones. A detailed review of the actual reconstructed timing

(Supplementary Figure S12) shows that autohrf adjusted the

timing to compensate for the differences in HRF time-to-peak.

In models with longer HRF time-to-peak, events were estimated

to start later. In models with shorter HRF time-to-peak, events

were estimated to start earlier and to be shorter. This should
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FIGURE 5

Delay-related activity and di�erences between task conditions estimated based on di�erent event models in the spatial working memory study.

Results were obtained by modeling encoding, delay, and response, with the timing and duration of each event either theoretically determined or

derived automatically based on the autohrf using less or more permissive constraints. (A) Results of the statistical analysis show delay-related

activity separately for the center and o�-center conditions and delay-related activity di�erences between task conditions. The results of

activation and deactivation during individual task conditions (the first two columns) show only statistically significant results at q < 0.05. On the

other hand, the task di�erences (the third column) are presented across all ROIs, while the black outlines mark statistical significance at

q < 0.05. (B) The comparison of Z-values of individual ROIs between di�erent models. Each dot represents the Z-value for a single parcel

obtained with the contrasted models. The dashed red line represents the diagonal.

allow more precise estimation of brain activity in the cases of

a mismatch between the assumed and measured HRF timing.

Next, we focused on evaluating β estimates. We used

datasets with a larger number of simulated ROIs (see the

Supplementary material) to compare the ability of the two

theoretical models and the models optimized with autohrf

to recover simulated activity. We evaluated and compared the

obtained β estimates in two ways. First, we calculated Pearson’s

r to test the extent to which each linear model reproduced

the variability in activation of the three simulated events. The
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FIGURE 6

Evaluation of the results obtained with autohrf based on simulated working memory fMRI data. (A) Simulated BOLD signal during a working

memory task trial was computed as a convolution of predicted event time series and a double-gamma HRF. We prepared 60 simulations that

di�ered in the predicted event timing (encoding, delay, and response events with di�erent onset and durations), HRF time-to-peak, and noise

levels (i.e., added random Gaussian noise with di�erent SD values). Each simulation was prepared based on 10 ROIs (only 5 are shown for

schematic purposes) with di�erent event amplitudes. We then ran the automated parameter search using autohrf with either strict or

permissive constraints based on simulated BOLD signal. (B) The robustness of data-driven autohrfmodels to noise levels. The overlap was

computed as the percentage of time covered by the automatically obtained event parameter across all noise levels, divided by the entire time

range that included this event in at least one of five noise simulations, separately for each simulated event model and HRF timing. (C) The ability

of autohrf to recover the simulated event timing based on four di�erent models. The overlap was calculated as the percentage of the

simulated event parameter covered by the automatically estimated event parameter. (D) The sensitivity of autohrf to di�erences in HRF

time-to-peak. The overlap was calculated as the percentage of the simulated event parameter covered by the automatically estimated event

parameter. (E) Pearson’s correlations between simulated event amplitudes and estimated β values using di�erent estimation models

(M–theoretical event model matching the simulated event model, N–theoretical event model not matching the simulated event model,

S–autohrf-optimized model using strict constraints, P–autohrf-optimized model using permissive constraints). (F) The range of β estimates

across ROIs in which the simulated event amplitude was constant when using di�erent estimation models. The points show the means and the

ranges show the 95% confidence intervals computed with bootstrapping.

optimized models performed better than the theoretical models

in most cases (Figure 6E and Supplementary Figure S13A).

Their advantage was evident in the cases where the theoretical

model was misspecified and where the HRFs did not match.

In both cases, the optimized models fitted the data better and

reproduced the underlying variability of activation better. The

performance of the optimized models was again better for

events of longer duration (i.e., delay and response) than for

very short events (i.e., encoding). Second, we examined the

extent to which the models provided an unbiased estimate of

individual event-related activations. Specifically, we calculated

the range of estimated values for all simulated ROIs in which

the simulated activity of the event under study was the same but

the activations of other events were different. In other words,

we examined the extent to which the β estimate for the target

event (e.g., delay) was affected by the activity related to the

preceding (e.g., encoding) or subsequent event (e.g., response).

Results generally showed better performance of the optimized
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models (Figure 6F). The performance differed depending on

the specific event structures simulated and the event studied

(Supplementary Figure S13B). While the advantages of the

optimized models were clear for delay, they were less clear for

encoding and response events.

4. The flanker task

The second illustration of the utility of the autohrf

package is the analysis of a flanker task. In this study (Ličen

et al., in preparation), we were interested in the extent to which

different types of incentives affect performance on the flanker

task and its neural correlates. To obtain separate estimates of

the effect of incentive on sustained cognitive processes (e.g., goal

representation, attention) and transient responses to congruent

and incongruent stimuli, we used a mixed state-item design in

which incentives were manipulated across different task blocks,

each block consisting of a pseudorandom mixture of congruent

and incongruent trials.

In the analysis of state-item designs, regressors for sustained

activity and for transient responses are included in the GLM

simultaneously. To obtain valid estimates of the overlapping

regressors, it is important to model both the sustained and

transient responses as accurately as possible because any

unexplained variance from one regressor will affect the other.

To avoid the problem of suboptimal modeling of the transient

responses using the assumed HRF, one possible solution is

to model the transient responses using unassumed modeling,

where we model each time point of the BOLD response

separately.

In our task, we faced an additional challenge. Reaction times

in the baseline and incentive conditions differed significantly

(719 and 557 ms for the incongruent and congruent trials

in the baseline condition, respectively, and 600 and 464 ms

for the incentive condition), so the observed differences in

transient response may be due to the time-on-task effect

rather than differences in neural activity. The magnitude

of the time-on-task effect can be estimated and controlled

by including an additional regressor in the GLM in which

each event is scaled by its reaction time. The problem

with this solution is that reaction times differ not only

between congruent and incongruent conditions, but also

between baseline and incentive blocks. Because reaction times

were shorter in the incentive blocks than in the baseline

blocks, differences in sustained activity between blocks could

be incorrectly attributed to the transient response reaction

time regressor, leading to invalid estimates of sustained

activity (i.e., underestimation of differences between baseline

and incentive blocks).

To address the above challenges, we adopted a two-

step approach. In the first step, our goal was to obtain

optimal estimates of the assumed sustained responses by

fully capturing the transient responses using unassumed

modeling. In the second step, we focused on decoupling

activity differences and the time-on-task effect in the transient

responses. Since the validity of the estimates of both sustained

activity and transient responses in the proposed two-step

approach is highly dependent on how well the sustained

response is modeled across task blocks, we used autohrf

to define the optimal event specification for modeling task

block related BOLD response. The paper presenting the

specific research questions addressed with this dataset and

the obtained findings is currently in preparation (Ličen

et al., in preparation). Rather than address specific research

questions, in this section we focus only on the use of

the autohrf package to optimize the event model for

the study.

4.1. Data information

The analysis included data from 30 healthy adults

(15 women, M = 37 years, SD = 8 years, range = 24–

52 years) who provided written informed consent to

participate in the study. The study was approved by the

Ethics Committee of the Faculty of Arts, University of

Ljubljana, Slovenia.

Each participant completed three BOLD runs of the Eriksen

flanker task (Eriksen and Eriksen, 1974). Each run consisted

of four 60 s task blocks separated by 10 s rest periods. Each

task block began with the appearance of a colored rectangle

surrounding the center of the screen indicating the start of the

task and the incentive condition. The first trial followed 2.5

or 5 s after box onset. Each trial began with a presentation

of a target stimulus (500 ms), a set of seven arrows ("<")

displayed in the center of the screen. The arrows either pointed

in the same direction ("<<<<<<<"; a congruent trial) or the

middle arrow pointed in the opposite direction (">>><>>>";

an incongruent trial). The participant’s task was to indicate

by a button press as quickly as possible the direction in

which the middle arrow was pointing. The stimulus display

was followed by a 1.5 s response period that ended with

the presentation of a feedback. The feedback was provided

by a small box presented at the center of the screen for

300 ms, which was white when no response was provided

and red or blue when the response was incorrect or correct,

respectively. Reaction time and accuracy were recorded for

each trial. To support analysis of transient responses, the

ITI was jittered and lasted 0.2, 2.7, or 5.2 s in a 9 : 6 : 4

ratio. After the last ITI of the block, the colored rectangle

disappeared, signaling the beginning of a rest period. Each

block consisted of 13 trials presented in a counterbalanced

pseudorandom order such that the same number of left and right

responses and congruent and incongruent trials occurred across

all four blocks.
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MRI data were acquired with Philips Achieva 3.0T. For each

participant we collected structural T1 and T2-weighted high-

resolution images, whole-brain functional scans with a T2*-

weighted echo planar imaging sequence, and a pair of spin-echo

field maps for distortion correction. Detailed MRI acquisition

parameters are described in the Supplementary material.

4.2. Data analysis

As in the spatial working memory study, MRI data were

preprocessed and analyzed using QuNex (v0.94.14; Ji et al.,

2022). MRI data were preprocessed using the HCP minimal

preprocessing pipelines (Glasser et al., 2013). Further analyses

were performed on parcellated whole-brain data obtained by

extracting the mean signal for each ROI, as identified in the

HCP-MMP1.0 parcellation (Glasser et al., 2016).

All GLM task analyses were completed in two steps.

The first step included assumed task regressors for the

block-related response modeled separately for each incentive

condition (baseline and incentive) and unassumed regressors

for the transient response modeled separately for each

incentive condition (baseline and incentive), each trial condition

(congruent and incongruent), and for correct and incorrect

responses. Assumed regressors were created by a convolution

of event time series with double-gamma HRF (Friston et al.,

1994a, 1998). Unassumed regressors were created by separately

modeling each of the eight frames following trial onset, jointly

modeling the time interval from 0 to 20 s after target stimulus

onset. For the second step, the residual BOLD time series

were calculated by removing the signal predicted by the linear

trend and block-related regressors from the original BOLD time

series. The second step included only unassumed regressors for

the transient response, which were again modeled separately

for each incentive condition (baseline and incentive), each

trial condition (congruent and incongruent), and for correct

and incorrect responses. In addition, we included a separate

single unassumed regressor for all transient responses, which

was scaled by the reaction times transformed into Z-values

independently for each participant.

All sustained activity related analyses were performed

using β estimates for the block task regressor. All analyses

related to the transient response were performed on the

average of the β estimates for frames 2 and 3 after stimulus

presentation (corresponding to the period from 2.5 to 7.5

s after stimulus presentation), which were considered to be

estimates of the peak trial-related transient response. Group-

level statistical analyses were performed using permutation

analysis (500 permutations, tail acceleration) in PALM (Winkler

et al., 2014). To identify sustained and transient activation and

deactivation, we performed two-tailed one-sample t-tests with

FDR correction. We performed focused comparison between

conditions by computing two-tailed paired t-tests with FDR

correction. The significance threshold was set at q < .05.

To evaluate theoretical event models and construct

optimized event models using autohrf, we computed a set of

representative task block-related time series. To achieve this, we

performed the first step as described above, however, in this case

we used a single-gammaHRF (Boynton et al., 1996) to avoid any

assumptions about a possible initial peak and trough at the end

of the task block. We then calculated the residual BOLD signal

after accounting for the intercept, linear trend, and all transient

regressors and averaged the resulting time series for each brain

parcel across all participants. This allowed us to extract the

best estimates of task block-related response. Next, to enable

unbiased optimization for a whole-brain analysis, rather than

focusing on time series from regions known to be activated by

the flanker task (e.g., Vanveen and Carter, 2002), we performed

a hierarchical cluster analysis of the 360 time series representing

each brain cluster. We used Euclidean distance as the distance

measure and clustered the parcels using Ward’s clustering

criterion (Murtagh and Legendre, 2014). We chose Euclidean

distance rather than correlation as the distance measure to

emphasize (de)activation over the general shape of the time

series. However, the use of correlation yielded comparable

results. After clustering, we computed a representative time

series by averaging the time series across all parcels in the same

cluster. Finally, we computed an averaged task block response

by extracting and averaging time series related to each block (4

baseline and 8 incentive blocks). Specifically, we extracted time

points 1 to 32 after the start of the block, representing 80 s of the

BOLD signal. These representative time series were then used

to evaluate and construct the event model. For all evaluations,

model fit was estimated using a weighted average R2 in which

the contribution of each cluster was weighted according to the

proportion of brain parcels included in the cluster.

Clustering and visualization of results were conducted using

R (v4.2.1; R Core Team, 2022). Whole-brain results were

visualized using Connectome Workbench (v1.5.0).

4.3. Results

4.3.1. Construction of theoretical and
data-optimized event models

To evaluate theoretical and to generate optimized event

models withautohrf, we first created representative task block

related time series. Based on hierarchical cluster analysis, we

identified six clusters of functional brain parcels (Figure 7A).

We chose the six-cluster solution because it ensured a range

of different (de)activation patterns. Visual inspection revealed

that solutions with a larger number of clusters did not yield

substantially different activity patterns. The representative time

series can be described as indicating sustained activation (C3 -

89 parcels, C5 - 78 parcels; Figure 7A), sustained deactivation
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FIGURE 7

Specification and evaluation of theoretical and automatically derived event models in the flanker study. (A) To optimize the evaluation of the

event models and facilitate comparisons, we used hierarchical cluster analysis to identify six representative time series of task block responses.

The panel shows the dendrogram of the cluster analysis and the distribution of the six identified clusters across cortical parcels. (B) Using

autohrf we explored optimization of two event models that di�ered by predefined constraints: a strict model closer to theoretical assumptions

and a more permissive model. We ran autohrf with a population of 100 for 1000 iterations. The plot was created using the plot_fitness
function. (C) Model parameters for the three key event models explored. A theoretical model with a single task regressor for the entire block

(simple block model), a theoretical model with regressors for block start, sustained task performance, and rest (complex block model) with a

priori event durations, and an autohrf-optimized model with event onset and duration that yielded the best model fit (optimized block model).

R2 of each model is a weighted average over representative time series weighted by the number of parcels represented in each cluster. (D)

Model fits over representative time series. BOLD time series are shown in black, time series predicted by the model in light red, while blue, red,

and green show the contribution of block start, task, and rest events, respectively.

(C2 - 20 parcels), and transient activation at onset and at rest (C1

- 52 parcels, C4 - 54 parcels, and C6 - 67 parcels).

We first evaluated a theoretical event model with a single

sustained task regressor spanning the length of the block (simple

block model; Figure 7C) modeled with double-gamma HRF,

possibly a most commonly used approach in block design

task analysis. As indicated by the weighted R2 = 0.38,

BIC = 216, and visual inspection of the model fit (Figure 7D),

the model performed poorly, mostly due to the inability to

account for transient responses at the beginning and end of the

task block.

Based on the representative time series, we next evaluated

a theoretical model that included separate regressors for start

of the task block and rest periods (complex block model;

Figure 7C). Because we had no specific basis for determining the

duration of these events, we set each to an arbitrary duration

of 1 s. This model performed significantly better with R2 =

0.79, BIC = 189. Visual inspection confirmed that the model

successfully captured the transient responses at the beginning

and end of the block (Figure 7D). Smaller BIC indicated that

the improved fit was not on the account of overfitting due to

additional predictors in the event model.
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Finally, we used autohrf to create optimized event models

based on empirical data. We ran autohrf with two sets

of constraints. The first set was a more conservative set of

constraints. We allowed the start event to vary between 0 and

2 s after block onset with a minimum duration of 0.1 s, task was

set to occur between 0 and 60 s after block onset with aminimum

duration of 55 s, while rest was set to occur between 60 and 65 s

with a minimum duration of 0.1 s. The second set of constraints

was more permissive in that the start event was allowed to end

up to 5 s into the block, task regressor could end 5 s after the end

of the block with a minimum duration of 50 s, and rest could

begin already 5 s before the block ended.

Encouragingly, both sets of constraints successfully

converged (Figure 7B) and resulted in very similar optimal

event specifications, based on which we constructed the

optimized block model (Figure 7C). The only difference was

in the start time and duration of the start event, which were

0.06 and 0.10 s, respectively, for the strict event model and 0.00

and 0.18 s, respectively, for the permissive model. Evaluation of

the optimized model showed slightly better performance with

R2 = 0.85, BIC = 174, and visual inspection confirmed that

the difference in event specification better captures the BOLD

response at the beginning and end of the block (Figure 7D).

Interestingly, the optimized start of the task regressor was at the

average time of the start of the first trial in the block (mean of

2.5 and 5 s used), while the optimal end was 1.24 s after the start

of the last trial in the block. We used these times in constructing

new event specifications for the first step of the GLM analyses.

4.3.2. Results based on theoretical and
data-optimized event models

After constructing the three models, we performed GLM

task analyses with each of them and compared the results. We

focused on a subset of possible analyses selected to represent

different types of research questions, (i) estimation of sustained

and transient responses, (ii) comparison of sustained and

transient responses between conditions, and (iii) evaluation of

a behavioral regressor.

First, we focused on the results related to the sustained

task response, as this should be most directly affected by the

differences between the three models. All three models yielded a

similar activation pattern in the baseline condition (Figure 8A),

with the simple block model resulting in somewhat higher

positive Z-values, whereas the complex and optimized block

models yielded similar results (Figure 8B). The slightly higher

positive Z-values could be due to the fact that the regressor

task must also account for transient activity at the beginning

and end of the task block, which was modeled separately

in the complex and optimized models. The comparison of

sustained activity between baseline and incentive conditions

also showed a similar pattern in all models, but the differences

were more pronounced here. The complex block model resulted

in substantially lower Z-values, which were recovered in the

optimized model (Figure 8B). The latter may be due to the lack

of overlap between the task, start, and rest event regressors in

the optimized model, which allows task sustained activity to be

estimated fully independently of the transient responses at the

beginning and end of the task block.

Next, we examined how different modeling of the task block

response affected estimates of trial-related transient responses.

Again, all three models yielded a similar pattern of significant

activations and deactivations across cortical parcels (Figure 9A).

Here, the complex block model yielded slightly higher positive

Z-values (Figure 9B), resulting in more identified significant

activations in frontal and temporal cortex. The optimized block

model, on the other hand, identified additional posterior parietal

activations and deactivations in the medial prefrontal cortex and

left temporal pole. The comparison of the significant effects of

the incentive on the transient responses differed substantially

between the three models (Figure 9A). Whereas the simple

model resulted in a small number of decreases in responses

in the incentive condition, the complex model identified a

number of increases in task-relevant parcels, and the optimized

model identified no significant differences. Both the Z-values

(Figure 9B) and the examination of un-thresholded whole-brain

images (Supplementary Figure S15A) revealed an overall shift

from decreases in the simple model to increases in the complex

and optimized models. It appears that the transient responses

at the beginning and end of the block captured by the task

regressor in the simple model mask the increase in transient

responses, leading to misleading results in the simple model and

overestimates in the complex model. A similar observation can

be drawn from the comparison of incongruent and congruent

responses within the baseline block, where the simple model

indicates a large number of reduced transient responses in

incongruent compared to congruent trials, while the complex

and optimized models again provide more comparable results

(Figure 9).

Last, we examined the extent to which the different models

captured the correlation between transient responses and trial-

to-trial reaction times. Similar to previous results, the simple

block model yielded a larger number of parcels identified as

significantly correlated with reaction times than the complex

and optimized block models (Figure 10). It should be noted

here that the reaction time covariate was computed across

all trials in all task blocks, which differed in mean reaction

times, as noted earlier. If there were differences in sustained

responses between conditions that were not captured by the

sustained regressor, they would affect the estimates of the

transient response. Transient responses would be overestimated

if sustained activity was underestimated and vice versa. This

appears to have been the case when the simple model was used.

A slight overestimation of sustained responses in the incentive

condition and an underestimation in the baseline condition

would result in an overestimation of the magnitude of transient
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FIGURE 8

Estimation of task sustained response and incentive e�ects using di�erent event models in the flanker study. (A) Significant sustained

whole-brain activations and deactivations in baseline condition (first row) and significant di�erences between sustained task response in

baseline and incentive conditions (second row) are shown. (B) A comparison of Z-values obtained with di�erent models. Each point represents a

Z-value obtained for a brain parcel using the two models compared. The red diagonal presents equal values.

responses in the baseline condition and an underestimation in

the incentive condition, which would be reflected in an increase

in the positive correlation with reaction times. This pattern

is also consistent with the previously observed paradoxical

reduction in transient responses in the incentive condition

compared with the baseline condition when the simple model

is used (Figure 9A), as well as the observation of a slightly

higher increase in estimates of sustained activity in the incentive

condition compared with the baseline condition (Figure 8A).

Jointly, the review of results obtained with the three models

indicate a high probability of invalid results obtained with the

simple block model and possible additional improvements in

validity when using the autohrf-optimized model.

5. Discussion

The autohrf package provides a unique and novel

approach to event model construction for the GLM analysis

of task-related fMRI data. Although GLM is a powerful

tool for decomposing BOLD signal and estimating individual

responses to neural events, it is limited by the relatively
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FIGURE 9

Estimation of transient task response, incentive and stimulus congruency e�ects using di�erent event models in the flanker study. (A) Significant

transient whole-brain activations and deactivations in the baseline condition (top row), significant di�erences in transient response between

incentive and baseline conditions (middle row), and significant di�erences between responses to incongruent and congruent stimuli in baseline

condition (bottom row) are shown. (B) A comparison of Z-values obtained with di�erent models. Each point represents a Z-value obtained for a

brain parcel using the two models compared. The red diagonal presents equal values.

arbitrary specification of the event model used to describe

the BOLD signal (Luo and Nichols, 2003; Lindquist, 2008;

Loh et al., 2008; Poldrack et al., 2011; Pernet, 2014). Instead

of defining event models based on predefined assumptions,

we present an approach to constructing the event model

based on the measured BOLD signal. In addition, supporting
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FIGURE 10

Estimation of correlation between trial-to-trial variability in transient response and reaction times in the flanker study. (A) Whole-brain maps of

significant β estimates reflecting covariability between trial-to-trial transient responses and reaction times are shown. (B) A comparison of

Z-values obtained with di�erent models. Each point represents a Z-value obtained for a brain parcel using the two models compared. The red

diagonal presents equal values.

functions provide informative evaluation and visualization of

the constructed models. While the autohrf package does

not replace the necessary domain-specific knowledge about the

cognitive processes under study and how they are reflected in

the BOLD signal, it does provide the researcher with additional

information tomake an informed decisionwhen designing event

models for the GLM analysis.

We have demonstrated the utility of the package on two

example datasets and a data simulation. The diverse behavioral

tasks and study designs used in both datasets suggest broad

applicability of the autohrf package. Nevertheless, the focus

of our analysis was to evaluate the performance and reliability

of the automatically derived models compared to theoretically

defined models. We were interested in the fit of the models, the

changes in effect sizes of the resulting response estimates, and

any qualitative differences in the observed patterns of results.

Though the optimizedmodels have not always resulted in higher

effect sizes, the qualitative review of the specific patterns of

results indicates an improvement in the validity of the results.

It needs to be noted that the use of autohrf to evaluate

theoretical event models also led to better theoretically defined

event models that yielded results with higher validity. In any

case, we have to appreciate that even small changes to the event

model resulted in considerable qualitative differences in the

final results. These results suggest that the model choice is an

impactful step in task-related fMRI analysis. Still, the reliability

of modeling the HRF and event timing used in task-related fMRI

studies is rarely evaluated (Lindquist, 2008).

Based on the spatial working memory study, we presented

an example procedure for selecting the most appropriate event

model using the autohrf package. First, our results showed

that the choice of the number of task events substantially affects

the obtained response estimates. Too few events are sometimes

unable to account for enough variability in the BOLD response,

while too many events can lead to inappropriate GLM estimates.

Second, as expected, the automatically derived event timing

parameters provided a better fit to the actual BOLD response

compared with the theoretically defined models. However, the

face validity of the GLM estimates appeared to decrease with

the relaxation of the predefined constraints passed to autohrf.

During visual inspection, this was evident in the form of

over- or underestimates and unexpected shifts in the timing

of events. This may suggest that the theoretical assumptions

about brain activity still provide necessary information, whereas
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autohrf can be used to fine-tune event specification. However,

it is also possible that autohrf reveals incorrect assumptions

about cognitive processes and associated neural activity in our

task designs and could provide an analytic tool for examining

the detailed properties of the components of the BOLD task

response. Finally, performing statistical analyses of response

estimates obtained with automatically derived compared to

theoretical models revealed substantial qualitative differences

in activity patterns and task differences. In some cases and

brain regions, theoretical models led to higher effect sizes, and

automatically derived ones in others. Because of this variability,

we were unable to determine which type of model produced

unambiguously better results. This highlights the possibility

that it is not optimal to use a single event model for the

whole brain because of differences in the timing of component

cognitive processes and associated neural activity in different

brain systems and regions. We see two possible ways to address

this issue. One is to extend autohrf to optimize event models

independently for different brain systems. Another is to develop

deconvolutional approaches that do not depend on explicit

specification of neural events.

Additional validation of the models optimized with

autohrf using cross-validation and data simulation also

provided valuable information. The autohrf models

optimized on the first session performed better than the

theoretical model in subsequent sessions, and the models

optimized on different sessions were well matched. Both results

indicate that the autohrf results are stable and reflect the

event structure of the data rather than capitalize on noise.

Simulation of data from a working memory task also showed

that autohrf can reliably reconstruct the event structure

present in the signal and adapt to HRF differences. However,

performance is better for events of longer duration. The β

estimates of activity capture the true variability very well, but do

not provide a perfect decomposition as they can still be affected

by the preceding and following events.

The flanker study provided another example of the

usefulness of the autohrf package in both evaluating

theoretical and constructing optimized empirical models.

The creation of representative time series allowed for more

efficient and interpretable investigation and review of various

event models. Evaluation of the initial model encouraged

the development of a better theoretical model of block

task response, while further optimization revealed additional

valuable features of the BOLD response. Comparison of

the constructed models again revealed the extent to which

modifications of event models lead to important qualitative

differences in results beyond changes in effect sizes. The

observed changes are not always obvious, as an improvement

in the modeling of one event can lead to considerable changes

in other estimates. In the example of the flanker study,

a change in the modeling of a sustained regressor led to

appreciable differences in transient responses, including trial-to-

trial behavioral correlations.

The two example studies were selected to illustrate the

use cases for evaluating and optimizing event models with

autohrf. They enabled the identification of a significant

impact of event modeling decisions on final results and provided

valuable insights into slow-event and mixed state-item designs

commonly used in functional neuroimaging. We primarily

focused on demonstrating different ways of using autohrf

and the differences in the results obtained. While we have

described the main observations in the pattern of results,

we have not explored in depth the specific differences and

underlying mechanisms. Although additional insights could be

gained by testing different explanations for the observed results,

this was not the main focus of the paper. We hope that the

observations presented will stimulate further investigation by

other researchers in the field and promote better understanding

and appreciation of the task-related GLM decisions.

5.1. Limitations

One of the current limitations of the package is the increase

in processing time required for automatic parameter search

with the increase in the number of ROIs, population size, and

iterations. On a 2019 MacBook Pro, a single iteration for a study

with 37 participants, and a population size of 100, required about

10 s when run across 36 ROIs, and 100 s when run across

180 ROIs. An automated parameter search for a model with

the default 100 iterations takes about 20 min for 36 ROIs and

about 3 h for 180 ROIs. These times can be significantly reduced

when using a modern desktop computer or a dedicated compute

server. The processing time required remains manageable when

working with most commonly used parcellations. For example,

we have successfully applied the autohrf package to the data

consisting of 360 ROIs defined in the HCP-MMP1.0 parcellation

(Glasser et al., 2016). Beyond that the duration of the automated

search increases rapidly, making voxel- or grayordinate-based

analyses infeasible in the current version of the package.

When using the autohrf function with model constraints

of varying complexity as inputs, one must acknowledge the fact

that more complex models are more flexible and will always

fit the data better. Therefore, to avoid overfitting of the model

it is best to use techniques developed in machine learning.

The most common approach to address overfitting is cross-

validation. In cross-validation, a subset of data is used to train/fit

the model. After training is complete, the quality of the model

is evaluated using unseen test data. If the model is overfitted to

the training data, it does not generalize well to independent data

and receives a lower evaluation score. We presented an example

of a hold-out cross-validation on the spatial working memory

study, where we used the fMRI data from the first recording

session as an input to the autohrf function for the purpose

of automated parameter search. We then tested the obtained

models using the evaluate_model function on the fMRI

data from the remaining second and third sessions. With this
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procedure, model evaluation was performed on the data that

were not used for automated parameter search. It should be

noted that the training and testing datasets should be carefully

selected to avoid introducing systematic factors that could affect

the generalizability of themodel. For example, conducting cross-

validation across multiple sessions could be problematic if there

are extended periods of time between sessions due to potential

developmental changes (e.g., Herting et al., 2018) or disease

progression (e.g., Han et al., 2022). Since data acquisition in

neuroimaging is often costly and datasets are small, cross-

validation is not always feasible. In such cases, the user should

consider the BIC measure reported by the evaluate_model,

which accounts for model complexity. Note that appropriate

cross-validation is more robust and reliable than BIC, so cross-

validation is preferable when sufficient data is available.

5.2. Future developments

We consider autohrf in its current form a useful proof-

of-concept that we intend to develop further in terms of both

additional functionality and analytical capabilities. Features that

are already in the pipeline but did not make it into the initial

release include the ability to perform automatic search for

model parameters per participant and per ROI basis. Because

studies show considerable variability in hemodynamic responses

between brain areas and participants (Aguirre et al., 1998;

Miezin et al., 2000; Handwerker et al., 2004; Badillo et al.,

2013), we aim to further develop a separate estimation of model

parameters for individual ROIs and participants that could

account for this variability in BOLD response and thus provide

more reliable estimates of brain activity. In addition, such a

tool could also be used to study individual differences in BOLD

responses as well as the hemodynamic properties of different

brain systems.

To extend the utility of the autohrf package, we plan

to incorporate other types of BOLD response modeling, such

as unassumed modeling. Additionally, we plan to integrate the

autohrf package into QuNex (Ji et al., 2022), which would

allow an easier use of the models obtained with autohrf in

large-scale fMRI data analysis.

As a part of an additional evaluation analysis, we plan to

investigate how different parameters in genetic algorithms affect

the models obtained with autohrf. The default values for

the number of iterations, population size, and mutation rate in

genetic algorithms were set based on a series of experiments

using our own data with a goal to provide the convergence of

models in a reasonable time frame. Since the optimal values

for these parameters are study-dependent, some users may need

to optimize them through their own experiments. We plan to

analyze the effects of these parameters on model convergence

and results in more detail in the future. This should allow users

to set better values for their studies more efficiently.

5.3. Conclusion

The exploration of automatic optimization of event models

based on empirical data suggests that autohrf can be used

to check and validate theoretical models, to develop optimized

models that result in a better fit to observed BOLD responses,

and to explore the event structure underlying task BOLD

responses. Using autohrf with reasonably defined constraints

may lead to more valid and reliable estimates of brain activity

and higher statistical power. Thus, autohrf can serve as

a powerful tool that can be used in an easy and efficient

manner in combination with other analytic tools to support

and guide large-scale GLM analysis of task-related fMRI data.

Furthermore, we show that the automatic parameter search

enabled by autohrf can provide unique information about the

properties of fMRI signals that challenge existing assumptions

and open a new analytical approach in functional neuroimaging.
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Feusner, J. D. (2021). FMRI hemodynamic response function (HRF) as a novel
marker of brain function: applications for understanding obsessive-compulsive
disorder pathology and treatment response. Brain Imaging Behav. 15, 1622–1640.
doi: 10.1007/s11682-020-00358-8

Rangaprakash, D., Wu, G.-R., Marinazzo, D., Hu, X., and Deshpande, G.
(2018). Hemodynamic response function (HRF) variability confounds resting-state
fMRI functional connectivity.Mag. Reson. Med. 80, 1697–1713. doi: 10.1002/mrm.
27146

Vanveen, V., and Carter, C. (2002). The anterior cingulate as a
conflict monitor: fMRI and ERP studies. Physiol. Behav. 77, 477–482.
doi: 10.1016/S0031-9384(02)00930-7

Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., and Nichols,
T. E. (2014). Permutation inference for the general linear model. Neuroimage 92,
381–397. doi: 10.1016/j.neuroimage.2014.01.060

Wu, G.-R., Colenbier, N., Van Den Bossche, S., Clauw, K., Johri, A.,
Tandon, M., et al. (2021). rsHRF: a toolbox for resting-state HRF estimation
and deconvolution. Neuroimage 244, 118591. doi: 10.1016/j.neuroimage.2021.11
8591

Yan, W., Rangaprakash, D., and Deshpande, G. (2018). Aberrant
hemodynamic responses in autism: implications for resting state fMRI functional
connectivity studies. Neuroimage Clin. 19, 320–330. doi: 10.1016/j.nicl.2018.
04.013

Frontiers inNeuroimaging 24 frontiersin.org

https://doi.org/10.3389/fnimg.2022.983324
https://doi.org/10.1016/j.neuroimage.2011.10.008
https://doi.org/10.1038/35084005
https://www.jstor.org/stable/24308562
https://doi.org/10.1016/S1053-8119(03)00149-6
https://doi.org/10.1006/nimg.2000.0568
https://doi.org/10.1007/s00357-014-9161-z
https://doi.org/10.1016/j.neuroimage.2014.09.060
https://doi.org/10.3389/fnins.2014.00001
https://doi.org/10.3389/fnhum.2022.821545
https://doi.org/10.1007/s11682-020-00358-8
https://doi.org/10.1002/mrm.27146
https://doi.org/10.1016/S0031-9384(02)00930-7
https://doi.org/10.1016/j.neuroimage.2014.01.060
https://doi.org/10.1016/j.neuroimage.2021.118591
https://doi.org/10.1016/j.nicl.2018.04.013
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org

	autohrf-an R package for generating data-informed event models for general linear modeling of task-based fMRI data
	1. Introduction
	2. Methods
	2.1. Evaluating pre-defined models
	2.2. Automated parameter search

	3. Spatial working memory task
	3.1. Data information
	3.2. Data analysis
	3.3. Results
	3.3.1. The comparison of models with different number of event predictors
	3.3.2. The comparison of theoretically and automatically derived event models
	3.3.3. The generalizability of automatically obtained models across different fMRI recording sessions
	3.3.4. The evaluation of automatically obtained event models based on simulated fMRI data


	4. The flanker task
	4.1. Data information
	4.2. Data analysis
	4.3. Results
	4.3.1. Construction of theoretical and data-optimized event models
	4.3.2. Results based on theoretical and data-optimized event models


	5. Discussion
	5.1. Limitations
	5.2. Future developments
	5.3. Conclusion

	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


