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Due to needs surrounding rigor and reproducibility, subgroup specific disease

knowledge, and questions of external validity, data harmonization is an

essential tool in population neuroscience of Alzheimer’s disease and related

dementias (ADRD). Systematic harmonization of data elements is necessary to

pool information from heterogeneous samples, and such pooling allows more

expansive evaluations of health disparities, more precise e�ect estimates, and

more opportunities to discover e�ective prevention or treatment strategies.

The key goal of this Tutorial in Population Neuroimaging Curriculum,

Instruction, and Pedagogy article is to guide researchers in creating a

customized population neuroscience of ADRD harmonization training plan

to fit their needs or those of their mentees. We provide brief guidance for

retrospective data harmonization of multiple data types in this area, including:

(1) clinical and demographic, (2) neuropsychological, and (3) neuroimaging

data. Core competencies and skills are reviewed, and resources are provided

to fill gaps in training as well as data needs. We close with an example study

in which harmonization is a critical tool. While several aspects of this tutorial

focus specifically on ADRD, the concepts and resources are likely to benefit

population neuroscientists working in a range of research areas.

KEYWORDS

neurocognitive testing, neuropsychological assessment, cognitive aging, pooling

data, neuroimaging, sample size, external validity
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Introduction: Background and
rationale

Neuroscience studies, including those focused on

Alzheimer’s disease and related dementias (ADRD), are

often marked by small sample size and highly selective

participation. Consequently, many studies do not represent

diversity with respect to race/ethnicity, age, comorbid

conditions, education, income, or geographic factors,

limiting the population relevance of the research. Further,

study participation may be influenced by complex

combinations of these or other variables such as gender/sex or

genetic characteristics.

These selection processes create critical limitations to
the quality of the neuroscientific evidence base. Work in
the Adolescent Brain Cognitive Development Study (N =

11,878) has demonstrated that small sample sizes reduce
reproducibility of study findings. Investigators showed that

brain-behavior correlations in brain-wide association studies

can differ, not only in strength, but worryingly in directionality.

Across multiple draws of small sample size the direction

of associations may be reversed, but results are more

reproducible at large sample sizes (Marek et al., 2022). This

has negative implications for both reproducibility and pooled

and meta-analyses. Small, highly selected samples also reduce

statistical power to test for subgroup effects (e.g., women

vs. men; APOE4 carriers vs. non-carriers; those with vs.

without cardiovascular risk factors). Evaluating effects within

subgroups, and estimating differences in effects across groups,

is essential to determine how to tailor interventions to

prevent neurocognitive decline and identify drivers of brain

health inequalities.

Increasing sample size is important but cannot fully rectify
these limitations; attention to other features of rigorous and
robust research designs is needed. First, to obtain larger sample
sizes, researchers may wish to combine multiple data sets. In
population neuroscience studies, attempts to pool neuroimaging

data collected across scanners, sites, and cohorts will be subject

to “scanner effects” (Fortin et al., 2018)—technical sources

of variance. Scanner effects have been reported in multiple

neuroimaging measures derived from MRI and PET (Fortin

et al., 2016, 2017, 2018; Yu et al., 2018; Pomponio et al.,

2020). Even in multi-center studies using good principles of

study design for prospective harmonization, scanner or site-

related factors can explain large proportions of variance in

the neuroimaging measure (Shinohara et al., 2017). Scanner or

site effects, unless corrected, introduce error variance, reducing

power to detect effects of interest such as sex interactions

(Leek and Storey, 2007). Furthermore, scanner differences likely

become associated with study population and compositional

differences, rendering this research vulnerable to potential

confounding bias. Thus, not accounting analytically for scanner

effects can be consequential.

Second, when there is effect modification of an association

between an exposure and an outcome, external validity will

be impacted by differing prevalence of effect modifiers in the

sample vs. the target population (Cole and Stuart, 2010; Keyes

and Westreich, 2019). An illustration of this phenomenon can

be seen in a comparison of associations in the highly selected

Alzheimer’s Disease Neuroimaging Initiative (ADNI) study and

the community-based Atherosclerosis Risk in Communities

(ARIC) study (Gianattasio et al., 2021). Compared to ARIC

participants, ADNI participants were more likely to male,

APOE4+, married, more highly educated, to have mild cognitive

impairment (MCI) or dementia, and less likely to be Black

or have a history of hypertension (Gianattasio et al., 2021).

Approximately 1/3 of associations varied significantly by study,

and some effect size differences were very large (e.g., odds ratio

for association of APOE4 with (Aβ)+ = 8.6 in ADNI but 2.8 in

ARIC), likely due to differences in prevalence of effect modifiers

between the two studies (Gianattasio et al., 2021).

Data pooling underlies the ability to address each of

the limitations described above, but data cannot be pooled

without careful harmonization. As data sharing of numerous

neuroscience datasets is becoming more common, the number

of publications using harmonization to study brain health is

increasing (see Figure 1 for an example from the cognitive aging

and ADRD literature). Thus, harmonization is now an essential

skill for population neuroscientists.

Harmonization “refers to all efforts to combine data from

different sources and provide users with a comparable view of

data from different studies” (Data Sharing for Demographic

Research, 2022). The aim is to synthesize data to render it similar

enough to either be (1) combined for pooled data analysis or

(2) analyzed in parallel in the same manner and compared

(e.g., reproducing an analysis carried out in one study sample

within a different study sample). A “stringent” approach to

harmonization involves multiple studies agreeing in advance of

data collection to use the same assessments and protocols to

prospectively collect the same data (Fortier et al., 2011). On the

other hand, a more “flexible” harmonization approach allows for

differing assessments and study protocols (Fortier et al., 2011).

This approach may be carried out prospectively, but also allows

for retrospective harmonization. We focus our comments in this

paper specifically on retrospective data harmonization so that

early career researcher (ECR) population neuroscientists and

others new to the field develop training to make efficient and

accurate use of existing data. The audience and objectives of this

article are detailed next.

Audience, environment, objectives,
and outcomes

Approaches to retrospective harmonization vary, and there

exist few sources of integrated guidance addressing the
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FIGURE 1

Number of publications over time based on a PubMed search for cognitive aging and Alzheimer’s disease and related dementias through the

end of 2021. Search query: ((((alzheimer’s disease) OR (dementia)) OR (mild cognitive impairment)) OR (cognitive aging)) AND (harmonization).

varied data types that population neuroscientists commonly

use. We aim to address how new researchers can obtain

training in this area with this introductory level Tutorial

in Population Neuroimaging Curriculum, Instruction, and

Pedagogy article. The article is directed to ECRs (students,

postdocs, and early career faculty) and others new to

the field as well as faculty teaching related courses and

mentoring trainees. This information would be especially

relevant for researchers writing government and foundation

funded training grants. While the example (section Example

research plan incorporating population neuroscience of ADRD

harmonization) and many data sources in Table 2 are ADRD-

specific, population neuroscientists across the life course and

health and disease states are likely to benefit from this tutorial.

The learning approach and environment are highly self-directed

and based upon amentored academicmodel in which the trainee

works with mentors to identify gaps in knowledge and training

elements to fill those needs and build their skills.

The objectives of this article are to (1) illustrate for

researchers, reviewers, and funders the need for population

neuroscience data harmonization (Introduction); (2) describe

core competencies and skills necessary for harmonization

methods of the data types that population neuroscientists

should have expertise in; (3) assist readers in identifying

their own training gaps and list a selection of relevant

learning resources; and (4) use an example ADRD research

question to further examine considerations in harmonization

of demographic/clinical, neuropsychological, and neuroimaging

data. Overall, the expected learning outcome of this article

is the creation of a customized population neuroscience of

ADRD (Ganguli et al., 2018) harmonization learning plan to

fit readers’ needs or those of their mentees. Evaluative feedback

on the developed training plan can be carried out through an

iterative process of mentor feedback and revision, while the final

evaluation for those writing training grants will be in the form

of peer review and feedback on the grant to the investigator.

Key elements for positive evaluation are the extent to which

the training resources selected by the researcher map onto

knowledge gaps and the extent to which the training is integrated

into and necessary to answer the researcher’s scientific questions.

Brief introduction to harmonization
and core competencies and skills

Detailed guidance regarding overall retrospective data

harmonization is provided in the Maelstrom Research

Guidelines (Fortier et al., 2017). In this section, we provide a

brief introduction to the Maelstrom best practices and related

core competencies and skills researchers need to carry out

rigorous harmonization in population neuroscience studies.

Core competencies and training resources to address researcher

knowledge gaps are outlined in Table 1. We recommend that

researchers use this table and work with their mentors to identify

which core competencies are training gaps (Table 1, left column)

and design their own training plan based on the resources

provided (Table 1, right column). This should be an iterative

process of design and drafting, mentor feedback, and training
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TABLE 1 Core competencies/gaps in knowledge and specific training resources in harmonization of population neuroscience studies of ADRD.

Core competency/gap

in knowledge

Training resource(s)

Overall harmonization skills

Multidisciplinary

collaboration skills

• Scientific leadership and development courses; refer to researcher’s own institution offerings on these topics

◦ Example at the University of Pittsburgh: https://www.oacd.health.pitt.edu/micro-credential-postdocs;

Note: Although it is aimed at postdocs, faculty may also enroll

• Mentor(s) with multidisciplinary project leadership experience

◦ Discuss during mentorship meetings

• Mentors or consultants with specific area expertise

◦ One-on-one and/or lab meetings

◦ Directed readings

Pre-statistical harmonization

and detailed documentation

of study design, variables, and

variable transformation

• Maelstrom retrospective harmonization guidelines (Fortier et al., 2017)

• Common data element resources on how variables can be mapped to a harmonized variable

◦ NIH’s common data element (CDE) repository (https://cde.nlm.nih.gov/)

◦ Gateway to Global Aging Data site’s (https://g2aging.org/documentation) data documentation

• Considerations for harmonization, pooled study design, and analyses (Lesko et al., 2018)

Reproducible statistical

coding, analysis, and power

calculations

• Statistical coding and analysis coursework at researcher’s own institution

• GitHub for promoting code reproducibility (https://github.com/)

• Learn about incorporating code review (Vable et al., 2021)

• Mentor(s) with biostatistics expertise

• Online coursework

• LinkedIn Learning (see if your institution has an institutional subscription)

• Statistical Horizons (https://statisticalhorizons.com/) and Code Horizons (https://codehorizons.com/)

• Neuroimaging analysis in R through Neuroconductor (https://neuroconductor.org/courses)

Demographic and clinical variable harmonization skills

Domain expertise • Mentors or consultants with domain expertise

◦ One-on-one and/or lab meetings

◦ Directed readings

Neurocognitive assessment harmonization skills

Domain expertise • A mentor or consultant who is a neuropsychologist

◦ One-on-one and/or lab meetings

◦ Directed readings

• Observation of neuropsychological test administration and scoring

• Review of test protocols, materials, and stimuli

• Suggested readings

◦ Common tests selected for data sharing in AD research, characteristics, considerations (Bellio et al., 2020)

Methods expertise such as

standardization,

equipercentile equating,

multiple imputation, factor

analysis, and item response

theory-based approaches

• A mentor or consultant who has psychometric methods expertise

◦ One-on-one and/or lab meetings

◦ Directed readings

• Advanced Psychometric Methods in Cognitive Aging Research (ΨMCA: https://psymca.org/) Annual conference and

workgroups. Workgroups are application-based admission.

• Suggested readings

◦ Methods to harmonize and combine neuropsychological assessment data for meta-analysis (Griffith et al., 2015)

◦ Cautions about sum and mean score approaches (standardization) (McNeish and Wolf, 2020)

◦ Multiple imputation approach to harmonization in AIBL and ADNI (Shishegar et al., 2021)

◦ Equipercentile equating based approach in the NACC Uniform Data Set neuropsychological test battery (Monsell et al., 2016)

◦ Detailed paper with workflow on IRT-based neuropsychological data harmonization and co-calibration in studies of cognitive

aging and ADRD (Mukherjee et al., 2022)

(Continued)
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TABLE 1 (Continued)

Core competency/Gap

in knowledge

Training resource(s)

◦ IRT-based harmonization of neuropsychological data for an analysis of genetics in late-onset AD subgroups across five studies

(Mukherjee et al., 2020)

◦ Example cross-national harmonization (US and India) (Vonk et al., 2022)

◦ Cross-national harmonization with brief cognitive assessments, with good discussion of assumptions, alternatives (Kobayashi

et al., 2021)

Neuroimaging harmonization skills

Image processing skills • A mentor or consultant who has neuroimaging harmonization expertise

◦ One-on-one and/or lab meetings

◦ Directed readings

• FreeSurfer neuroimaging processing course: https://surfer.nmr.mgh.harvard.edu/fswiki/CourseDescription

• Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB) Software Library (FSL) course and online

resources:

https://open.win.ox.ac.uk/pages/fslcourse/website/

• NIPY: Neuroimaging analysis using Python

https://nipy.org/#

• Neurohackademy Lectures:

https://neurohackademy.org/course_type/lectures/

• PET Pharmocokinetics Course: A 3-day course which provides an overview of principles involved in PET kinetic modeling and

analysis. The course includes lectures, interactive discussions, and hands-on computer exercises. It runs every other year before

NeuroReceptor Mapping (NRM) and before Brain on the intervening years

• Rotations in your local MRI and/or PET imaging center

Pre- and post-statistical

harmonization

• See Statistical coding and analysis under Overall harmonization skills above

• Suggested readings

◦ Original ComBat paper for gene expression microarray data (Johnson et al., 2007)

◦ MRI, cross-sectional regression-based harmonization

◦ White Stripe image-intensity normalization (Shinohara et al., 2014)

◦ RAVEL (Removal of Artificial Voxel Effect by Linear regression) (Fortin et al., 2016)

◦ ComBat for cortical thickness (Fortin et al., 2018)

◦ ComBat for diffusion tensor imaging (Fortin et al., 2017)

◦ ComBat for fMRI (Yu et al., 2018)

◦ ComBat combined with generalized additive models (ComBat-GAM) to address harmonization across a wide age range

(Pomponio et al., 2020)

◦ CovBat to address site effects in covariance (in addition to the more typical site effects in mean and variance) (Chen et al.,

2022)

◦ MRI, longitudinal regression-based harmonization

◦ ComBat for longitudinal cortical thickness (Beer et al., 2020)

◦ Machine learning-based harmonization

◦ MRI harmonization via MISPEL (Multi-scanner Image harmonization via Structure Preserving Embedding Learning) when

more than two scanners are used (Torbati et al., 2021b)

◦ DeepHarmony addresses MRI contrast differences across two scanners (Dewey et al., 2019)

◦ mica addresses MRI contrast differences across more than two scanners (Wrobel et al., 2020)

◦ PET harmonization

◦ Standardization with Centiloids for PET amyloid imaging (Klunk et al., 2015; Royse et al., 2021)

(Continued)
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TABLE 1 (Continued)

Core competency/Gap

in knowledge

Training resource(s)

◦ Non-linear distributional mapping (NoDiM) to address potential non-linearities in amyloid PET tracer measurement scales

(Properzi et al., 2019)

◦ Impact of RAVEL on MRI and PET outcomes (Minhas et al., 2020)

◦ New and combined pipelines

◦ Combining RAVEL and ComBat to harmonize across different scanner strengths and remove both variation due to varying

imaging intensity and other scanner effects (Torbati et al., 2021a)

This table should be used by the researcher seeking training to identify the core competencies which are knowledge gaps for them in the left column. The researcher should then select one

or more relevant training resources in the right column to address the training needs.

plan revision. This is a key component in career development

award proposals. Data resources for ADRD studies are provided

in Table 2. These may be sources of data for use in researcher

harmonization studies, additional training information, and

in some cases, small grants may be available. Some of the

data sources listed are highly selected samples/cohorts [e.g.,

ADNI and the National Alzheimer’s Coordinating Center

(NACC)], and population neuroscientists are encouraged

to evaluate external validity more formally when these

samples are used.

Population neuroscience entails a convergence of expertise

in epidemiology and neuroscience/neuroimaging (Paus, 2010;

Falk et al., 2013). If harmonization is to be undertaken

in large epidemiological cohorts with neuroimaging, the

population neuroscientist must be skilled in harmonizing

demographic and clinical data as well as neuropsychological

and neuroimaging data. Next, we provide an introduction to

harmonization, core competencies, and necessary skills both

overall and for the specific data types population neuroscientists

will encounter.

Overall harmonization

Retrospective population neuroscience harmonization

requires expertise across a range of disciplines. As such,

multidisciplinary collaboration skills are critical. Pre-statistical

harmonization ensures rigorous, high quality research results,

and includes selection of appropriate studies and variables to

incorporate in the harmonization. This involves creating the

DataSchema—the list of variables needed to answer the specific

study question—and assessing these variables in each study for

harmonization potential (Fortier et al., 2017). The DataSchema

includes the key predictors(s), outcome(s), confounders, and

effect modifiers of interest. The research question, population

studied, and necessary data on exposures, outcomes, and other

key variables should dictate which studies are selected for

harmonization. Detailed documentation of each contributing

study’s design characteristics and variables will be needed for

study selection and assessment of variable compatibility with

the DataSchema and harmonization potential. This process will

require expert input. Specifically, the following study design

information should be documented:

• Is the study population representative or volunteer based?

Who is the target population for the sample if the

population is representative, and if not, who is in

the sample?

• What was involved in study participation? Were there

different modalities or degrees of participation (e.g., home

visit vs. clinic visit)? What were predictors of participation,

if known?

• How were measurements conducted? Are there alternative

sources of information about people who did not complete

the measurement?

Next, data will be requested from contributing studies

and transformations of available variables into a common

data format will be applied with statistical analysis software.

All decisions regarding transformations will need to be

documented. If it is unclear how multiple variables can be

mapped onto a final harmonized version, referring to NIH’s

common data element (CDE) repository (https://cde.nlm.nih.

gov/) or the Gateway toGlobal AgingData site’s (https://g2aging.

org/documentation) data documentation may give helpful

starting points. Throughout the harmonization and analysis

process, we recommend the use of GitHub (https://github.

com/) paired with code review by another team member (Vable

et al., 2021) to promote transparent, reproducible statistical

analysis. More details about how to incorporate these features

into a cognitive data harmonization workflow can be found

in Mukherjee et al. (2022), but are applicable to all data types

reviewed in this Tutorial.

Statistical coding and analysis skills will be needed when:

running power or sample size calculations to confirm

the study is appropriately powered; assessing variable

distributions, missingness, harmonized data quality, and

representativeness; transforming variables; using imputation
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TABLE 2 Data resources for harmonization of population neuroscience studies of ADRD.

Study or consortium and description Location

Sources of multiple studies that could be harmonized together

ADDI: Alzheimer’s Disease Data Initiative. A source for data sharing and funding with data

analysis tools.

• https://www.alzheimersdata.org/

AD Knowledge Portal. An open access data repository established as part of the AMP-AD program

(Accelerating Medicines Partnership in Alzheimer’s Disease). Shares National Institute on Aging

(NIA)-funded translational data in the cognitive aging-to-ADRD spectrum.

• https://adknowledgeportal.synapse.org/

DPUK: Dementias Platform UK. A partnership of public and private organizations based at Oxford

University. A source of shared data from 42 cohorts and more than 3 million study participants

through their data portal.

• https://www.dementiasplatform.uk/

• Data portal: https://www.dementiasplatform.uk/

research-hub/data-portal

• DPUK Paper: (Bauermeister et al., 2020)

GAINN: Global Alzheimer’s Association Interactive Network. A source of information on shared

datasets with tools for cohort discovery (which cohorts could be used to answer your scientific

question of interest).

• https://gaain.org/

• GAINN Paper: (Ashish et al., 2016)

Human Connectome Project (HCP). A source of data across 20 studies of brain connectomics. • https://www.humanconnectome.org/

Rush Alzheimer’s Disease Center. A source of data across multiple Rush cohort studies. Includes:

clinical evaluations, cognitive testing, laboratory tests, neuroimaging, etc.

• https://www.radc.rush.edu/

• Religious Orders Study (ROS) Paper: (Bennett et al., 2012a)

• Rush Memory and Aging Project (MAP) Papers: (Bennett

et al., 2005, 2012b)

• Rush Minority Aging Research Study (MARS) Paper:

(Barnes et al., 2012)

Sources of single studies that could be used in a new retrospective data harmonization across

studies

ADNI: Alzheimer’s Disease Neuroimaging Initiative.Multicenter study with data from participants

across the AD spectrum. Clinical, neuropsychological, and neuroimaging data.

• https://adni.loni.usc.edu/

• ADNI Papers: (Weiner et al., 2010, 2015, 2017)

Cambridge Centre for Ageing Neuroscience (Cam-CAN). A study of successful cognitive aging

across a wide age range (18–87) with demographic, physiological, neuropsychological, and

multimodal neuroimaging data. The neuroimaging study is a sub-study of a larger, population-based

study.

• https://camcan-archive.mrc-cbu.cam.ac.uk//

dataaccess/

• Cam-CAN data paper: (Taylor et al., 2017)

Harvard Aging Brain Study (HABS). A longitudinal study of healthy cognitive aging vs. preclinical

AD with clinical, neuropsychological, and multimodal neuroimaging data.

• https://habs.mgh.harvard.edu/researchers/

• HABS data paper: (Dagley et al., 2017)

Health and Retirement Study (U.S.). A population representative survey on aging. May be useful for

external validity assessment. Includes data on demographics, health (including cognitive data),

healthcare services, work and employment, economic status, family structure, and social network

retirement.

• https://hrs.isr.umich.edu/about

NACC: National Alzheimer’s Coordinating Center.Multicenter study with data from more than

45,000 participants from the United States National Institute on Aging funded Alzheimer’s Disease

Research Centers. Includes resources for trainees in their Research Education Component

information (2nd link).

• https://naccdata.org/

• Research Education Component (REC) training resources:

https://naccdata.org/adrc-resources/rec-home

• NACC Papers: (Beekly et al., 2004, 2007)

OASIS-3. A longitudinal study of cognitive aging to dementia spectrum from the Washington

University Knight Alzheimer Disease Research Center. As such, some of this data is likely part of the

NACC dataset (see above). Includes clinical, neuropsychological, and multimodal neuroimaging data.

• https://www.oasis-brains.org/

• OASIS-3 data paper: (LaMontagne et al., 2019)

PResymptomatic EValuation of Experimental or Novel Treatments for AD (Prevent AD). A

longitudinal study of cognitively unimpaired people with a family history of AD. Includes clinical,

neuropsychological, biofluid, and neuroimaging data.

• Neuroimaging data: https://openpreventad.loris.

ca/

• Other data: https://registeredpreventad.loris.ca/

• Prevent AD data paper: (Tremblay-Mercier et al., 2021)

Projects with retrospective data harmonization actively in progress or data that has already been harmonized; may also have additional data for new

harmonization across studies

CCC: Cross-Cohort Collaboration Consortium. A collaborative across multiple observational

cohort studies.

• https://chs-nhlbi.org/node/6539

(Continued)
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TABLE 2 (Continued)

Study or consortium and description Location

CHARGE: Cohorts for Heart and Aging Research in Genomic Epidemiology. A source of genomic,

risk factor, subclinical disease, and cardiovascular events data across multiple cohorts and more than

50,000 study participants. The NeuroCHARGE work group heads up collaborations with other

consortia using cognitive, neuroimaging, and clinical neurological data.

• https://web.chargeconsortium.com/

• CHARGE Paper: (Psaty et al., 2009)

COSMIC: Cohort Studies of Memory in an International Consortium. A source of data from 47

population-based cohort studies of cognitive aging from 35 countries (∼150,000 study participants).

• https://cheba.unsw.edu.au/consortia/cosmic

• COSMIC Paper: (Sachdev et al., 2013)

ENIGMA: Enhancing Neuroimaging Genetics Through Meta Analysis. An international

collaboration of studies evaluating genetics in multiple brain-related conditions. May be a source of

data, training materials.

• https://enigma.ini.usc.edu/

• Videos including training presentations:https://bit.ly/

3lHzDiw

• ENIGMA Paper: (Stein et al., 2012)

Gateway to Global Aging Data. A source of cohort and data documentation, questionnaires, and

harmonized longitudinal data from the Health and Retirement Studies from around the world (more

than 40 countries). Includes data on demographics, health (including cognitive data), healthcare

services, work and employment, economic status, family structure, and social network retirement.

• https://g2aging.org/

• The U.S. Health and Retirement Study is one contributing

study included on this site.

National Institute on Aging Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS).

Harmonized genomic and clinical data from 30+ cohort studies of Alzheimer’s disease.

Endophenotype harmonization (e.g., cognition, brain MRI, amyloid PET imaging, autopsy measures

of neuropathology, vascular risk factors, and fluid biomarkers) was recently funded and will be

released in phases over the next 5 years. Through U24 AG074855, Alzheimer’s Disease Sequencing

Project Phenotype Harmonization Consortium

• https://dss.niagads.org/

• Studies included: https://dss.niagads.org/studies/

• Future summaries of endophenotype harmonization:

https://www.vmacdata.org/

• Future home of harmonized images: https://loni.usc.

edu/

or latent variable-based harmonization approaches for

neuropsychological data; weighting to address selective

participation; and carrying out primary and sensitivity

analyses to test the major harmonized variables being used in

the analyses.

Accurate, transparent reporting is needed when (1)

reporting back to original contributing studies, (2) publishing

harmonized study results, and (3) providing harmonized data

to future users.

Finally, researchers will need to learn effective project

leadership and respectful partnership with stakeholders while

requesting and working on data and detailed documentation

relating to the project (Fortier et al., 2017; Lesko et al., 2018).

Additional guidance regarding decisions relevant to these skills

in harmonization and pooled analyses may be found in Lesko

et al. (2018).

Clinical and demographic variable
harmonization

Clinical and demographic variable harmonization requires

domain expertise regarding how to define and collapse

across categories. Because flexible, retrospective harmonization

requires that data be combined in a way that supports

“inferential equivalence” (Fortier et al., 2011), researchers will

need to assess which variables cannot be combined due to

compromised measurement validity. For example, consider

alternative approaches to assessing prevalent hypertension, a

common and nominally straightforward risk factor:

• Self-reported response to “Has your doctor ever told you

that you have high blood pressure or hypertension?”

• Selecting hypertension from a list when instructed “Have

you ever been diagnosed with any of the following

conditions? Please select all that apply.”

• Hypertension recorded in medical records before or after

practice guidelines changed in 2017.

• Hypertension based on study measurements of

blood pressure.

Can hypertension measured in these heterogeneous ways

across studies be conceptualized as the same variable? What

is the sensitivity and specificity of each measure for prevalent

hypertension and how will the misclassification in each study

impact findings? Are there possible pre-processing steps to

make the measures more comparable, or bias corrections to

reduce the impact of misclassification analytically? This will also

require content knowledge about the construct being measured,

review of the literature on measurement characteristics of each

approach, and good documentation from the studies to know

how the measurement was conducted.
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Neuropsychological assessment
harmonization

Neuropsychological assessment harmonization requires

expertise regarding cognitive domains and processes, knowledge

of testing protocols and standards, as well as relevant analytic

competencies such as descriptive statistics, data visualization,

and variable transformations. Different harmonization

strategies include linear transformations/standardization (such

as z-scores), equipercentile equating, multiple imputation

approaches, and psychometric and latent variable techniques

including factor analysis and item response theory (IRT).

Standardization methods, when used to enable data pooling,

impose strict assumptions and are only appropriate if the

contributing data sets were all representative of the same

population, or if populations are known to have the same

distribution of the neuropsychological scores. This is rarely

plausible because of the strong influence of cognitive function

on study participation. Standardization methods can also

create circularity when comparing studies. For example, if the

impairment definition is based on the within-study distribution

of cognition, the prevalence of impairment will be identical for

all studies.

Z-scores are a commonly used approach in ADRD research.

However, there are several cautions regarding their use. While

averaging all z-scored tests within a cognitive domain is an

often-used approach to obtain a domain score, this simply

puts test scores on the same scale, but has not harmonized

them absent confirmation that the tests equivalently measure

the underlying domain of interest. Aside from making the

distributional assumption mentioned above, simple average

domain z-scores assume equal test contribution within domains

(e.g., a memory domain z-score comprised of four test z-scores

assumes that each test makes up 25% of the memory domain).

Some of these problems of sum and mean scores have been

recently reviewed (McNeish andWolf, 2020), and a recent paper

illustrates some of these principles by moving from a preclinical

Alzheimer cognitive composite (PACC) z-score to a harmonized

PACC using IRT (Hampton et al., 2022). A final caution on

z-scores is that many neuropsychological assessment batteries

change over time, and z-scoring cannot provide inferential

equivalence under this circumstance.

Equipercentile equating preserves rank across two
assessments, determines the score on one assessment that is
equated to the score on the other, and the equated score can
then be imputed as the value for the assessment of interest. An
example application in ADRD research addressed changing

neuropsychological batteries in the NACC Uniform Data Set

(UDS), equating the Mini-Mental State Examination (MMSE,

Folstein et al., 1975) with the Montreal Cognitive Assessment

(MoCA, Nasreddine et al., 2005; Monsell et al., 2016). This

approach is only applied when an a priori level of correlation

between the two assessments is achieved (here, a correlation

coefficient of ≥0.6). The sample can be divided into a training

set to develop the equating and a test set to test the accuracy.

Multiple imputation and IRT do not rely on the population

distributional assumption of standardization, but instead rely

on the availability of at least one, but ideally many, items

that are identical across samples. Multiple imputation relies

on the assumption that the associations between items are

identical across studies. In multiple imputation approaches, an

assessment which was not completed in one study but was

completed in others is treated as systematically missing in the

stacked dataset. The missing data is then imputed. One recent

approach in ADRD has used a random forest model to learn

the association between the neuropsychological assessment of

interest (non-missing) with all other variables in the dataset and

then imputes the missing values of the assessment of interest

based on that structure (Shishegar et al., 2021). A starting value

for the missing data is preselected and entered into the model.

The model then outputs an estimate for the missing data and

those initial and new values are compared. This iterative process

stops when a predetermined difference between the initial and

new values meets a predetermined, sufficiently low threshold.

Item response theory offers methods to assess the

assumption that tests (referred to as test items in latent variable

modeling) are equivalent across studies and estimate latent

variables even under modest violations of that assumption. Item

response theory models are thus more flexible and rigorous

because they build in methods to assess harmonization validity.

However, IRT methods still rely on the availability of at least

some truly equivalent items. We describe latent variable

approaches in detail in Section Neuropsychological assessment

harmonization. This approach has been recently detailed in

ADRD research in the following publications (Mukherjee

et al., 2020, 2022). Suggested readings on these topics and

cross-national harmonization approaches are listed in Table 1.

Neuroimaging harmonization

Population neuroscientists in ADRD research should know

that several neuroimaging harmonization approaches exist.

For example, standardization approaches of interest include

binarization and the Centiloid scale. Many studies make use

of binarization to determine positivity or negativity on some

biomarker of interest, e.g., Aβ, tau, and neurodegeneration.

The limitations of this approach are that it does not deal

with processing pipeline differences or scanner effects, loses

information from the continuous version of the variable, and

allows for only coarse longitudinal change tracking (Lesko et al.,

2018). The Centiloid scale is a standardization approach to

put different amyloid PET tracers on the same scale, allowing

data pooling across tracers (Klunk et al., 2015). The Centiloid

scale is framed by 0–100; the 0 anchor represents high-certainty

amyloid negative cases, i.e., amyloid level in the brains of healthy
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young controls (≤45 years of age), and the 100 anchor reflects

amyloid level in the brains of typical AD dementia patients.

Because these anchor points are averages, the full range of the

scale can run from below 0 to >100. Transformation equations

and amyloid positivity cut points across tracers for cross-

sectional and longitudinal analyses have been suggested (Royse

et al., 2021). Other approaches such as non-linear distributional

mapping (NoDiM) do not assume linearities in amyloid PET

tracer measurement scales (Properzi et al., 2019).

There are regression-based statistical harmonization

approaches which can be applied either pre- or post-image

processing. These methods include RAVEL (Removal of

Artificial Voxel Effect by Linear regression, Fortin et al., 2016)

and ComBat [combatting batch effects when combining batches

of gene expression microarray data (Fortin et al., 2018), with

its original use in gene expression data]. Also important is

the ability to combine multiple approaches when building

neuroimaging and data processing pipelines, such as our

own pipelines from MRI pre-processing harmonization using

RAVEL to inform PET quantification (Minhas et al., 2020) and

approaches incorporating RAVEL and ComBat in the same

pipeline to address both MRI image intensity and other scanner

effects (Torbati et al., 2021a). We review RAVEL and ComBat in

more detail in Section Neuroimaging harmonization.

Finally, machine learning-based neuroimaging

harmonization approaches include MISPEL (Multi-scanner

Image harmonization via Structure Preserving Embedding

Learning), an approach to MRI harmonization developed

for use with more than two scanners (Torbati et al., 2021b).

DeepHarmony and mica are harmonization approaches that

address MRI contrast when two scanners (Dewey et al., 2019) or

more are used (Wrobel et al., 2020).

Researchers are advised to note that varying imaging

processing softwares and versions are another source of

unwanted noise when pooling neuroimaging data (Tudorascu

et al., 2016). The strongest approach for dealing with this

problem would be to process all images with the same program

and version pipeline, and program and version should always

be reported. Suggested readings on harmonization approaches

dealing with cross-sectional and longitudinalMRI, PET, and new

and combined pipelines are provided in Table 1. To illustrate

an example of retrospective data harmonization in a population

neuroscience of ADRD study, next we describe the workflow of

a planned study on sex differences in the AD biomarker cascade.

Example research plan incorporating
population neuroscience of ADRD
harmonization

Background and study aim

Men and women may differ in pathways to AD with

critical implications for personalized interventions. Women are

consistently found to have more tau accumulation in the brain

than men after accounting for age (Filon et al., 2016; Hohman

et al., 2018; Oveisgharan et al., 2018; Buckley et al., 2019a,b,

2020; Luchsinger et al., 2020; Edwards et al., 2021; Palta et al.,

2021), with few studies reporting no differences or reverse

directionality (Morris et al., 2010; Altmann et al., 2014; Buckley

et al., 2019a; Ziontz et al., 2019). Some studies find women also

have more brain Aβ than men (Barnes et al., 2005; Jack et al.,

2015; Hohman et al., 2018; Liesinger et al., 2018; Oveisgharan

et al., 2018; Sundermann et al., 2018; Buckley et al., 2019b;

Luchsinger et al., 2020; Rahman et al., 2020; Edwards et al.,

2021; Palta et al., 2021), though others do not (Morris et al.,

2010; Mielke et al., 2012; Altmann et al., 2014; Filon et al., 2016;

Buckley et al., 2018; Sperling et al., 2020; Edwards et al., 2021;

Yan et al., 2021). In addition, the relationship between Aβ and

tau may vary by sex (effect modification), with this relationship

being stronger in women than men (Buckley et al., 2019b, 2020).

In addition to Aβ and tau, cerebral small vessel disease

(cSVD), pathology of the small arteries, veins, and capillaries

of the brain (Pantoni, 2010; Wardlaw et al., 2013, 2015), may

be an important part of the pathway to AD (Kester et al., 2014;

McAleese et al., 2015; Tosto et al., 2015; Lee et al., 2016, 2018;

Debette et al., 2019; Greenberg et al., 2020), and late-life women

have a greater burden and risk of cSVD than age-matched men

(Longstreth et al., 1998; Uehara et al., 1999; Vermeer et al.,

2002; van Dijk et al., 2008; Nyquist et al., 2014). Among those

with clinical AD dementia and mixed pathology on postmortem

exam, women are likelier than men to have mixed AD and

cerebrovascular pathology (Barnes et al., 2019). Several pieces of

evidence implicate vascular damage as an important part of AD

pathophysiology. First, cerebrovascular disease and AD share

risk factors (Dichgans and Zietemann, 2012; Jorgensen et al.,

2018; Shaaban et al., 2019). Second, cerebrovascular dysfunction

has been shown early in the transition from cognitively

unimpaired (CU) to impaired, preceding Aβ deposition (Iturria-

Medina et al., 2016). Finally, postmortem clinical-pathologic

samples demonstrates that pure AD pathology in AD dementia

cases is rare (∼4%), while 87% have co-occurring vascular

pathology (Kapasi et al., 2017). Therefore, a research and

public health focus on modifiable vascular contributors to AD

dementia is imperative (Gorelick et al., 2011; Snyder et al., 2015;

Corriveau et al., 2016). Understanding the role of cSVD in sex

differences in the AD pathophysiological cascade could reveal

intervention targets and markers of target engagement which

could be used to reduce AD dementia.

One specific aim of this study is to quantify sex differences in

the cSVD-AD pathway. We will also explore associations of sex-

related factors (e.g., pregnancy history, menopause, hormone

use; signs and symptoms of hypogonadism) with cSVD, Aβ,

and tau. In this study, we will harmonize data from five

longitudinal cohort studies: PiB Normal Aging (Aizenstein et al.,

2008), Heart SCORE A and B (neuroimaging sub-studies of the

parent study, Heart Strategies Concentrating on Risk Evaluation;

Snitz et al., 2020), MYHAT-NI (a neuroimaging sub-study of
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the parent study, Monongahela-Youghiogheny Healthy Aging

Team; Sullivan et al., 2020), and Human Connectome Project

(HCP)-Pitt (Cohen et al., 2021).

Why is harmonization needed?

First, to detect sex differences and explore sex-specific

relationships, we need a larger sample size than available in any

individual study. Harmonization will allow us to standardize

and pool data across the contributing studies and conduct joint

analyses in the larger sample. Second, we would like to enhance

the external validity of our estimates. Although all contributing

studies have been carried out at the University of Pittsburgh

and draw from the local southwestern Pennsylvania population,

they were volunteer-based and not population-representative.

The selection factors that led to women being included in a

study sample likely differed from those operating in men; failing

to account for these potentially gives a misleading picture of

sex differences. Furthermore, cardiovascular risk factors and

common comorbidities of aging (1) are important to consider

in the cSVD-AD pathway; (2) are far more common in the

population than in highly selected studies; and (3) may vary

in prevalence by sex. Since our long-term goal is to improve

brain health on the population level, addressing these threats

to external validity is crucial to understanding whether sex

differences exist at the level of various populations of interest.

Harmonization will allow us to standardize. Weighting and

other methods will allow us to adjust the estimates from our

study sample to those we should find in the local population.

This is further described below in Section Harmonization for

external validity analyses.

A scientific caution

We caution the reader to be thoughtful about the capacity,

within harmonization approaches, to remove differences in

measures due to certain variables. For example, neuroimaging

harmonization approaches can regress out differences due to

sex. However, our primary scientific interest is in sex differences

and sex-specific pathways, and therefore we wish to preserve

the variance in our outcomes that is attributable to sex. The

neuroimaging harmonization approaches we describe below can

accommodate this if specified in the model. Such decisions must

be made while designing the harmonization plan and are fully

dependent on each specific scientific question.

How will harmonization be carried out?

Harmonization will follow the procedures laid out in

Sections Brief introduction to harmonization and core

competencies and skills and Overall harmonization above,

following Maelstrom guidance (Fortier et al., 2017). We will

develop the DataSchema and assess for harmonization potential

of the variables we have in the contributing studies by data type.

Clinical and demographic variable
harmonization

We will pool data including demographics, cardiovascular

risk factors/common comorbidities of aging (e.g., hypertension,

diabetes, congestive heart failure, obesity, smoking, and

physical activity) and cognitive status based on content area

expertise on the study team. Coding of these characteristics

across cohorts will be documented and transformed as

needed to develop a harmonized dataset. All cohort studies

except MYHAT-NI adjudicate cognitive status yearly with

a consensus conference modeled on the University of

Pittsburgh Alzheimer’s Disease Research Center. Neurologists,

psychiatrists, neuropsychologists, and other clinicians review

medical history, medications, neurologic and psychiatric

exams, neuropsychological testing, and neuroimaging.

In MYHAT-NI, cognitive status is initially based on the

Clinical Dementia Rating (CDR) (Morris, 1993) scale:

cognitively unimpaired (CU), CDR = 0; MCI, CDR =

0.5; dementia, CDR ≥ 1. Etiologic diagnosis of all incident

dementia cases in MYHAT-NI is then determined by a “virtual

consensus conference” (Lee et al., 2020), with inter-disciplinary

experts reviewing clinical data online and making etiologic

diagnostic ratings.

Neuropsychological assessment harmonization

All contributing studies administer detailed

neuropsychological assessments yearly. We wish to conduct

a rigorous harmonization to allow data pooling across

contributing studies and the possibility of comparisons with

other studies in the future. In our case, all contributing studies

are recruited from the same overall geographic population,

with many aspects of shared language and culture, and

multiple equivalent neuropsychological test items across

studies. Furthermore, our contributing studies are longitudinal,

and some are longstanding with potential for changing test

batteries over time. Item response theory best meets our

needs for inferential equivalence across studies and over

changing test batteries, and the data meet the requirements

for IRT.

We will follow the rigorous IRT-based approach recently

detailed in a cognitive harmonization workflow paper

(Mukherjee et al., 2022) and initially developed for a genetics of

late-onset AD across five studies (Mukherjee et al., 2020). We

refer readers to Mukherjee et al. (2022) for detailed methods.

This approach has been calibrated across the full spectrum of

cognitive diagnoses from CU to AD dementia. Briefly, first,

test administration and scoring procedures across contributing

studies are fully documented to understand potentially

Frontiers inNeuroimaging 11 frontiersin.org

https://doi.org/10.3389/fnimg.2022.978350
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Shaaban et al. 10.3389/fnimg.2022.978350

important differences. Test variables are assigned to cognitive

domains (memory, executive function, language, visuospatial

abilities) by neuropsychologists. Next, we will assess data

distributions, recoding reverse coded items, and missingness

as part of the data quality control step. All transformations

will be documented. We will confirm that the tests load onto

their respective cognitive domain factors and obtain the

best fitting model using confirmatory factor analysis. The

scores will be co-calibrated to other studies with overlapping

measurements, such as the Adult Changes in Thought study,

NACC, the Framingham Study, and ADNI. Co-calibrations can

be daisy-chained together, so even studies with no overlapping

measurements with our study may still be compared, although

each step introduces uncertainty in the measurement quality.

Neuroimaging harmonization

The inter-visit interval for neuroimaging is 24 months in all

contributing studies. MRI has been obtained across all studies

using 3T Siemens scanners (1 TIM TRIO and 3 Prismas).
11C-PiB is used in all cohorts for Aβ PET, and 4/5 studies

collect tau PET using 18F-AV-1451. All contributing study PET

scans were conducted on either a Siemens Biograph mCT

PET/CT or a Siemens/CTI ECAT HR+ PET. Our neuroimaging

harmonization approach includes both pre- and post-processing

regression-based harmonization methods, described below. The

harmonized neuroimaging values are then used as the outcomes

of interest in the overall substantive statistical analyses.

Pre-processing neuroimaging harmonization

The images at all visits for the combined pool of participants

(N = 870 cross-sectional and 645 longitudinal) will be pre-

processed together as follows. We will use RAVEL (Fortin

et al., 2016) applied to the T1 and FLAIR MRI scans. RAVEL

incorporates two key steps that differ from typical MRI pre-

processing pipelines. First, following typical segmentation into

gray matter (GM), white matter (WM), and cerebrospinal

fluid (CSF), transformation into a common anatomical space,

and skull stripping, White Stripe image-intensity normalization

(Shinohara et al., 2014) is applied. This is important because

MRI intensity units are not standard across scanners, and this

step removes variation due simply to arbitrary unit differences

between visits and scanners. This approach z-scores voxel

intensity based on the mean and standard deviation of intensity

in normal appearing white matter (NAWM). Because of its

large size, NAWM is less susceptible to partial volume effects

and represents biologically healthy tissue. This processing is

rapid—typically under 5 s per scan on a laptop (Shinohara et al.,

2014). Second, a control region of interest (ROI) is identified

(here, CSF) where image intensity should not vary as a function

of AD or other biological variables of interest. Any variance

seen in this ROI represents non-biological differences (e.g.,

scanner effects); this variance is regressed out in voxel-level

linear regression. One advantage of RAVEL over other image

intensity normalization methods is that it maintains variance

due to biological factors of interest to study (e.g. sex, age,

hypertension) by including them in the voxel-level regression

(Fortin et al., 2016). This is critical as our primary interest

is in examining sex differences. RAVEL is implemented in R

statistical analysis software (R). After RAVEL is applied, theMRI

is warped back to person-specific space, and in our pipeline,

FreeSurfer software is applied to perform MR bias correction,

automated ROI parcellation, and tissue segmentation. These

harmonized MRIs will then be used for analysis of cSVD and to

derive the PET ROIs according to our RAVEL to PET pipeline

(Minhas et al., 2020).

Post-processing neuroimaging harmonization

RAVEL harmonization may be more important for MRI

markers than PETmarkers (Minhas et al., 2020). If an alternative

PET harmonization approach is needed, we will apply post-

processing statistical harmonization methods using ComBat

(Fortin et al., 2018). In this case, regression-based harmonization

is performed using PET SUVR based on FreeSurfer ROIs which

have not been harmonized with RAVEL. Similar to the second

step of RAVEL, it removes scanner effects while maintaining

participant characteristic-related variance of interest when these

variables are added to the harmonization model. ComBat is

computationally efficient to use (Fortin et al., 2018) and can

remove non-biological sources of variance when harmonized

data acquisition protocols were not used (Fortin et al., 2018).

It has been demonstrated to be effective when applied to

multiple neuroimaging measures including GM volume, cortical

thickness, diffusion tensor imaging, and fMRI (Fortin et al.,

2017, 2018; Yu et al., 2018; Pomponio et al., 2020) and is

implemented in R (Fortin, 2020).

Harmonization for external validity analyses

We will leverage availability of data from a local county-

wide population-representative sample from the Behavioral

Risk Factor Surveillance System (BRFSS; https://www.cdc.gov/

brfss/). Carrying out these analyses requires that our overall

ADRD dataset and the BRFSS dataset are stacked, thus requiring

harmonization. We can then use variables that were measured

in both the BRFSS and in our contributing ADRD studies to

correct for selection (e.g., demographics and cardiovascular risk

factors/common comorbidities of aging). For example, if men in

the ADRD studies are much more likely to be married than men

in the BRFSS, whereas for women marital status does not differ

substantially, we can upweight unmarried men in our ADRD

studies so the joint distribution of sex and marital status in our

analyzed data matches the joint distribution in the population.

We will use the two main G-methods for these external validity

analyses: (1) inverse probability weighting (IPW) for sampling

and (2) G-computation (Bareinboim and Pearl, 2016; Lesko
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et al., 2017; Westreich et al., 2017). This will allow us to adjust

the estimates from our study sample and make them more

generalizable to the target population.

Conclusion

Studies of ADRD have proliferated and data sharing

has increased and will be an NIH requirement as of

January 2023 (see NIH Policy for Data Management and

Sharing: https://grants.nih.gov/grants/guide/notice-files/NOT-

OD-21-013.html). While several data resources listed in Table 2

provide data already harmonized and ready to use in analysis,

many of the data resources listed are opportunities to discover

and request original data only. Investigators requesting data

will very often need to harmonize the data themselves, yet

without access to ready guidance as to how to carry out

and report the retrospective harmonization according to best

practices in the field, especially across the multiple types of

data ADRD population neuroscientists work with. This is a

recipe for an “anything goes” approach, and it has been shown

that harmonization and reporting practices vary widely across

studies (Fortier et al., 2017). We hope this Tutorial will help

begin to fill this gap. Finally, we recommend that new and

existing investigators help develop further best practices and

training materials for our field to standardize and enhance rigor

across approaches.
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