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Registration methods facilitate the comparison of multiparametric magnetic

resonance images acquired at di�erent stages of brain tumor treatments.

Image-based registration solutions are influenced by the sequences chosen to

compute the distancemeasure, and the lack of image correspondences due to

the resection cavities and pathological tissues. Nonetheless, an evaluation of

the impact of these input parameters on the registration of longitudinal data is

still missing. This work evaluates the influence of multiple sequences, namely

T1-weighted (T1), T2-weighted (T2), contrast enhanced T1-weighted (T1-CE),

and T2 Fluid Attenuated Inversion Recovery (FLAIR), and the exclusion of the

pathological tissues on the non-rigid registration of pre- and post-operative

images. We here investigate two types of registration methods, an iterative

approach and a convolutional neural network solution based on a 3D U-Net.

We employ two test sets to compute the mean target registration error (mTRE)

based on corresponding landmarks. In the first set, markers are positioned

exclusively in the surroundings of the pathology. The methods employing

T1-CE achieves the lowest mTREs, with a improvement up to 0.8 mm for

the iterative solution. The results are higher than the baseline when using the

FLAIR sequence. When excluding the pathology, lower mTREs are observable

for most of the methods. In the second test set, corresponding landmarks

are located in the entire brain volumes. Both solutions employing T1-CE

obtain the lowest mTREs, with a decrease up to 1.16 mm for the iterative

method, whereas the results worsen using the FLAIR. When excluding the

pathology, an improvement is observable for the CNN method using T1-CE.
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Both approaches utilizing the T1-CE sequence obtain the best mTREs, whereas

the FLAIR is the least informative to guide the registration process. Besides,

the exclusion of pathology from the distance measure computation improves

the registration of the brain tissues surrounding the tumor. Thus, this work

provides the first numerical evaluation of the influence of these parameters

on the registration of longitudinal magnetic resonance images, and it can be

helpful for developing future algorithms.
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1. Introduction

In neurosurgery for tumor resection, a pre-operative MRI

acquisition is obtained to plan the surgical removal. After

neurosurgery, MRI images are also acquired at follow-up

stages to identify any pathology recurrence (Bette et al., 2017).

The identification of pathological tissues in post-operative

acquisitions can be improved by comparing MRI images

obtained at subsequent stages of neurosurgical treatments

(Verma et al., 2008). Registration algorithms are used to

establish correspondences for a precise visual inspection

between the subsequent MRI scans (Waldmannstetter et al.,

2020). Mass effects, pathology resection, and tumor regrowth

produce large deformations in the close-to-tumor regions

(van der Hoorn et al., 2016). To accommodate these changes,

linear registration algorithms are not accurate enough (Klein

et al., 2009). Instead, non-rigid registration solutions are a

better option, because they generate deformations fields that can

locally register brain areas.

Several methods to register pre- and post-operative MRI

images are already available. The authors in Chitphakdithai and

Duncan (2010) propose a solution to register corresponding

healthy tissues of longitudinal images. Furthermore, the

same authors (Chitphakdithai et al., 2011) develop a

method to register pre-operative MRI data with any stage

of images acquired after tumor resection. By estimating

missing correspondences, their algorithm encourages the

accommodation of the tissues surrounding the tumor. Another

solution is proposed by Han et al. (2019), in which the authors

register T1 MRI images by excluding pathological tissues from

the computation of the distance measure (see Equations 1

and 2 for a better explanation). Furthermore, the authors in

van der Hoorn et al. (2016) propose a semi-automatic method

to register pre-operative, post-operative, and follow-up images

of individual patients. Their approach first semi-automatically

segments brain contours, ventricles, enhanced tissues, and

resection cavity in the pre- and post-operative images. In

the second step, T1-CE volumes and the masks are used as

input to a registration method. Besides, in Kwon et al. (2013)

the authors propose a method to register pre-operative and

post recurrence brain tumor images. The acquisitions are

registered by excluding the pathological tissues from the

image-correspondence term. T1-CE and T1 MRI sequences are

used to guide the registration process. One of the few algorithms

based on deep learning to register longitudinal MRI data is

proposed by Lao et al. (2020). 3D T1 images are registered by

excluding the segmentation of pathological tissues. A 5-level

3D U-Net model is trained on the registration of inter-patient

data. In the test phase, they use volumes coming from 18

longitudinal studies, each having 2 follow-up acquisitions.

Moreover, the work proposed by Estienne et al. (2020) is based

on a convolutional neural network (CNN). The authors propose

a joint segmentation-registration solution to (i) automatically

segment pathological tissues in the moving and fixed images

and (ii) register the pair of multiparametric images by excluding

the automatically segmented structures from the computation

of the distance measure. T1, T2, T1-CE, and FLAIR sequences

are all used as input.

Multiple MRI sequences are acquired at subsequent stages

of the neurosurgical treatment to better identify pathological

tissues (Kwon et al., 2013; Han et al., 2019; Baheti et al., 2021).

The recommended minimum requirements in neurosurgery

include T1-CE, T1, T2, and FLAIR (Ellingson et al., 2015).

The standard for T1-CE and T1 images is usually to acquire

high-resolution 3D isotropic volumes, whereas for T2-weighted

2D acquisitions are obtained (Ellingson et al., 2015; Menze

et al., 2015). Image-based registration algorithms using high-

resolution images are likely to obtain better results than those

utilizing lower resolution images, such as FLAIR and T2w

acquisitions. Nevertheless, the already proposed solutions utilize

different MRI protocols to guide the registration process. A

numerical evaluation of the influence of multiple sequences on

the registration of longitudinal MRI data is still missing.

Furthermore, image-based registration algorithms rely on

the fact that corresponding structures can be found in the pairs

of images to be registered. This assumption is not valid for the

registration of longitudinal MRI acquisitions acquired during

tumor resection. The pathological tissues visible in pre-operative

acquisitions are removed, and are not observable in post-

removal images. Many of the proposed registration methods
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tackle this problem by excluding the contribution of pathological

tissues from the correspondences computation (Chitphakdithai

et al., 2011; Kwon et al., 2013; Han et al., 2019). In fact, it is

commonly assumed that the outcome of registration process

improves if only corresponding (healthy) structures are taken

into account. However, no exhaustive evaluation of influence of

the exclusion of the pathological tissues has been done yet.

First, this work aims to evaluate the influence of different

MRI sequences on the registration of longitudinal MRI data. To

the best of our knowledge, it is the first time that this analysis

is performed. More details are given in Section 2.3.1. Second,

this work quantitatively analyzes the effects of excluding (and

including) the pathological tissues from the computation of

distance measure used for registration of longitudinal MRI data

(more details in Section 2.3.2). Two registration approaches are

proposed for performing the aforementioned experiments, an

iterative method, and a CNN-based solution. The exclusion of

the pathological tissues in the CNN method is performed only

during training, whereas the iterative method excludes them

during the registration process.

2. Materials and methods

2.1. Datasets

For the volume of each dataset, four differentMRI sequences

are available: native T1, T1-CE, T2 and FLAIR. Each case is

normalized using the same preprocessing (Menze et al., 2015):

Every volume is skull-stripped, noise corrected, rigidly registered

to an atlas reference volume, and interpolated to 1mm3 voxel

resolution. The images have a size of 240 × 240 × 155 and

are downsampled to 160 × 160 × 160 to be input to the

registration methods.

2.1.1. Munich dataset

This set includes two or more consecutive post-operative

acquisitions of 66 patients, acquired at the Klinikum Rechts

der Isar during 2015 and 2020 (Paprottka et al., 2021). From

this dataset, we choose a subset of 57 patients to only include

volumes characterized by four MRI sequences. The original

acquisitions for each patient include an isotropic T1 (voxel size

of 1 mm3) before and after contrast, axial T2 (voxel size of

0.72 × 0.72 mm2), an isotropic FLAIR (voxel size 1 mm3). The

volumes are available after normalization performed according

toMenze et al. (2015). The pathological tissues are automatically

segmented (Paprottka et al., 2021). To generate a robust brain

tumor segmentation, we use an iterative process. First, we

generate binary segmentation masks using five segmentation

algorithms (Feng et al., 2019; Isensee et al., 2019; McKinley et al.,

2019, 2020; Zhao et al., 2019) developed within the scope of the

BraTS challenge (Menze et al., 2015; Bakas et al., 2017a,b, 2018)

using BraTS Toolkit btk) (Kofler et al., 2020). Second, we fuse

the segmentation masks using equally weighted majority via btk

(Kofler et al., 2020). Third, a visual inspection is conducted to

correct the fused segmentation masks. This approach promises

to achieve a higher segmentation quality than a pure manual

delineation (Kofler et al., 2021) while saving valuable expert

radiologists’ time.

2.1.2. BraTS 2015: Validation set

BraTS 2015 dataset includes a mixture of pre-operative and

follow-up MRI images. A subset of the BraTS 2015 training

dataset is chosen (Menze et al., 2015; Bakas et al., 2017b, 2018;

BraTS, 2021), to include only longitudinal studies. This subset

includes 45 pairs of images, each composed of a pre- and a

post-operative acquisitions. According to Menze et al. (2015),

the original acquisitions for the images sets include a T1 image

(1–6 mm slice thickness), a T1-CE image (voxel size of 1 mm3

for most patients), a T2 image (with 2–6 mm slice thickness),

a FLAIR image (2–6 mm slice thickness). The ground truth

masks of the pathological tissues are also available. Moreover,

the resection cavity, not originally segmented in the original

ground truth, has been manually segmented in a previous work

(Canalini et al., 2021).

2.1.3. BraTS 2015: Test set

A subset of the BraTS 2015 test set is selected, to include

only longitudinal studies. It has 59 pairs of images of the

different patients. The acquisition details of this dataset are

the same described in the previous subsection (Section 2.1.2)

(Menze et al., 2015). The masks of the pathological tissues

(edema, enhancing tumor, necrosis non-enhancing tumor) have

been already segmented in the original dataset. Moreover, the

resection cavities in the post-operative volumes are manually

segmented by two raters. An example of the finally available

structures is shown in the fifth column of Figure 1. To compute

the registration results, six landmarks have been manually

acquired for each pair of longitudinal acquisitions. First, for

each pre-operative scan, landmarks are acquired near the

tumor (within 40 mm). Second, corresponding markers are

obtained in post-operative images. The landmarks are acquired

on anatomical structures, such as brain sulci and gyri, and the

midlines of the brain. An example of the annotated landmarks

is available in Figure 2. One or two raters annotated them and

an experienced neuroradiologist evaluated them clinically. The

baseline mean target registration error (mTRE) 2.92 mm.

2.1.4. BraTS-Reg challenge dataset

The dataset includes 140 pairs of pre and post-operative

MRI volumes (Baheti et al., 2021). The time-window between

all pairs of pre-operative and follow-up volumes is in the

range of 27 days–37 months. This dataset comprises already
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FIGURE 1

Available MRI sequences. The figures in the first row show example slices of a post-operative acquisition, whereas in the second row images of

the corresponding pre-operative volume are displayed. Each volume comprehends four sequences: T1 gadolinium contrast-enhanced T1-CE in

(A,F), T1 in (B,G), T2 (C,H), and FLAIR in (D,I). Each sequence is useful to spot a particular component of the pathological tissues. For example, in

T1-CE the enhanced tissue is observable, whereas on FLAIR sequence the edema is well visible. The masks of the pathological tissues available

for this work are visible in panels (E,J). In (E), the resection cavity is colored green. The pre-operative tumor and the corresponding resection

cavity are indicated by the orange arrows. In after surgery acquisitions, pathological tissues can also be present, as in this example (the

post-operative tumor is pointed by the yellow arrow).

FIGURE 2

Example of annotated landmarks on test set. Panels (A,B)

correspond to post and pre-operative MRI acquisitions of the

same patient. The corresponding landmarks are visualized with

the same colors.

pre-processed image sets collected in affiliated and public

institutions. Although no information about the acquisition

parameters is provided by the challenge organizers, it is likely

to assume that the data have been acquired following the

standard protocols mentioned inMenze et al. (2015) and already

described in Section 2.1.2. Several raters manually annotated

6–50 corresponding landmarks between the pre- and post-

operative volumes. For each pre-operative scan, landmarks are

acquired near the tumor (within 30 mm) and far from the tumor

(beyond 30 mm). Thus, matching points are obtained in post-

operative images. The landmarks are anatomical structures, such

as blood vessel bifurcations, the anatomical shape of the cortex,

and anatomical landmarks of the midline of the brain (Baheti

et al., 2021). An example of the annotated landmarks in BraTS-

Reg is available in Figure 3. After a rigid pre-registration between

the pre- and post-operative volumes, the baseline mTRE is 3.62

mm. The automatic algorithm already applied for Section 2.1.1

is here utilized to segment the pathological structures in every

volume of this dataset.

2.2. Methods

This work investigates two different types of registration

methods, an iterative solution and a CNN-based approach. The

following design concepts are valid for both approaches.

The reference (post-operative) and template (pre-operative)

images can be modeled as functions R, T : R3 → R. The goal

of the proposed image registration approaches is to generate a

deformation y :�→ R
3 that aligns the two imagesR and T on

the field of view � ⊂ R
3 such thatR(x) and T(y(x)) are similar

for x ∈ �. The deformation field represents a minimizer of the

cost function:

J(R,T, y) = D(R,T(y))+ αR(y) (1)

The first term D is a distance measure computing

the difference between the reference R and the warped

template image T(y) summing pointwise distances. A challenge

of registering longitudinal MRI data is that a one-to-one
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FIGURE 3

Example of annotated landmarks on BraTS-Reg dataset. Panels (A,C) show di�erent axial images of the post-operative acquisition for the same

patient, whereas (B,D) correspond to the corresponding locations in the pre-operative image. The corresponding landmarks are visualized with

the same colors.

correspondence between the two images is not guaranteed due

to the resection of pathological tissues. We tackle the problem

by adding the possibility of excluding the contribution of the

pathology of the fixed image from the computation of the

distancemeasure. By indicating the pathological tissues as6, the

distance measure is computed as follows:

D(R,T(y)) =

∫

�\6
d(R(x),T(y(x)) dx (2)

In our settings, R and T, respectively, refer to the post-

operative and pre-operative volumes. Thus, 6 corresponds to

the pathological masks of the post-operative image. More details

about the distance measure are available in Equation (3).

The second term R in Equation (1) is the regularizer, that

limits the possible deformations that can be computed during

the minimization process. The hyperparameter α controls the

strength of the minimization term. More details about the

regularization chosen in this work are available in Equations (4)

and (5).

2.2.1. Multi-level deep learning method

The deep learning registration method used in this work

is based on the solution proposed by Hering et al. (2021). It

is a multi-level variational image registration approaches, that

combines deformation fields computed at different image scales.

Since the solution already achieved good results in other medical

imaging fields, we want to evaluate how this method perform on

longitudinal MRI data.

The solution has been originally proposed to register lung

data, where also corresponding masks and landmarks were

available to compute additional similarity terms. In our case,

only intensity brain volumes are available. Therefore, we use

only the intensity images to compute the similarity. Due to

the lack of consistent intensity profiles in the MRI acquisitions

(Baheti et al., 2021), and the presence of pathological tissues, the

normalized gradient fields (NGF) measure is chosen as distance

metric (Haber and Modersitzki, 2006). The use of the NGF

is based on the observation that two images are considered

similar if intensity changes occur at the same locations. Instead

of computing the magnitude of the image gradient (∇R(x) and

∇T(x), respectively, for the reference and template image), the

normalized gradient field is utilized (Haber and Modersitzki,

2006). The goal of image registration based on NGF is to

align them by reducing the difference between the normalized

gradient fields computed for the reference and the template

image. It is defined as follows,

NGF(R,T) =
1

2

∫

�
1−

( 〈

∇R(x),∇T(x)
〉

εRεT

‖∇T(x)‖εT ‖∇R(x)‖εR

)2

dx (3)

where
〈

x, y
〉

ε
: = x⊤y + ε, ‖x‖ε : =

√

〈x, x〉ε2 and εR, εT >

0 are the so-called edge-parameters controlling influence of

noise in the images. Their value has been empirically chosen.

Moreover, we modified the original CNN implementation by

introducing the possibility of using masks of the pathological

tissues as external input during the training and validation

phases, to exclude their contribution from the correspondence

computation (see Equation 2). In the test phase, no mask of

the pathological tissues is needed. Moreover, we also added

the possibility of using input images characterized by two MRI

sequences, whereas the original implementation accepted only

one-channel images.

When searching for the best solution to the minimization

term, multiple solutions may exist. However, not all the possible

minima of the objective function represent good and realistic

registration solutions. The R term in the objective function (see

Equation 1) favors a smoother deformation field y. As in the

original architecture, we utilize the curvature regularizer,

R(y) =

∫

�

3
∑

k=1

‖1yk(x)‖
2dx (4)

which penalizes deformation fields having too large second

derivatives. To limit even further the viable solutions, another
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regularization term

V(y) =

∫

�
ψ(det∇y(x))dx (5)

is added to the objective function, where ψ(t) = (t − 1)2/t

for t > 0 and ψ(t) : = ∞ for t ≤ 0. The volume

change control is used to discourage foldings in the deformation

field y that may be generated during the minimization of the

cost function. Folding in the deformation field represents an

unrealistic transformation that the minimization process may

lead to. The hyperparameter controlling the influence of this

extra term on the loss function is γ , thus the final term to be

added is γV(y).

The proposed solution is based on a 3D U-Net architecture

that takes as input the concatenation of the 3D fixed (follow-up)

and the moving (pre-operative) image and provides as output

a 3D dense deformation field with a resolution identical to the

images (Hering et al., 2019b). The following description about

the CNN architecture is based on what reported in Hering et al.

(2019b). The network consists of three levels starting with 16

filters in the first layer, doubled after each downsampling step.

3D convolutions are used in both encoder and decoder path with

a kernel size of 3 followed by an instance normalization and a

ReLU layer. In the encoder path, the feature map downsampling

steps use average pooling with a stride of 2. In the decoder path,

the upsampling steps use transposed convolution with filters and

half the number of filters than the previous step. The final layer

uses a 1 × 1 × 1 convolution filter to map each 16-component

feature vector to a three-dimensional displacement.

The datasets (Sections 2.1.2, 2.1.1) are used as training set.

Each CNN model is trained for 40 epochs. The loss weighting

parameters are set as follows: α = 0.1, γ = 0.01. The learning rate

is set to 0.001. The values of these parameters are different from

the original implementation and were empirically modified.

Besides using individual sequences, input characterized by two

features (i.e., two MRI sequences) are also utilized to train the

CNNmethod. The combinations of MRI sequences used to train

and test the CNN solution are available in Table 2. The use of

data input characterized by two features is a novelty with respect

to the original architecture, where only one channel images have

been used (Hering et al., 2019b).

The registration is performed on three levels (L = 3) by

using images at different scales. The deformation field is initially

computed on the coarsest level and the images are downsampled

by a factor equal to 2L-1. On a finer level, the previously

computed deformation fields are utilized as an initial guess by

warping the moving image. At each level, the moving and fixed

images are downsampled. Due to graphical memory issues, the

finest resolution of the registered images is 160 × 160 × 160,

which is also the size of the generated deformation field (Hering

et al., 2019b). The final deformation field is then upsampled to

the original size of the input images.

2.2.2. Multi-level iterative method

The iterative solution utilized in this work is a variational

image registration approach (Modersitzki, 2009). This method

has been already used in neurosurgical context (Canalini et al.,

2019) and, in this work, we evaluate it on longitudinal MRI data.

The registration can be considered as an iterative optimization

algorithm where the search of the correct registration between

two images corresponds to an optimization process aimed

at finding a global minimum of an objective function. The

objective function has to be minimized for each image pair

and the minimization process is performed according to

a discretize-then-optimize paradigm. The objective function

to be minimized includes a distance measure, quantifying

the similarity between the warped template image and the

reference one, and a regularizer, which favors the smoothness

of the computed deformation fields. NGF is here used as a

distance measure (see Equation 3), and a curvature regularizer

is utilized (see Equation 4). The method also allows to

mask the pathological tissues out from distance measure

computation (see Equation 2). However, differently from the

CNN method, these segmentations are needed in the test phase.

Moreover, in the iterative method, the choice of the optimal

transformation parameters is conducted by using the quasi-

Newton l-BGFS (Liu and Nocedal, 1989), due to its speed

and memory efficiency.

The iterative method performs a non-parametric

registration that, as for the deep learning method, the is

performed on three levels (L = 3) by always using images at

different scales. On the finest level, the volumes have a size of

160 × 160 × 160. The deformation field obtained in output

from the iterative method is then upsampled to the size of

the original images. The stopping criteria for the optimization

process are empirically defined: the minimal progress, the

minimal gradient, and the relative one, the minimum step

length are set to 0.001, and the maximum number of iterations

is set to 100. The loss weighting parameter is empirically set to α

= 0.1. The registration algorithm is used to register the volumes

of the test set.

2.2.3. Di�eomorphic registration ANTs method

The Symmetric Diffeomorphic registration method ANTs

represents a standard registration algorithm for MRI data

(Avants et al., 2008; Antsx, 2009). Thus, we aim to evaluate

how well the proposed methods perform in comparison to a

standard approach. ANTs is applied by using the original size

of the volumes (240 × 240 × 155). As suggested in Ou et al.

(2014), the Symmetric Normalization (SyN) transformation

model of ANTs is utilized, and cross-correlation is used as

the distance measure, since NGF is not available. The T1-

CE is used to guide the registration, since it is supposed

to be the sequence with the higher original resolution and,

thus, the one leading to better registration results. Moreover,
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the masking of the distance measure is performed, to reduce

the negative effects of the non-corresponding tissues on the

registration results.

2.3. Experiments

2.3.1. Influence of di�erent MRI sequences

This work aims to numerically analyze the influence of

multiple MRI sequences on the registration of longitudinal data

by evaluating the performances of two types of method, the

iterative solution and the deep learning-based approach. The

CNN method is trained on four individual sequences (T1-CE,

T1, T2, and FLAIR). In the inference process, the models are

then used to register the corresponding sequences in the test sets.

Besides, the iterative method is applied to different individual

sequences. Moreover, we also train the CNN solution using

input volumes characterized by two distinct sequences. This

experiment aims to verify whether multiple MRI sequence input

is better than only one to train the neural network models.

The deformation field computed on an individual or multiple

sequences can then be applied to the other MRI acquisitions of

the same patient.

The non-parametric Wilcoxon signed-rank test is utilized

to verify whether there is a statistically significant difference

between the results of each registration solution (iterative

method and trained CNN models) and the baselines of

the two test sets. This analysis tests whether the median

of the differences of the two paired results is zero. The

data distribution of the baseline registration errors is not

normal according to the One-sample Kolmogorov-Smirnov test

(Pettitt and Stephens, 2012).

2.3.2. E�ects of excluding the pathological
tissues from the distance measure

This work also evaluates the influence of the pathology

on the registration process. Thus, masks are used to exclude

the contribution of the pathological tissues from the distance

measure computation. For the CNN method, the segmentation

of the pathological tissues is used as extra input only during

training, to compute the distance measure on the healthy

tissues (see Equation 2). In the inference process, no mask

is required. Four additional models are trained, each for a

different MRI sequence, without masking the distance measure.

The iterative method also has the possibility of excluding

the pathological tissues from the distance measure. However,

it requires the segmentation of pathological tissues when

applied to the test set. The iterative method excluding and

including the pathological tissues is also utilized for each of the

four MRI sequences.

TABLE 1 Mean target registration errors for the test set.

mTRE (mm)

Baseline 2.92

ANTs (T1-CE, mask) 2.37

MRI sequence CNN CNNmask Iterative Iterative mask

T1 2.79 2.65 2.27 2.29

T1-CE 2.32 2.16 2.13 2.11

FLAIR 3.04 2.98 3.41 3.24

T2 2.61 2.53 2.48 2.44

The mean TREs obtained by CNN models trained with and without masking procedure

are visible in the second and third column. The results achieved by the iterative method

in the fourth and fifth column.

3. Results

Themean target registration errors are computed to evaluate

the outcome of the different registration algorithms. For each

matching landmark (see Figure 2 for an example), the Euclidean

distance between its position in the reference image and

its position in the moving image is computed. Then, for

each patient set, the mean Euclidean distance among all the

landmarks is calculated. Thus, the mean value of the distances

of all the image sets of a test dataset (i.e., the mTRE) is estimated.

The proposed methods output the warped moving image and

the deformation field. The latter is applied to the landmarks and,

if the value obtained after registration is lower than the initial

baseline, the warped moving images is supposed to be better

registered to the corresponding reference images. The results

shown in this paper are computed on two different test sets

(Sections 2.1.3, 2.1.4).

Table 1 shows the mTREs obtained by the proposed

solutions. For the CNN models trained without masking, the

lowest mTRE (2.32 mm) is obtained by the model using the

T1-CE, whereas the highest value is achieved when the FLAIR

sequence is used (3.04 mm). Besides, the iterative method using

this sequence also achieves the highest mTRE (3.41 mm). The

lowest mTRE is obtained with the T1-CE (2.13 mm). A further

comparison of the results obtained on different MRI sequences

by the two methods is visible in Figure 4. In both cases, the

FLAIR sequence leads to higher median TREs, with a large range

of results. On the contrary, the T1-CE and T2 sequences help to

lower the median TREs and limit the ranges of values. Besides,

the Wilcoxon test is utilized considering the target registration

errors. In both methods, the null hypothesis cannot be accepted

for the models trained on T1-CE (p < 0.000001), and on T2 (p

< 0.01). Figure 5 shows the qualitative results of CNN models

trained on T1-CE and T1 MRI sequences, and Figure 6 those

of the methods using the T2 and FLAIR MRI sequences. The
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FIGURE 4

Target registration errors on the test set. The box plots related to the solutions where no masking procedure is performed are indicated as No

Mask. In each box plot, the red line and the point, respectively, indicate the median and mean values.

FIGURE 5

Comparison of qualitative results for CNN models trained on T1-CE and T1 MRI sequences. Each row refers to the results for the CNN models

trained on di�erent sequences (from the top to the bottom, T1-CE and T1). The post- and pre-operative images are visualized in the first and

second columns (A,B,H,I), and the initial overlay between the two acquisitions is visible in the third column (C,J). The last four columns display

the warped moving volumes (D,F,K,M) and the overlays between the fixed image (post-operative) and the warped moving images (E,G,L,N),

respectively, for the models excluding and including the pathology in the distance measure. The purple arrows point to locations where

improvements are observable. In panels (D,K), a better overlap of the lateral ventricles is visible. Moreover, in panels (F,K,D) the sulci are better

registered.
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FIGURE 6

Comparison of qualitative results for CNN models trained on T2 and FLAIR MRI sequences. Each row refers to the results for the CNN models

trained on di�erent sequences (from the top to the bottom, T2 and FLAIR). The post- and pre-operative images are visualized in the first and

second columns (A,B,H,I), and the initial overlay between the two cases in the third column (C,J). The last four columns display the warped

moving volumes (D,F,K,M) and the overlays between the fixed image (post-operative) and the warped moving images (E,G,L,N), respectively, for

the models excluding and including the pathological tissues in the distance measure. The purple arrows point to locations where improvements

are observable. In panels (E,L,N), a better registration of the lateral ventricles is visible. Besides, in panels (G,E), the sulci are more aligned.

FIGURE 7

Qualitative results obtained by CNN and iterative solutions masking the distance measure. The first row is related to methods using the T2 MRI

sequence, whereas the last one shows example results for solutions using the FLAIR sequence. The first two columns show the corresponding

slices of the pre- and post-operative volumes (A,B,E,F), rigidly registered in the pre-processing step. The third column presents warped moving

images obtained by the iterative method (C,G), the fourth column shows the results for the CNN models (D,H).
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TABLE 2 Mean target registration errors of the multisequence trained

models on the test set (first table) and BraTS-Reg dataset (second

table).

mTRE (mm) - Test set mTRE (mm) - BraTS-Reg set

Sequence CNNmask Sequence CNNMask

T1-CE + T2 2.41 T1-CE + T2 2.94

T1-CE + T1 2.45 T1-CE + T1 3.17

T1 + T2 2.48 T1 + T2 3.58

T1-CE + FLAIR 2.43 T1-CE + FLAIR 3.15

T1 + FLAIR 2.61 T1 + FLAIR 3.23

FLAIR + T2 2.82 FLAIR + T2 3.03

TABLE 3 Mean target registration errors for the BraTS-Reg Dataset.

mTRE (mm)

Baseline 3.62

ANTs (T1-CE, mask) 2.84

MRI sequence CNN CNNmask Iterative Iterative mask

T1 3.24 3.24 2.99 2.98

T1-CE 3.11 2.97 2.46 2.46

FLAIR 3.32 3.37 3.16 3.15

T2 3.13 3.17 2.81 2.83

The mean TREs obtained by CNN models trained with and without masking procedure

are visible in the second and third column. The results achieved by the iterative method

in the fourth and fifth column.

qualitative results for the iterative method using T2 and FLAIR

MRI are visible in the third column of Figure 7. In this figure,

the visual results of the iterative method using T2 or FLAIR

are provided.

Moreover, for what concerns the results obtained by

discarding the contribution of the pathology, Table 1 shows that

the lowest and highest mTREs obtained by the CNN without

masking the pathological are reduced when these tissues are

excluded from the distance measure computation (respectively,

2.16 and 2.98 mm). When the tumor is excluded, an mTRE of

3.24 mm is achieved by the iterative method using FLAIR. The

lowest mTRE in our experiments is obtained when registering

the T1-CE MRI sequence (2.11 mm). A comparison between

each method excluding or not the pathological tissues from

the distance measure is also available in Figure 4. Besides, the

fourth column in Figure 7 shows the registration results for

two CNN models trained on longitudinal data by excluding the

pathological tissues from the distance measure. Furthermore, in

Table 2, the lowest mTRE (2.41 mm) is obtained by CNN trained

with T1-CE and T2 sequences. On the contrary, the highest

mTRE of 2.82 mm is achieved by the solution using FLAIR

and T2 sequences.

The CNN models trained on individual sequences, as well

the iterative methods, are also applied to the BraTS-Reg dataset.

The mTRE results are available in Table 3 and Figure 8. The

results of both methods are lower when using the T1-CE and

the T2 sequences, whereas the highest mTREs are achieved

on the FLAIR sequence. Figure 8 shows that, when using

FLAIR sequence, both methods lead to a range of values even

higher than the baseline. Moreover, when the iterative method

uses the T1 sequence, some cases also have larger TRE than

before registration. On the contrary, when using T2 and T1-

CE sequences, smaller ranges of values are achieved. When

comparing the CNN models masking the pathological tissues

and those not excluding them in Table 3, we can observe a lower

value only for the networks trained on T1-CE. However, higher

mTREs are obtained by the CNN methods trained on FLAIR

and T2. Besides, almost no difference can be seen between the

sections related to the traditional method (Iterative vs. Iterative

masks). A more detailed overview is observable in Figure 8,

comparing for each sequence the box plots labeled as No Mask

and Mask. Besides, the second section of Table 2 provides the

results obtained on the BraTS-reg dataset by the CNN models

trained onmultiparametric input. The numerical result obtained

by using T1-CE and T2 achieves the lowest mTRE obtained by

the CNNmethod on the BraTS-Reg dataset.

According to our experiments, the T1-CE sequence and the

masking of the pathological tissues from the distance measure

lead to the lowest mTREs. The ANTs algorithm also uses these

settings (see Section 2.2.3) and the mTRE obtained by this

method on the BraTS-Reg dataset is 2.84 mm, whereas on the

Test set the final value is equal to 2.37 mm.

4. Discussion

None of the already proposed methods analyzed the

influence of different sequences on the registration of

longitudinal MRI data. However, our experiments show

that the choice of the MRI sequence has a strong impact on

the outcome of the registration of longitudinal data. This is

evident by analyzing the results obtained by two different types

of registration methods, namely an iterative and CNN method,

proposed for the task of non-rigidly registering longitudinal

MRI data. Our experiments show that the T1-CE sequence is

the best choice to design the registration algorithms, leading

to better mTREs. This outcome could be explained by the fact

that T1-CE images used in neurosurgery usually have a higher

resolution than other MRI protocols. Moreover, thanks to the

contrast enhancement, the better image contrast of anatomical

tissues in this protocol could also be responsible for better

registration results. On the contrary, the FLAIR is the worst to

guide the registration process: This couldn’t be predicted from

the original acquisition parameters of the test sets, since the T1-

weighted, T2 and FLAIR images are acquired with comparable
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FIGURE 8

Target registration errors on the BraTS-Reg dataset. The box plots related to the solutions where no masking procedure is performed are

indicated as No Mask. In each box plot, the red line and the point, respectively, indicate the median and mean values.

resolution. These findings are also visible in Figures 4, 8, where

the boxplots related to FLAIR sequence present higher median

and mean TREs than the other sequences, and range of values

higher than the baseline. Besides, all the multi-sequences trained

CNN models improve the baseline mTRE of the test set, but

none leads to an improvement in terms of registration accuracy.

The deformation fields computed on this sequence can then be

employed to warp the other acquisitions characterized by the

other MRI protocols. Besides, the model trained on T1-CE and

T2 sequences outperforms that method trained solely on T1-CE

in the BraTS-Reg dataset (refer to Tables 2, 3).

Our experiments also shows that computing the distance

measure on non-corresponding elements negatively impacts the

registration of the longitudinal MRI data. Yet, the influence

of the masking procedure differently affects the brain tissues,

depending on their positions relatively to the pathological

tissues. The exclusion of the pathology from the computation

of the distance measure has a positive effect on the mTREs of

Table 1. However, the exclusion of these tissues has almost no

influence on the registration of the BraTS-Reg dataset, as shown

in Table 3, except for the CNN trained on the T1-CE. where

landmarks are also positioned far away from the pathology.

Furthermore, the iterative solution using downsampled

volumes outperforms the CNN approach, and the standard

method ANTs, that utilizes original size images in both test

sets. In fact, the best improvement is obtained by the iterative

method using T1-CE on the BraTS-Reg dataset, where the initial

mTRE is reduced by 1.16 mm. In the test set, the initial value is

reduced of 0.81 mm by this method. Instead, the CNN approach

is outperformed by the standard method in the BraTS-Reg set.

Besides, in the test set, the CNN method achieves better results

than the standard solution.The CNN method trained on the

T1-CE sequence obtains an improvement of 0.65 mm on the

BraTS-Reg set, and one of 0.76 mm on the test set.

4.1. Limitations

The iterative method is not affected by memory issues as the

CNN soluton. Thus, original resolution images could be utilized

to validate the iterative method. Nevertheless, this method has

been evaluated by using the resampled volumes as input, which

could be suboptimal for the accuracy outcome. Although it is

not uncommon to use lower resolution images to speed up the

registration process, an improvement in the registration results

might be achieved by using original size data. Nevertheless, the

iterative solution using downsampled volumes already achieves

the best results in our experiments.

Frontiers inNeuroimaging 11 frontiersin.org

https://doi.org/10.3389/fnimg.2022.977491
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Canalini et al. 10.3389/fnimg.2022.977491

Due to memory issues, the input data to the CNN had to

be downsampled. By reducing the input size, the information

stored in the original images gets lost. Less information can

also be responsible for the poorer performance of the CNN

solution, which is based on a learning process. To overcome the

memory issues related to the 3D CNN solution, a 2.5 dimension

approach could be used (Hering et al., 2019a). It has already been

demonstrated to provide good registration results for 3D data

and could help to improve the registration results by using larger

input images. In this work, up to two sequences could be used to

train the CNN solution, due to memory limitations. By using

more powerful hardware, larger combinations of MRI protocols

could include up to four sequences. It would be interesting

to investigate whether the performance of the CNN method

could improve. Moreover, a larger and more heterogeneous

dataset could help to improve the performance of the deep

learning method.

Another limitation is related to the landmarks provided in

the BraTS-Reg dataset. Although this set provides more image

pairs and landmarks than the Test Set, no information about

the distance of the landmarks from the tumors is shared with

the public. If the landmarks would be divided into two groups

according to their distance from the pathology, it would be

interesting to validate how the proposedmethods perform in the

different brain areas for this dataset.

5. Conclusions

To the best of our knowledge, our work provides the first

quantitative analysis of the influence of different MRI sequences

on the registration of longitudinal MRI data. We also evaluate

how much impact the exclusion of the pathological tissues has

on the registration of pre- and post-operative data. To conduct

our experiments, a multi-level deep learning solution and an

iterative method are proposed for the registration pre- and post-

operative MRI data acquired in the neurosurgical context. A few

changes have been made to the original CNN implementation

(i) to accept multiparametric images and (ii) to mask specific

tissues out of the distance measure. Our experiment showed

that the best sequence to guide the registration process is the

T1-CE. For the CNN solution, the combination of T1-CE and

T2 sequences also leads to good results. The best performing

solution in our experiments is provided by the iterative method,

using the T1-CE sequence.
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