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Multimodal neuroimaging using EEG and fMRI provides deeper insights into

brain function by improving the spatial and temporal resolution of the acquired

data. However, simultaneous EEG-fMRI inevitably compromises the quality of

the EEG and fMRI signals due to the high degree of interaction between the two

systems. Fluctuations in the magnetic flux flowing through the participant and

the EEG system, whether due to movement within the magnetic field of the

scanner or to changes in magnetic field strength, induce electrical potentials

in the EEG recordings that mask the much weaker electrical activity of the

neuronal populations. A number of di�erent methods have been proposed

to reduce MR artifacts. We present an overview of the most commonly used

methods and an evaluation of the methods using three sets of diverse EEG

data. We limited the evaluation to open-access and easy-to-use methods

and a reference signal regression method using a set of six carbon-wire

loops (CWL), which allowed evaluation of their added value. The evaluation

was performed by comparing EEG signals recorded outside the MRI scanner

with artifact-corrected EEG signals recorded simultaneously with fMRI. To

quantify and evaluate the quality of artifact reduction methods in terms of

the spectral content of the signal, we analyzed changes in oscillatory activity

during a resting-state and a finger tapping motor task. The quality of artifact

reduction in the time domain was assessed using data collected during a visual

stimulation task. In the study we utilized hierarchical Bayesian probabilistic

modeling for statistical inference and observed significant di�erences between

the evaluated methods in the success of artifact reduction and associated

signal quality in both the frequency and time domains. In particular, the CWL

system proved superior to the other methods evaluated in improving spectral

contrast in the alpha and beta bands and in recovering visual evoked responses.

Based on the results of the evaluation study, we proposed guidelines for

selecting the optimal method for MR artifact reduction.

KEYWORDS

EEG-fMRI, carbon-wire loop, ballistocardiogram, MR artifacts, EEG preprocessing,
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1. Introduction

The use of electroencephalography (EEG) and functional

magnetic resonance imaging (fMRI) has enabled significant

advances in our understanding of brain and cognition in health

and disease. Each of the two methods brings a number of

advantages and disadvantages. EEG enables tracking changes in

electrical brain potentials that directly reflect neuronal activity

with high temporal precision. The observed activity is, however,

difficult to localize because the signal can only be measured at

sparse points on the scalp and the volume conduction of the

human head further degrades the precision of localizing the

neuronal sources contributing to the recorded electrical activity.

Modern fMRI allows functional brain imaging with millimeter

spatial precision. However, the blood-oxygen-level-dependent

(BOLD) signal is only an indirect measure of neuronal activity,

which is further smoothed in time due to the nature of the

hemodynamic response, resulting in poor temporal precision.

The limitation of each modality used alone can be overcome

by combining the results obtained using both methods even

when the data is acquired separately. For instance, results of

fMRI can provide constraints or informative priors for EEG

source analysis, whereas precise EEG timing can supplement

the results of fMRI analyses. However, even further benefits can

be achieved by simultaneous EEG-fMRI recording as in this

case the recorded signals reflect the same neuronal events. This

concurrency increases the validity of data fusion and enables

additional types of analyses. Additionally, the signals from

each of the two modalities reflect distinct features of neuronal

responses and can present correlates for the other modality (Bin

He and Zhongming Liu, 2008).

Although data fusion allows more accurate inferences about

the brain activity being studied, it also comes at a cost of

detrimental interactions between the two systems. The presence

of EEG equipment inside the MRI scanner room may affect the

homogeneity of the magnetic field and lead to signal loss in the

BOLD signal (Krakow et al., 2000; Mullinger et al., 2008). On the

other hand, as described in Faraday’s law of induction, changes

in magnetic flux through a conductive loop, whether due to

movements of the conductor or alterations of the magnetic

field, induce electric currents inside a conductor (Young et al.,

2008). Both occur during fMRI recordings, which require a

strong static magnetic field and rapid changes in magnetic field

strength during image acquisition, resulting in electromagnetic

induction in the conductive loops formed by the collection of

EEG electrodes and the complex conductive structure of human

head tissue. The resulting MR artifacts are superimposed on

the neuronal signal measured by the EEG system and generally

exceed it in amplitude. A variety of methods have been proposed

to reduce MR artifacts in EEG signals, but few of them seem to

dominate in the EEG-fMRI research community (Bullock et al.,

2021). This is most likely due to the fact that only a subset of

accepted methods are readily available in the widespread EEG

processing toolboxes.

To select an optimal strategy for dealing with MR artifacts

in EEG data, we designed a study to empirically evaluate a

number of themost commonly used and readily available artifact

reductionmethods. Because different artifact reductionmethods

do not always perform equally well on different types of EEG

data analyses, we performed the evaluation on three different

EEG paradigms with known and robust temporal and spectral

neuronal responses. For a direct comparison of MR artifact

reduction methods, we collected data from each participant on

all three tasks both simultaneously with fMRI acquisition in the

MR scanner and outside the MRI environment. The recording

outside the scanner served as a benchmark for evaluating artifact

reduction results. The statistical inference in the evaluation of

artifact reduction methods was conducted using hierarchical

Bayesian probabilistic modeling.

In addition to computational artifact reduction methods,

we also evaluated a method using a reference signal recorded

with a set of six carbon-wire loops (CWL) (van der Meer

et al., 2016), which are isolated from the scalp and exclusively

capture MR-induced artifacts. The CWL method was chosen

because it is affordable, straightforward to implement, and

the corresponding software is openly available. This addition

allowed us to assess the benefits of MR artifact reduction

utilizing reference signals and to identify the types of studies

in which its use could play a critical role in the effort to obtain

high-quality EEG data.

In the following sections, we first introduce the three

main types of MR artifacts and their characteristics, and then

briefly review the most common and available artifact reduction

methods before outlining our specific aims and goals. For a

systematic review of MR artifact reduction methods, please see

Bullock et al. (2021).

1.1. Properties of MR artifacts

The two main mechanisms leading to magnetic flux

changes are constantly present during simultaneous EEG-fMRI

scanning. First, gradient and radiofrequency (RF) coils alter

the magnetic field during each MRI acquisition, resulting in

an undesirable artifact known as gradient or imaging artifact.

Second, movements of the human head and EEG cables occur

due to the vibrations of theMRI scanner as well as voluntary and

involuntary movements (Allen et al., 1998; van der Meer et al.,

2016). Voluntary movements should be minimized, however,

involuntary movements of the head and electrodes arising from

ballistic cardiac activity cannot be prevented. They result in a

distinct MR artifact called ballistocardiogram (BCG) artifact.

Imaging artifacts arise primarily from changes in the

magnetic field due to rapid switching of gradient coils for spatial
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encoding during echo-planar imaging (EPI) and RF pulses

for proton spin excitation (Mulert and Lemieux, 2010). The

amplitude of the imaging artifact can be as high as a few hundred

millivolts (mV), but due to the large amount of artifact’s energy

residing above the frequency range of the amplifier, the recorded

imaging artifacts typically reach up to a few tens of mV (Allen

et al., 2000). Despite the very high amplitudes, the precisely

preprogrammed gradient coils switching sequence inducing the

imaging artifact is expressed with a deterministic and periodic

shape, dominated by harmonics of the slice repetition frequency

convolved with harmonics of the volume repetition frequency

(see Figures 1A,B) (Mandelkow et al., 2006; Ritter et al., 2007).

BCG artifacts originate from ballistic and nonballistic effects

of cardiovascular activity in interaction with the magnetic

field (Mulert and Lemieux, 2010). A detailed analysis of BCG

mechanics is provided by Debener et al. (2008), who attribute

the induction of the BCG to nodding head rotation, due to

axial blood flow momentum and movements due to expansion

of electrodes located near larger blood vessels (Debener et al.,

2008; Mullinger et al., 2013). A nonballistic factor contributing

to BCG has been attributed to the potential difference across

blood vessels in the presence of a magnetic field, known as the

Hall effect (Müri et al., 1998).

The magnitude of the BCG artifact depends directly on the

strength of the static magnetic field of the scanner (Debener

et al., 2008). It typically exceeds 50 µV (see Figure 1C) in 3 T

scanners (Allen et al., 1998), while most of its power is contained

below 25 Hz (see Figure 1D) and overlaps with the neuronal

electrical activity of interest (Debener et al., 2007). Because BCG

originates from electromagnetic induction caused by cardiac

activity, it exhibits a periodic shape in sync with the heart rate.

In addition to imaging and BCG artifacts, vibrations of the

human head and EEG cables originating from the scanner also

lead to the induction of periodic artifacts. The most prominent

source of vibration artifacts is the liquid helium pump of the

MRI cooling system, while other sources such as the ventilation

system may also contribute to some extent (Nierhaus et al.,

2013). Vibration artifacts are scanner-dependent, but generally

reside at higher frequencies (≥ 30 Hz) (see Figures 1E,F). This

allows researchers not interested in high-frequency EEG to

simply filter the signals with a low-pass filter. The artifact is

often avoided altogether by simply turning off the helium pump

during fMRI acquisition. Although this is a viable solution, some

facilities prohibit operators from turning off the helium pump

cooling system because it could have adverse effects on the

MRI scanner.

1.2. MR artifact reduction methods

The periodicity and deterministic shape of the imaging

artifact make the process of artifact reduction much more

straightforward than reducing other MR artifacts. The first

effective and most widely used algorithm for imaging artifact

reduction (IAR), called average artifact subtraction (AAS), was

proposed by Allen et al. (2000). In this method, the EEG signal

is averaged (channel-wise) over several fMRI volume or slice

periods to create an artifact template, which is then subtracted

from the raw EEG signal.

AAS assumes that the EEG signal of interest is uncorrelated

between the epochs averaged when computing the average

artifact template and that the induced imaging artifact is

stationary over time (Hill et al., 1999). The first assumption

can be violated by averaging the signal with a period matching

that of the electrical neuronal activity (Allen et al., 2000). The

second assumption is violated whenever the participant moves,

changing the morphology of the induced artifact. Since the

assumptions do not always hold in practice, some residual

artifacts remain in the EEG signal. Another important source

of residual artifacts in AAS is the imperfect temporal alignment

of slice or volume markers, which depends on the quality of

synchronization of the clocks of the EEG and MRI systems.

Out of many different approaches published for IAR, many

present variations of AAS. The main differences between them

are either in modifications in the computation of the artifact

template and/or the inclusion of additional steps for reducing

residual artifacts. For instance, adaptive noise cancellation

(ANC) by Allen et al. (2000) performs additional filtering

of signal components correlated with the MRI slice/volume

frequency after AAS, FMRI Artifact Slice Template Removal

(FASTR) by Niazy et al. (2005) utilizes principal component

analysis (PCA) and ANC after AAS, and Realignment parameter

informed artifact correction by Moosmann et al. (2009)

exploits the additional realignment information from MRI

images for better selection of imaging artifact epochs in AAS

template computation.

Due to the periodic nature of the BCG artifact, most

approaches to BCG reduction, first proposed by Allen et al.

(1998), were initially based on AAS. However, due to a larger

degree of violation of the stationarity assumption of the process

underlying these artifacts, AAS proved to be less effective for

correcting BCG artifacts than for IAR (Niazy et al., 2005). This

motivated the development of more advanced BCG reduction

methods. Niazy et al. (2005) and Negishi et al. (2004) proposed

a method for estimating BCG artifact templates from temporal

principal components, the optimal basis set (OBS). OBS uses

PCA to compute template artifact shape for each channel

independently. The template is then fitted and subtracted from

each artifact occurrence (Niazy et al., 2005).

The assumption that cardiac and neuronal activity are

independent has led many researchers to exploit the capabilities

of independent component analysis (ICA) (Srivastava et al.,

2005). Reported evaluations led to different conclusions

about the effectiveness of ICA in reducing BCG artifacts,

suggesting that its performance is highly sensitive to the

specific ICA algorithm used, parameter selection, and approach
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FIGURE 1

MR artifact properties. Single channel (Fp1) EEG signal of one participant illustrating the e�ects of three types of MR artifacts. Power spectral
densities (PSD) were estimated with Welch’s method (Welch, 1967) with a 215 samples long Hamming window and a 50% window overlap. (A,B)
MR imaging artifact is evident on the NC signal when shown along with the IAR signal in time and frequency domains. In the frequency domain
NC signal exhibits high peaks at MRI slice acquisition frequency harmonics. IAR signal shows strong signal attenuation at frequencies equal to
the reciprocal of the artifact template length. This is an expected consequence of fixed-length template subtraction. (C,D) BCG artifact present
in the IAR signal is shown along BCG-corrected signal (using CWL) in the time and frequency domain. Signal in the time domain was low-pass
filtered at 35 Hz for clarity. (E) Helium pump artifact contamination can be seen in the signal that underwent IAR and AAS for BCG correction
(AAS), when compared to signal that was cleaned using CWL. (F) Helium pump artifact harmonics can be seen in the two indicated regions of
the spectrum. NC, non-corrected signal; IAR, data with the imaging artifact reduced; AAS, data with IAR and reduced BCG artifacts with average
artifact subtraction; CWL, data with IAR and carbon-wire loop artifact correction.

to classification of BCG-related independent components

(Vanderperren et al., 2007; Liu et al., 2012). ICA was also

sometimes combined with AAS or OBS to remove residual

artifacts (Debener et al., 2007).

Recent state-of-the-art methods for MR artifact reduction

utilize reference signals that capture induced artifact

potentials without neuronal EEG. Reference signal systems are

implemented either as a separate reference-layer of electrodes

isolated from the scalp (Chowdhury et al., 2014; Steyrl et al.,

2017) or as a set of six CWLs (four loops on participants’ heads,

two on EEG cables) (Masterton et al., 2007; van der Meer

et al., 2016). Reference signals contain exclusively MR-induced

electrical potentials because they are isolated from the scalp, as

such, they are used for modeling BCG and other motion-related

artifact templates to be subtracted from EEG signal. Particularly

in CWL regression, a general linear model approach is used. The
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signals from the six carbon-wire loops and their time-shifted

copies are regressed out of the EEG signal. The procedure is

performed for each channel independently, iteratively across

individual time windows (for details see van der Meer et al.,

2016).

Reference signal methods have shown superior performance

in complete MR artifact reduction (Chowdhury et al., 2014;

Hermans et al., 2016; Steyrl et al., 2017) and in BCG and

helium pump artifact reduction van der Meer et al. (2016). The

disadvantage of the second layer of electrodes is the complexity

of the system, especially for high-density EEG caps, because

the system needs to acquire twice the amount of data and the

additional set of electrodes doubles the number of leads and

amplifiers. These problems are avoided by the CWL system,

which requires minimal additions to the acquisition setup, albeit

at the price of slightly reduced performance (Hermans et al.,

2016).

All MR artifact correction methods will somewhat adversely

affect the signal, whether by introducing additional distortions

or by removing some information of interest. For this reason,

it is necessary to be confident that the preprocessing methods

used have the least possible impact on the analyzed signal. It

is therefore essential to take preventive measures and carefully

select data acquisition settings during an EEG-fMRI experiment

to reduce the amplitude of induced artifacts and achieve better

artifact reduction results during signal processing.

1.3. Specific aims and goals

The main aim of this evaluation study was to

provide practical information to researchers working with

simultaneously recorded EEG-fMRI to help them design an

experimental setup and choose an artifact reduction method

that fits their task design, research questions, and analyses

of interest. Specifically, our goals were to (i) review the

current literature and available tools to identify the most

widely used, freely available, and easy-to-use methods for

MR artifact reduction, (ii) evaluate their performance on

example datasets covering a spectrum of EEG analyses, and (iii)

suggest the optimal MR artifact reduction pipeline for different

analysis goals.

Based on the review presented above, we decided to use

AAS as the method for imaging artifact reduction, because it is

readily available through various toolboxes and it was reported

to be more conservative in terms of additionally reducing other

types of artifacts (Bullock et al., 2021). Next, we identified AAS

and OBS as the two main BCG artifact reduction methods of

interest. Both are widely used and have been often reported to

yield similar performance (Bullock et al., 2021). Some sources,

however, report conflicting results regarding their effectiveness

(Bullock et al., 2021). We decided to reevaluate both methods

on our dataset to investigate whether either method performed

better in a given setting. Lastly, several studies (Hermans et al.,

2016; van der Meer et al., 2016) indicated that the CWL

approach is superior to and outperforms other MR artifact

reduction methods, but the scope of testing was rather limited

in terms of the diversity of paradigms on which evaluations

were performed. To help researchers decide whether to invest

in a CWL system for their future studies, we included a CWL

system in our evaluation to assess its advantages over more

conventional approaches in contexts where the method has not

yet been evaluated.

To cover a variety of study designs and analyses, we focused

our data collection on three behavioral paradigms. First, a

resting-state task with eyes-open (EO) and eyes-closed (EC)

conditions allowed assessment of the effect of MR artifact

reduction methods on continuous EEG signal analysis and

an assessment of the ability to resolve frequently reported

changes in alpha band power. Second, we employed a finger

tapping paradigm to evaluate the effect of MR artifact reduction

methods on task-related (de)synchronization in the alpha, beta,

and gamma frequency bands. Lastly, we used visual evoked

potentials (VEP) to evaluate the impact of the MR artifact

reduction methods on event-related potentials (ERP) analyses.

2. Materials and methods

2.1. Participants

Sixteen healthy young adults (10 women, 18–23 years old)

participated in the evaluation study that included a simultaneous

EEG-fMRI session and a stand-alone EEG session outside the

MRI environment. Of the 16 participants, only one was left-

handed and was excluded from the finger tapping analysis. Due

to various problems during the recording sessions, we excluded

additional participants from specific analyses. Specifically, one

participant experienced discomfort and only completed the

resting-state task, data from some participants were missing

either task or MR markers, while for one participant we failed

to collect CWL data. As a result, we included 12 participants in

the resting-state and VEP task analysis and 13 participants in

the finger tapping task analysis. The study was approved by the

Ethics Committee of the Faculty of Arts, University of Ljubljana,

Slovenia. All participants gave written informed consent prior to

participating in the study.

2.2. Behavioral tasks

The study included three tasks: (i) a resting-state task, (ii)

a finger tapping task, and (iii) a checkerboard visual stimulation

task. Participants performed all three tasks twice. First, only EEG

data were acquired outside the MRI environment, then the same
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tasks were performed during simultaneous fMRI acquisition. All

tasks were implemented in PsychoPy3 (Peirce, 2007).

Resting-state task consisted of 22 alternating 40-s eyes-open

(EO) and eyes-closed (EC) blocks. The beginning and end of

each block were signaled by a brief high-pitched tone and visual

instructions on the screen, followed by a 5-s pause. To avoid

the inclusion of sensory evoked potentials, the pause was not

included in the analysis.

In the finger tapping task (Ball et al., 2008; Darvas

et al., 2010), participants were instructed to tap the fingers

of the right hand in 3-s blocks followed by a 3-, 5-, or

7-s rest (i.e., no hand movement). Tapping consisted of

touching a thumb and a finger in the following order:

index, ring, middle, and little finger. Each tapping block

was signaled by the image of a hand on a screen. During

rest blocks, the screen was blank. Participants completed 60

tapping blocks.

In the checkerboard visual stimulation task, participants

were shown an image of a ring-shaped radial checkerboard

pattern in one of the four quadrants of a visual field at each

trial (LU, left upper; LL, left lower; RU, right upper; RL, right

lower) (Capilla et al., 2016). The pattern spanned 80◦ of a

full circle and 13◦ of visual angle. The checkerboard pattern

consisted of 2.5 angular cycles (5 "spokes") and 4 radial cycles

(8 “rings”), of which only the outer 3 were shown. Each stimulus

was shown for 700ms. The intertrial interval (ITI) was randomly

chosen between 1.7, 3.7, and 5.7 s. There were 42 trials in each

condition. The order of trials was randomized. To ensure that

participants were attending to the task, they were instructed

to press a right arrow key on a response pad with their right

middle finger when a pattern was displayed on the right part

of the screen or a left arrow key with their right index finger

when a pattern was displayed on the left part of the screen.

Incorrect trials were not excluded from the analysis. Participants

were instructed to always look at the fixation cross in the center

of the screen.

2.3. Data acquisition

2.3.1. fMRI data acquisition
MRI data were acquired using the Philips Achieva 3.0T

TX scanner. BOLD images were acquired with T2*-weighted

echo-planar imaging sequence (3 BOLD images, field of view

= 221 × 221 mm, 64 axial slices, voxel size = 2.3 × 2.3 ×
2.3 mm, matrix = 96 × 95, TR = 1, 100 ms, TE = 27

ms, flip angle = 52◦, MultiBand SENSE factor 4, SENSE

P reduction 1.4, 950 frames for the resting-state task, 605

for the checkerboard task, and 620 for the finger tapping

task). Due to internal regulations of the MRI facility, we

were not allowed to turn off the helium pump of the

scanner’s cryostat to avoid helium pump-induced MR artifacts

in the EEG data.

2.3.2. EEG data acquisition
EEG data were recorded outside the MRI environment and

simultaneously with fMRI BOLD acquisition using an MR-

compatible EEG system consisting of a 128-channel BrainCap-

MR and a set of BrainAmp MR amplifiers (Brain Products

GmbH, Gilching, Germany). The impedance of the electrodes

was kept at approximately 15 k�. Data were recorded at a

sampling rate of 5, 000 Hz and a resolution of ±0.5µV. Data

were high-pass filtered with a time constant of 10 s and low-

pass filtered with a cutoff frequency of 250 Hz at acquisition. The

recorded signals of all electrodes were referenced to the vertex

electrode (FCz). The EEG amplifiers and the MRI system clocks

were synchronized with the Brain Products SyncBox system. The

EEG amplifiers were placed outside the scanner bore so that the

stimulus screen was not obscured. The CWL system consisted

of six carbon wire loops, constructed as explained in van der

Meer et al. (2016) (see Supplementary Figure S1), and its signals

were recorded using a Brain Products BrainAmp ExG bipolar

amplifier (±0.5µV resolution). In addition to task markers, we

acquired TR markers sent by the MRI scanner at the beginning

of each BOLD volume. The ECG signal was recorded with an

additional ECG electrode placed on the participants’ back below

the left scapula.

2.4. EEG data preprocessing

2.4.1. MR artifact reduction
MR artifact reduction was the first step in the EEG

preprocessing pipeline, followed by other EEG preprocessing

steps common to the majority of stand-alone EEG experiments.

For the evaluation, we considered only methods that were

openly and readily available for MATLAB (Mathworks, Natick,

Massachusetts) and EEGLAB toolbox (Delorme and Makeig,

2004). In order to keep the complexity of the evaluation

within reasonable limits, we decided to additionally limit the

evaluation to parameters that are considered as default for the

corresponding method.

IAR: IAR is the first step in MR artifact reduction because

it reduces the strongest artifact and prepares the signals for

further artifact reduction of less deterministic artifacts, such as

the BCG artifact and helium pump artifacts. To maintain central

focus on evaluating the performance of different methods

for reducing the more complex cardiac- and motion-related

artifacts, we used a single IAR method. We considered FASTR

as implemented through the fMRIb EEGLAB plug-in (Niazy

et al., 2005) and AAS, as implemented through AMRI toolbox

(Liu et al., 2012). Because it was suggested that the additional

principal component removal (PCA) step performed by FASTR,

on top of AAS and ANC, might lead to some BCG artifact

reduction in addition to IAR (Bullock et al., 2021), we decided

to use AAS from AMRI, which allowed us to independently

evaluate IAR and BCG artifact reduction methods. For template
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computation, we used 25 averaging windows as suggested by

Allen et al. (2000).

BCG Artifact Reduction: For the BCG artifact reduction,

we included the two most commonly used methods available

for MATLAB, AAS and OBS, that are readily available through

AMRI (Liu et al., 2012) and fMRIb (Niazy et al., 2005) toolboxes.

AAS was used with the default 21 averaging windows. In OBS,

as suggested by the authors, the first 3 principal components

and the signal mean were included for BCG artifact fitting. Due

to the uncertainties in using ICA for artifact reduction and the

lack of readily available tools that would allow straightforward

use of ICA, we decided not to include it in our evaluation.

In particular, there are a large number of factors that must

be considered when using ICA, and none of the automated

pipelines are readily available. The first factor is the choice

of ICA algorithm to use, and the second is the choice of

algorithm and criteria for classifying the identified independent

components as signal or noise (artifact). Several approaches were

evaluated by Vanderperren et al. (2010), who suggested that ICA

can achieve a similar level of BCG artifact reduction as OBS as

well as additional residual artifact reduction when performed on

top of OBS, but it does not generalize well and requires very

careful monitoring of the process to avoid signal degradation.

CWL Artifact Regression: CWL regression was performed

using the cwleegfmri plug-in for EEGLAB (van der Meer et al.,

2016). For the CWL regression, we chose default parameters,

Hann window tapering function, window duration of 4 s, and

delay of 0.021 s.

2.4.2. Basic preprocessing
MR artifact reduction was followed by preprocessing,

which was performed using EEGLAB (Delorme and Makeig,

2004), ERPLAB (Lopez-Calderon and Luck, 2014), and custom

functions in MATLAB. To speed up further processing and

reduce disk usage, the data were first downsampled to 500 Hz.

Next, we performed epoching from −200 to 500 ms relative

to stimulus presentation onset for the checkerboard task, from

−3, 000 to 3, 000 ms in the case of the finger tapping task, and

from 0 to 40 s for the resting-state task. Data were re-referenced

to the average reference. For the checkerboard and finger-

tapping tasks, epochs weremanually inspected for large transient

muscle artifacts and bad epochs were excluded from further

processing. This was followed by manual channel inspection

and exclusion of bad channels. In the checkerboard task, we

performed adaptive mixture independent component analysis

(AMICA) (Palmer et al., 2011) to remove eye movement and

muscle-related artifacts. We manually classified independent

components and interpolated previously excluded channels.

Finally, we applied a low-pass filter with a cut-off frequency

of 30 Hz for the resting-state and VEP data, and a low-pass

filter with a cut-off frequency 100 Hz for the finger tapping

task. Both low-pass filters were 683 samples long Hamming-

windowed sync FIR filters. Filter length was estimated using Fred

Harris’ rule for desired stopband attenuation of 30 dB (Lyons,

2011). In a final step, the data were downsampled to 100 Hz for

the checkerboard task and the resting-state, and to 250 Hz for

the finger tapping task.

2.5. Evaluation data preparation

For each participant, we considered EEG data collected

outside the MRI environment as a reference signal (REF) to

which we compared five variants of the data collected in the

MRI environment, each variant representing the signal after a

different combination of artifact correction methods. The five

variants were: NC, non-corrected data; IAR, data after removal

of imaging artifacts using the AAS algorithm; OBS, data after

IAR and additional OBS BCG artifact removal; AAS, data after

IAR and additional AAS BCG artifact removal; CWL, data after

IAR and additional CWL regression. All five variants were based

on the same raw data, which allowed a direct comparison of the

effectiveness of each preprocessing method.

2.5.1. Spectral data extraction
Power spectral density (PSD) for all analyses of EEG

spectral content was estimated using Welch’s method (Welch,

1967) with a 212 samples long Hamming window and a 50%

window overlap. All estimated PSDs were converted to decibels

(10 log10). Working with data on the decibel scale also allowed

us to model the outcome variables with normal distributions.

Because of the short trial length, PSDs of finger tapping trials

were computed on zero-padded data (212 − 3, 000 = 1, 096

samples long padding). A mean PSD of multiple EEG channels

(summary channels) was always computed by averaging the PSD

of each channel, rather than averaging the signal in the time

domain prior to the Fourier transformation.

As the first step of the resting-state occipital alpha analysis,

we computed the grand-average PSD across the entire length

(0–40 s) of the EO and EC block on every channel separately

on REF data. Exclusively for the selection of channels for

the resting-state data analysis, not for the statistical analysis,

we computed the difference in PSD (1PSD) and averaged

the PSD values in the broader alpha band (8–12 Hz) (Ritter

et al., 2009) across all channel sites (see Figure 3A). Based

on the standardized topography of the mean 1PSD in the

alpha band (see Figure 3B), we identified all channels that

exceeded one standard deviation (selected channels were P3,

P4, O1, O2, P7, P8, Oz, POz, PO3, PO4, P5, P6, PO7, PO8,

PPO1h, PPO2h, POO1, POO2, PPO5h, PPO6h, TPP8h, PPO9h,

PPO10h, POO9h, POO10h, PO9, PO10, and O10—highlighted

in the topography in Figure 3B). These channels were used to

compute a representative summary channel. The dataset used

in the statistical analysis of the recovery of EC occipital alpha
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activity was derived by computing the mean PSD in the alpha

band over every block in the data for each participant on the

previously defined summary channel.

Data for finger tapping spectral analysis were prepared

similarly to the data for the resting-state alpha analysis, except

that we computed 1PSD over each trial in three different

frequency bands. In this case, we contrasted 3 s periods in which

participants were instructed to remain still with 3 s periods

in which they were instructed to perform the finger tapping

pattern. The grand-average spectra for the alpha and beta bands

were computed on the entire duration of the baseline (−3, 000–

0 ms) and the finger tapping (0–3, 000 ms) periods, whereas the

baseline spectra for the gamma band analysis were computed

over the 1 s window prior to the instruction to begin tapping

(−1, 000–0 ms) and the response spectra were computed over

the 1 s window post the instruction (0–1, 000 ms). This was

motivated by the results of Ball et al. (2008) and Darvas et al.

(2010), where the largest gamma activity was observed around

the onset of finger motion. From the two pairs of spectra, we

computed their difference by subtracting the baseline PSD from

the response PSD. The frequency region for the alpha band

was defined the same as for the resting-state occipital alpha

analysis in order to allow for comparison (8–12 Hz). For the beta

and gamma bands, we defined the frequency region empirically

based on the grand-average spectra of REF data, computed from

a set of 12 left hemisphere central channel sites (C1, C3, C5,

CP1, CP3, CP5, CCP1h, CCP3h, CCP5h, CPP1h, CPP3h, and

CPP5h). Region boundaries were defined where pronounced

activity was observed, which was 15–25 Hz for the beta band

and 70–80 Hz for the gamma band. A narrower band around

the peak was defined for the gamma activity since its response

was much weaker compared to the alpha and beta activity.

Once the frequency regions were defined, we extracted the mean

power for each channel in all three bands and defined summary

channels for each band from the standardized grand-average

spectral difference topographies. We formed summary channels

from the channels for which the mean power deviated from the

mean by more than two standard deviations. For each band, we

selected the following channels: (i) C3, CP1, C1, CP3, CCP3h for

the alpha band, (ii) C3, CP1, C1, CP3, FCC3h, CCP3h, CCP5h

for the beta band, and (iii) CP3, CCP3h for the gamma band (see

Figure 4). The REF data spectrum computed on the summary

channel defined for the alpha band shows the frequency regions

for the alpha and beta bands (see Figure 4A). The spectrum

computed on the summary channel for the gamma band is

shown together with the defined frequency region in Figure 4B.

2.5.2. Visual evoked potentials data extraction
To prepare the data for the ERP effect size analysis, we

first computed the grand-average ERP of the ipsilateral and

contralateral signals in the occipital region. The ipsilateral

signal was computed as the mean signal across left hemisphere

channels (all parietal and occipital channels on the left

hemisphere) during the LL and LU stimuli and across right

hemisphere channels (all parietal and occipital channels on

the right hemisphere) during the RL and RU stimuli. The

contralateral signal was computed as the mean signal over the

left hemisphere channels during the RL and RU stimuli and over

the right hemisphere channels during the LL and LU stimuli. We

then computed a difference wave by subtracting the ipsilateral

from the contralateral signal, which allowed us to identify two

peaks in the early response period (≤ 300 ms). We used the

two peaks to define two time windows of interest, D1 and D2,

spanning 70–100 and 130–170 ms, respectively (see Figure 5A).

Next, we computed themean amplitude topography of the grand

average signal in each of the two identified time windows of

interest, separately for stimuli presented to the left and right

visual fields (see Figure 5B), to identify the channels with the

strongest VEP responses. To ensure the same level of noise

attenuation on summary channels of both hemispheres due to

channel averaging, we selected the same number of channels on

each hemisphere. The number was determined as the average

number of channels that exceeded two standard deviations from

themean on each hemisphere during each time window, thus we

selected 7 channels with the largest positive amplitude during

D1, and 7 channels with the largest negative amplitude during

D2, from each hemisphere for each of the two time windows.

The summary channels were computed as the mean signal

from (i) P4, TPP8h, PO4, P8, P6, PO8, PPO6h for left stimuli

on D1, (ii) PPO9h, P7, O1, PO3, P5, PPO5h, PO7 for right

stimuli on D1, (iii) P6, PPO6h, P8, PO8, TPP8h, CPP6h, P4

for left stimuli on D2, and (iv) PPO5h, P5, PO7, TPP7h, P7,

CPP5h, CP5 for right stimuli on D2 (see Figure 5B for their

locations). For further statistical analysis of the effect size of the

VEP difference between contralateral and ipsilateral stimuli, we

extracted the mean amplitude across the identified channels in

D1 and D2 windows of interest for each trial. We excluded the

non-corrected (NC) data variant from all the analyses in the time

domain due to the presence of imaging artifact components with

very high amplitudes that dominated the neuronal responses

and produced meaningless data for the evaluation.

To estimate the signal-to-noise ratio (SNR) for each of

the variant datasets, we computed a single grand-average VEP

across all trials (LL, LU, RL, RU) and the channels identified

in the previous step. We then identified two prominent peaks

in the signal, P1: 100–140 ms and N1: 150–200 ms, both of

which corresponded with findings by Capilla et al. (2016). We

computed two SNR estimates for P1 and N1 peaks. Trial-level

SNRt was computed across individual trials for each participant

separately and then averaged, whereas participant-average ERP

SNRa was computed on the signal averaged over all trials from a

participant. In both cases, SNR was estimated as the maximum

root-mean-square (RMS) value in the time window of each of

the two peaks divided by the mean RMS of the baseline signal

(−200–0 ms) (Marino et al., 2018).
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To compare the VEP responses in the reference data

and each variant EEG-fMRI data sets, we first computed

average VEP signals from 0 to 500 ms for each of the four

stimulus conditions across the previously identified channels for

each participant separately. We then estimated the similarity

of the VEP responses by computing robust correlations

(see Supplementary Methods 1.1.4) between the reference and

variant time series, and the differences by computing the root-

mean-square deviations (RMSD) between the reference and

variant time series.

2.6. Statistical inference

Group-level analyses of all spectral changes, resting-state

occipital alpha activity and motor-related central oscillatory

activity, were performed with a Bayesian normal two-level

regression model with varying-intercept and varying-slope

across groups (see Figure 2 and Supplementary Methods 1.1.1).

The samemodel was used to estimate SNR on single trials, where

SNR values were log-transformed to conform to normality.

The convergence of Markov chain Monte Carlo (MCMC)

algorithm was analyzed by verifying that all estimated

parameters had a potential scale reduction statistics (R̂) smaller

than 1.01, the estimated effective sample sizes in the bulk of

distributions and in the tails of distributions were larger than

400 samples (Vehtari et al., 2021). We estimated the uncertainty

of our analyses withMonte Carlo standard error (MCSE) (Flegal

et al., 2008). To additionally assure the suitability of our models,

we visually assessed the quality of convergence via posterior

parameter trace plots, prior and posterior predictive checks, and

we checked that maximum tree depth was not saturated. In

order to avoid strong degeneracies inherent to multilevel models

and achieve stable convergence (without divergent transitions),

we reparametrized all multilevel models to a non-centered

parameterization (Betancourt and Girolami, 2013). All models

in our analyses were specified and numerically estimated using

the probabilistic programming language Stan (Carpenter, 2017).

We used weakly informative prior distributions in all

models. Specifically, we used normal prior distributions (µ =
0, σ = 10) for regression parameters and half-Cauchy prior

distributions (µ = 0, λ = 2.5) for standard deviations, as

recommended by Gelman (2006), for all but the correlation

model, where we used a vague normal (µ = 0, σ = 100)

prior for the means of the input vectors, a half-Cauchy prior

(µ = 0, σ = 2.5) for the standard deviations, and a gamma

prior distribution (α = 2, β = 0.1 Juárez and Steel, 2010) for

the degrees of freedom parameter.

To estimate the posterior distribution of within-participants

effect sizes of the difference between contralateral and ipsilateral

VEP responses, we implemented a model similar to that

described above and shown in Figure 2. Themodel was extended

by modeling the standard deviation of the residuals using

a two-level structure in which we estimated one standard

deviation parameter for each participant and each method,

pooled from five group-level standard deviations corresponding

to the variability of the residuals of each method within

participants (Supplementary Methods 1.1.2).

Across-participants effect sizes of the contralateral-

ipsilateral difference in VEP responses and SNR on VEP

participant-averages were estimated separately for each method.

Inference was performed with a single-level normal linear

regression (Supplementary Methods 1.1.3).

Correlation analysis of grand-average VEP responses for

each of the four stimuli was estimated from the covariance

of the bivariate Student’s t-distribution, which is more robust

to outliers than the normal distribution as assumed when

computing Pearson correlation coefficients (Bååth, 2013; Baez-

Ortega, 2018) (Supplementary Methods 1.1.4).

3. Results

3.1. Recovery of eyes-closed occipital
alpha activity

We first focused on the investigation of the extent to

which MR-related artifacts affected the analysis of alpha band

EEG activity and the ability of artifact reduction methods to

recover the alpha band signal. For that purpose, we compared

alpha frequency band power between EO and EC resting-

state conditions. We treated the amount of alpha activity

associated with the EC condition relative to EO condition in

the reference data collected outside the MRI environment (REF)

as the benchmark. The topographic distribution of the EC-

associated increase in alpha power on REF data (1PSD) showed

a distinct concentration in the occipital EEG (see Figure 3B

upper left corner).

The performance of each method for MR artifact reduction

in recovering occipital alpha activity was analyzed with

a Bayesian two-level regression model (see Figure 2 and

Supplementary Methods 1.1.1). The model included mean

PSD values within each block as outcome variables, task

condition and data variant as first-level predictor variables, and

participants as a second-level grouping variable. To estimate

the ability of the methods to recover occipital alpha, we

computed the 1PSD distributions estimated from posterior

predictive distributions in the alpha band for each data

variant (see Figure 3B).

REF data produced the highest estimates of mean 1PSD

because they were not exposed to the adverse MRI environment.

Compared to other MR artifact reduction methods, CWL

recovered the largest proportion of alpha power change,

however, the change in power was still significantly reduced

compared with the mean 1PSD of the REF data. AAS and

OBS methods showed similar results, with AAS yielding a
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FIGURE 2

Hierarchical model structure. A directed acyclic graph describing the structure of the Bayesian normal two-level varying-intercept and
varying-slope regression model used for statistical inference in group-level analyses of all spectral changes, resting-state occipital alpha and
motor-related central oscillatory activity, and for the estimation of the signal-to-noise ratio (SNR) on single trials. In the model, y represents the
outcome variable (the measurements: PSD, power spectral density; di�erence in PSD—1PSD or log-transformed SNR on single trials), X is the
design matrix containing predictor variables coding the type of the artifact reduction method, as well as the condition (EO or EC) in the
resting-state (RS) analysis, βparticipant is the vector of regression coe�cients of each participant, β is the vector of regression coe�cients at the
group-level, 6 is the covariance matrix of the regression coe�cients, σmethod is a vector of standard deviations of the residuals defined for each
artifact reduction method, and � is the correlation matrix of the regression coe�cients, modeling the association between regression
coe�cients. A similar model was used in the within-participants e�ect size analysis, although the structure of standard deviations was extended
by modeling standard deviations separately for each participant and each artifact reduction method, which were pooled from five group-level
standard deviations corresponding to the variability of residuals of each method within participants. FC, finger clenching; VEP, visual evoked
potentials.

slightly higher estimate of the mean 1PSD. Both AAS and OBS

signals had larger differences in alpha band power than non-

BCG corrected (IAR) and NC data (see Figure 3B). Only BCG-

corrected data variants supported the finding of a significant

change in alpha power between the EO and EC conditions with

probability greater than .95, P(1PSD > 0) ≥ 0.95.

To gain better insight into the spectral characteristics of each

data variant, we examined the estimated PSD levels during the

EO blocks, which conveyed information on the baseline PSD

level in the alpha band (blue circles in Figure 3B). The lowest

level was observed in the REF data and the highest in the NC

data. The inverse relationship between baseline PSD level and

1PSD indicates that the presence of MR artifacts in the alpha

band decreases the ability to observe neuronal changes in the

alpha band.

3.2. Recovery of motor-related spectral
activity

The finger tapping task allowed us to extend our assessment

of the ability of different MR artifact reduction methods

to recover EEG spectral content related to event-related

(de)synchronization in three different frequency bands—alpha,

beta, and gamma—at identified central EEG channel sites (see

Methods and Figure 4). The grand-average of 1PSD between

finger tapping and rest showed the expected decreases in the

alpha and beta frequency bands and an increase in the gamma

frequency band. Task-related (de)synchronizations were greatest

in the central area contralateral to the finger tapping hand (left

hemisphere), whereas smaller changes were observed on the

ipsilateral side.

Again, we used a Bayesian two-level regression model

(see Figure 2 and Supplementary Methods 1.1.1) to estimate the

extent of task-related (de)synchronization and to compare the

results obtained with different MR artifact reduction methods

for each frequency band separately. The model included 1PSD

as the outcome variable, data variant as the first-level predictor

variable, and participants as the second-level grouping variable.

The posterior distributions of1PSD estimates of alpha band

activity revealed a considerable desynchronization in REF data

that was substantially higher than in any of the MR data variants

(see Figure 4C). CWL recovered the largest amount of 1PSD

of all MR data variants and was the only method for which

1PSD had a higher than 0.95 probability of being lower than 0,

P(1PSD < 0) ≥ 0.95. AAS, OBS, IAR, and NC yielded similarly

weak 1PSD in the alpha band, with OBS showing slightly better

spectral content recovery of the four methods.

The posterior distributions of the beta band

desynchronization estimates show a similar pattern to the alpha

band. The REF data show a pronounced desynchronization

that is substantially higher than for any of the MR data variants

(see Figure 4C). Of the MR artifact reduction methods, CWL

recovered the largest 1PSD and is the only method that resulted

in a P(1PSD < 0) ≥ 0.95. Interestingly, the NC data variant

showed a very narrow 1PSD posterior distribution that also

resulted in P(1PSD < 0) ≥ 0.95. Weak responses were again

observed in AAS, OBS, and IAR data.
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Gamma band synchronization analysis showed the weakest

effects of finger tapping across the three frequency bands

studied. Only REF data resulted in the posterior distribution

of 1PSD estimates that showed a certain greater than zero

response, P(1PSD > 0) ≥ 0.95 (see Figure 4E). CWL, AAS,

and IAR appeared to recover a similar amount of gamma band

synchronization, while OBS fared slightly worse.

3.3. Recovery of visual evoked potentials

Lastly, to provide a comprehensive evaluation of MR

artifact correction methods in both the frequency and time

domains, we extended our evaluation to the analysis of visual

evoked potentials (VEP) resulting from checkerboard pattern

stimulation of the four quadrants of the visual field. VEP

responses consist of prominent peaks following stimulus onset.

Responses to different stimuli can differ in peak latency,

amplitude, or polarity (Luck, 2014), based on the specific

properties of the stimuli. Because ERP studies often investigate

differences in ERP components due to experimental conditions,

we focused on the ability to distinguish between responses to

ipsilateral and contralateral visual stimuli.

As a first step of the analysis, we reviewed the grand-average

contralateral and ipsilateral VEP responses and their difference

for each data variant evaluated (see Figure 5A). We observed

two peaks in the difference wave in each data variant, D1 and

D2. A review of the topographies in the corresponding time

windows revealed peak responses in occipito-parietal channels

contralateral to the presented stimulus (see Figure 5B).

We then assessed the performance of artifact reduction

methods from two different perspectives of ERP analyses: (i)

the ability to identify ERP differences across trials within a

participant (single participant analysis) and (ii) the ability to

identify differences across a group of participants (second-level

group analysis). To this end, rather than examining absolute

differences in µV , we focused our analysis on estimating effect

sizes obtained in different data variants. For within-participant

effect sizes, we investigated average effect sizes computed on

differences across trials for each participant independently.

The analysis was performed using a two-level Bayesian linear

regression model (Supplementary Methods 1.1.2), with single-

trial amplitude as the outcome variable, stimulus side (ipsilateral

vs. contralateral), and data variant as first-level predictor

variables, and participants as the second-level grouping variable.

For effect sizes across participants, we computed effect sizes

for the differences between participants’ VEP averages and

analyzed them using a single-level Bayesian linear regression

model (Supplementary Methods 1.1.3) with mean amplitude

difference as the outcome variable and data variant as the

predictor variable.

Analysis of within-participant effect sizes revealed medium

effect sizes in the REF data and small effect sizes in all MR data

FIGURE 3

Resting-state spectral analysis. (A) Grand-average REF power
spectral density (PSD) computed across the entire length of
resting-state blocks (0–40 s) for both eyes-open (EO) and
eyes-closed (EC) conditions. The shaded region of the spectrum
denotes the alpha band (8–12 Hz) on which we computed the
mean PSD for the entire resting-state data analysis. (B) Posterior
distributions of the group-level di�erence in mean PSD (1PSD)
in the alpha band between EC and EO conditions for every data
variant. The distributions are summarized with the median
estimates and 66–95% intervals. The posterior median estimate
of the group-level mean PSD in the alpha band during EO
condition is coded in the size of the light blue circles. In the
upper left corner is the standardized grand-average topography
of REF 1PSD. The summary channel used throughout the
resting-state analysis was computed as the mean of all the
channels with 1PSD further than one standard deviation from
the mean (highlighted). The numbers between adjacent intervals
depict the probability of the method on the right producing a
higher 1PSD than the method on the left, accounting for
participants di�erences. NC, non-corrected signal; IAR, data
with the imaging artifact reduced; OBS, data with IAR and
reduced BCG artifacts with optimal basis set; AAS, data with IAR
and reduced BCG artifacts with average artifact subtraction;
CWL, data with IAR and carbon-wire loop artifact correction;
REF, data collected outside of the MRI environment.

variants for both D1 and D2 mean amplitude differences (see

Figure 5C, bottom row). The performance of the MR reduction

methods was similar, with only IAR resulting in the smallest

effect sizes. Analysis of across-participant effect sizes showed

large effect sizes for all data variants with a different pattern for

the two difference peaks (see Figure 5C, top row). For D1, the

observed effect size was significantly higher in the REF data than

inMRdata variants, with the CWLdata variant having a robustly

higher effect size than other MR variants. For D2, effect sizes

were surprisingly similar across variants, with the smallest effect

size observed only in the IAR MR data variant.
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FIGURE 4

Finger tapping spectral analysis. (A) Grand-average REF di�erence of power spectral density (1PSD) during finger tapping period (0–3, 000 ms)
relative to baseline (−3, 000–0 ms). The shaded regions of the spectrum denote alpha (8–12 Hz) and beta (15–25 Hz) bands on which we
computed the mean 1PSD for the statistical analysis. The ribbons indicate ±2 between-participants standard errors. (B) Grand-average REF
1PSD at higher frequencies during the finger tapping period (0–1000 ms) relative to baseline (−1000–0 ms). The shaded region of the spectrum
denotes the gamma (70–80 Hz) band on which we computed the mean 1PSD for the statistical analysis. The ribbons indicate ±2
between-participants standard errors. (C–E) Posterior distributions of the group-level 1PSD in the alpha, beta and gamma bands, respectively,
for every MR artifact reduction method. The distributions are summarized with the median estimates and 66% and 95% intervals. In the upper left
corner of each graph is the standardized grand-average topography of the 1PSD of the REF data, the color scale in (C) applies to topographies
in (D,E)) as well. The summary channels used for the analysis were computed as the mean of all channels that exceeded two standard deviations
in 1PSD (highlighted with white circles). Numbers between adjacent intervals depict the probability of the method on the right producing a
larger 1PSD than the method on the left, accounting for participant di�erences. NC, non-corrected signal; IAR, data with the imaging artifact
reduced; OBS, data with IAR and reduced BCG artifacts with optimal basis set; AAS, data with IAR and reduced BCG artifacts with average artifact
subtraction; CWL, data with IAR and carbon-wire loop artifact correction; REF, data collected outside of the MRI environment.

Since the presence of noise is a key determinant of the ability

to identify the effects of experimental variations on ERP peaks

and components, we also investigated the signal-to-noise ratio

(SNR) observed in different data variants. We examined SNR at

two levels: (i) the SNRt observed across individual trials, and (ii)

the SNRa observed on average ERPs (see Section 2.5.2) for the

two most prominent peaks, P1 and N1, within 100–140 ms and

150–200 ms time windows, respectively (see Figure 6A).

Similarly to the effect size analysis, for the trial-level SNR

analysis, we used a two-level Bayesian linear regression model

with SNRt for each trial as the outcome variable, data variant as

the first-level predictor variable, and participant as the second-

level grouping variable. We modeled the residuals separately for

each method (see Figure 2). For the analysis of the average ERP

SNR, we used a single-level Bayesian linear regression model

with SNRa as the outcome variable and data variant as the

predictor variable.

The analysis revealed significant variability in SNR between

data variants. While SNR was markedly higher at the average

ERP level than at the single-trial level, for P1 and N1 both

SNR estimates were highest for REF data (see Figure 6B).

Though with SNR considerably smaller than for REF data,

CWL performed substantially better than other MR reduction

methods at both single trial level and the average ERP level. At

single-trial level, both AAS and OBS performed similarly and

substantially better than IAR, while at the average ERP level,

OBS yielded a significantly higher SNR than AAS.

Lastly, we checked how the morphology of the grand-

average VEP of all MR data variants compared to the

morphology of the VEP of REF data. We estimated similarity

using robust correlations between the time series and

dissimilarity using the RMSD between the time series, both

separately for each type of stimuli. Across the grand-average

VEPs, the CWL data variant robustly showed the highest

correlations (see Figure 7A) and the smallest RMDS (Figure 7B)

from REF VEPs, whereas other methods performed comparably.

4. Discussion

The aim of this study was to evaluate and compare the

performance of the most widely used and readily available
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FIGURE 5

E�ect size analysis of contralateral-ipsilateral VEP di�erence. (A) Grand-average VEPs computed on corresponding summary channels for
contralateral and ipsilateral trials, along with the di�erence wave (contralateral—ipsilateral) of each data variant. The shaded regions denote the
two prominent peaks of the di�erence wave (D1: 70–100 ms, D2: 130–170 ms). The ribbons indicate ±2 across-participant standard errors
(omitted on the di�erence wave for clarity). (B) Standardized grand-average topographies of both di�erence wave peaks and stimulus
hemifields. The summary channels used for the analysis were computed as the mean of all channels that exceeded two standard deviations
from the mean (highlighted). (C) Posterior distributions of the across-participants e�ect size of both peaks (top row) and the posterior
distribution of the group-average of within-participants e�ect sizes (bottom row). Numbers between adjacent intervals depict the probability of
the data variant on the right producing a larger e�ect size than the one on the left, controlling for participant variability. IAR, data with the
imaging artifact reduced; OBS,data with IAR and reduced BCG artifacts with optimal basis set; AAS, data with IAR and reduced BCG artifacts with
average artifact subtraction; CWL, data with IAR and carbon-wire loop artifact correction; REF, data collected outside of the MRI environment.

MRI artifact reduction methods in order to provide empirically

supported guidelines for the design of new EEG-fMRI studies

and for the selection of processing options that ensure optimal

analysis of EEG data acquired simultaneously with fMRI. To

this end, we collected and analyzed data using three different

paradigms representative of continuous EEG, task-related

(de)synchronization, and ERP studies. We compared results

obtained outside theMR environment with those obtained using

simultaneous EEG-fMRI recording preprocessed with different

MR artifact reduction methods.

4.1. MR artifact reduction performance in
the frequency domain

Resting-state data with eyes-opened and eyes-closed

conditions allowed us to investigate the ability to identify

changes in frequency spectra in the continuous EEG signal.

Previous studies have reported robust increases in occipital

alpha band power during the EC condition (Kirschfeld, 2005)

so this paradigm seemed particularly well suited for evaluating

the performance of each method in reducing the BCG artifact

as it overlaps with alpha activity in the frequency domain (see

Figure 1D).

The evaluation revealed a marked reduction in the ability

to observe alpha band power reduction in the continuous

EEG signal acquired during simultaneous EEG-fMRI data

acquisition. IAR alone did not effectively recover spectral

content in the alpha band, supporting the necessity of additional

processing to reduce BCG artifact previously shown by van

der Meer et al. (2016), Liu et al. (2012), and Lin et al. (2022).

While Grouiller et al. (2007) reported that BCG correction did

not improve spectral content in the alpha band and above, our

data show that BCG artifact reduction using either OBS or
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FIGURE 6

Signal-to-noise ratio (SNR) of VEP. (A) Grand-average VEP
computed on the summary channel of data collected outside of
the MRI environment (REF). The shaded regions denote the two
prominent peaks of the VEP (P1: 100–140 ms, N1: 150–200 ms).
The ribbons indicate ±2 between-participants standard errors.
(B) Posterior distributions of SNR of both VEP peaks computed
on participant averages (top row) and on single trials (bottom
row) for every data variant. The distributions are summarized
with median estimates and 66–95% intervals. Numbers between
adjacent intervals depict the probability of the method on the
right producing a larger SNR than the method on the left,
accounting for participant di�erences. IAR, data with the
imaging artifact reduced; OBS, data with IAR and reduced BCG
artifacts with optimal basis set; AAS, data with IAR and reduced
BCG artifacts with average artifact subtraction; CWL, data with
IAR and carbon-wire loop artifact correction; REF, data
collected outside of the MRI environment.

AAS substantially improves the ability to recover alpha band

power change compared to IAR alone. Our evaluation, similar

to that of Wang et al. (2018), showed similar performance of

OBS and AAS methods. As previously reported by van der

Meer et al. (2016), our evaluation replicated significant further

improvement in alpha band spectral content recovery enabled

by CWL.

Next, we selected the finger tapping paradigm to investigate

event-related (de)synchronization. We chose finger tapping

because it has previously been reported to result in robust motor

action-related desynchronization in the alpha and beta bands

and synchronization in the gamma band on pericentral EEG

sites (Ritter et al., 2009). Specifically, both alpha and beta band

activity tend to increase during the idle condition of the motor

FIGURE 7

Grand-average VEP correlations and RMSD. Posterior
distributions of correlation coe�cients (A) and
root-mean-square deviations (RMSD) (B) between the
grand-average VEP of each MR data variant and the
grand-average VEP of data collected outside of the MRI
environment (REF) for each type of visual stimulus. Correlation
distributions are represented with median estimates and
66–95% intervals. LL, left lower; LU, left upper; RL, right lower;
RU, right upper; IAR, data with the imaging artifact reduced;
OBS, data with IAR and reduced BCG artifacts with optimal basis
set; AAS, data with IAR and reduced BCG artifacts with average
artifact subtraction; CWL, data with IAR and carbon-wire loop
artifact correction.

cortex, as a result of synchronization of neurons in the primary

motor cortex (Ritter et al., 2009), a similar phenomenon to

occipital alpha activity observed in EC conditions. In contrast,

motor-related gamma activity tends to increase during the onset

of movement (Ball et al., 2008; Darvas et al., 2010). The broader

spectral nature of motor-related oscillations therefore allowed

us to investigate beta and gamma band activity in addition to

alpha activity. The inclusion of a motor task also allowed us

to study how well MR artifacts reduction methods perform at

other sites on the scalp. We were specifically interested in the

ability of MR artifact reductionmethods to recover gamma band

oscillations, as previous evaluation studies focused primarily on

robust occipital alpha oscillations (e.g., Liu et al., 2012; Hermans

et al., 2016; van der Meer et al., 2016), whereas recovery of

motor-related oscillations in the gamma band has previously

been reported only by Kim et al. (2015).

As in the resting-state analysis, MR artifacts

markedly impacted the ability to observe task-related

(de)synchronizations in all frequency bands. Surprisingly,

in contrast to the resting-state analysis, noMR artifact reduction
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method other than CWL substantially improved the results in

the alpha or beta bands. This result was particularly interesting

because a number of studies (e.g., Niazy et al., 2005; Debener

et al., 2008; Mullinger et al., 2013) reported weaker BCG and

consequently lower residual artifacts on central compared with

occipital EEG sites, which led us to expect better performance

in motor-related activity recovery compared with occipital

resting-state alpha.

One possible cause for reduced performance of BCG artifact

correction methods could be increased vibrations due to finger

tapping, which may have propagated from the hand to the head

and induced additional motion-related artifacts. To test this

hypothesis, we estimated the 1PSD in the studied frequency

bands on the IAR signal of the four CWLs attached to the

participants’ heads. These were isolated from the scalp, so their

signals contained only MR-induced potentials. As movements

due to finger tapping were not present in the baseline period,

a positive 1PSD in the alpha and beta bands would imply a

presence of a motion-induced signal that may have counteracted

event-related desynchronization in the alpha and beta frequency

bands. This possibility was confirmed by the supplemental

analysis, which revealed a presence of significant increase in

both alpha and beta band power during finger tapping (see

Supplementary Analyzes 2.1 for details). The slightly better

performance of OBS over AAS may be due to the higher

sensitivity of AAS to random motion. Namely, changes in

the shape of the induced artifacts violate the fundamental

assumption of AAS, that the artifacts considered for template

computation do not change over time. OBS, on the other hand,

estimates the artifact shape by its principal components (Niazy

et al., 2005), which may make it more resilient to temporal

changes in the induced artifacts.

An additional curiosity was the observation of a higher and

more robust beta band1PSD in NC compared to IAR, OBS, and

AAS data. One possibility could be that finger tapping induced

movements resulted in altered imaging artifacts with a slightly

different spectral response than the imaging artifacts during

baseline, leading to suboptimal attenuation of the beta band

signal during finger tapping. However, this possibility should be

explored further.

In comparison to the alpha and beta bands, MR artifact

reduction methods did somewhat improve relative sensitivity

to event-related gamma band synchronization. Of the MR

reduction methods, OBS appeared to perform the worst and

even decreased the information recovered by IAR, suggesting

a possible loss of neuronal information at higher frequencies.

This possibility was suggested by Liu et al. (2012), proposing

that the removal of the first few principal components may

lead to overcorrection of the data. This could possibly be

mitigated by including fewer principal components in the

template computation, however, this option would need further

investigation. The similar performance of the IAR, AAS, and

CWL methods might imply that neither the AAS method nor

the CWL signals captured additional artifacts in the 70–80 Hz

band. Importantly, the CWL data variant was the only MR data

variant that revealed task-related gamma synchronization with a

probability greater than 0.95.

Due to the popularity of the FASTR algorithm for IAR and

its availability in the fMRIb EEGLAB plug-in (Niazy et al., 2005),

we also evaluated the use of FASTR as the initial preprocessing

step before CWL regression. With this supplementary analysis

we wanted to assess whether a combination of FASTR and CWL

provides additional benefits over the use of basic AAS prior to

CWL, which was included in the main evaluation. The recovery

of spectral content of both approaches to IAR performed prior

to CWL regression was comparable, thus the choice between the

two algorithms for IAR does not play a critical role in spectral

EEG analyses (see Supplementary Figure S7).

4.2. MR artifact reduction performance in
the time domain

Analysis of VEPs allowed us to evaluate the performance of

MR artifact reduction methods in ERP studies. In particular, we

focused on evaluating the ability to identify task- or stimulus-

related components and component differences. For this reason,

we used different visual stimuli and analyzed effect sizes for

differences in ipsilateral vs. contralateral visual stimulation

and ERP SNR. Furthermore, we investigated both across-trial,

within-participant measures and measures computed across

average participant ERP responses.

Evaluation of effect sizes obtained across participants allows

us to estimate the ability to identify group-level task- or

stimulus-related differences in ERP responses. Investigation of

the first difference wave peak, D1, showed a clear advantage

of REF over all MR data variants, followed by CWL, which

outperformed AAS, OBS, and IAR. These findings reflect both

a stronger response to the contralateral stimulus presentation

as well as smaller variability in the REF data (see Figure 5A).

While the CWL data variant showed a similar attenuation of the

response to contralateral stimuli, the higher effect size can be

attributed to smaller VEP variability. Surprisingly, no practical

differences between the data variants, including REF data, were

observed in D2, with the exception of a somewhat reduced effect

size in IAR. This pattern or results might suggest an actual

difference in VEP response in the two environments due to

lightning and stimulus display conditions.

Evaluation of within-participant effect sizes enabled us

to estimate the ability to identify task- or stimulus-related

differences in ERP responses at the individual level. These

results were more consistent with prior expectations of the

superiority of the REF data, as they yielded markedly higher

effect sizes than the MR data variants in both time windows

of interest. As expected, IAR performed worst in both time
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windows, surprisingly though, OBS and AAS outperformed

CWL in time windowD1. Visual inspection of themagnitudes of

the differences and their variability in both time windows for all

participants (see Supplementary Figure S5) revealed somewhat

higher variability in difference estimates within participants

and less variability across participants in CWL compared to

both ASS and OBS data variants, consistent with lower effect

sizes within participant and higher across participants. One

explanation for this conflicting result might be that some artifact

peaks in the CWL data were strongly attenuated during VEP

averaging of the trials, resulting in higher across-participants

effect size, whereas in OBS and AAS, the residuals might have

been more time-locked, allowing them to bypass the desired

attenuation from averaging. Review of the individual data

prompted us to investigate to what extent individual differences

in D1 and D2 were correlated across methods. The results (see

Supplementary Figure S6) indicated overall low correlations of

REF results with allMR data variants for D1 and low tomoderate

(CWL) and high (OBS) in D2. Overall, the observed within-

participant effect sizes suggest that the ability to detect ERP

differences in a single participant is significantly reduced in EEG

data acquired simultaneously with fMRI, necessitating a larger

number of trials.

Evaluation of trial-level SNRt enables us to estimate the

sensitivity to ERP signals at the single-trial level, whereas SNRa
reflects the ability to discern ERP peaks in the average participant

ERP time series. As expected MR artifacts significantly reduce

SNR at both single-trial level and the average ERP level,

while trial averaging significantly increases SNR. Further, CWL

substantially outperforms all other MR reduction methods at

both single-trial level and trial-average levels. OBS, in turn,

showed better SNR performance on participant averages than

AAS, despite both methods retaining similar SNR on single

trials. This indicates that additional averaging of trials might

have led to attenuation of non-time-locked residual artifact

peaks. Previous studies reported conflicting results from SNR

analyses on OBS and AAS data, with some reporting better

SNR for OBS (e.g., Krishnaswamy et al., 2016; Marino et al.,

2018) and others for AAS (e.g., Liu et al., 2012; Wang et al.,

2018). Shams et al. (2015) reported higher SNR for OBS than

for AAS and suggested that individual tuning of the number

of principal components used in OBS may improve SNR when

using this method.

Jointly the evaluation of MR artifact reduction methods

in the time domain suggests that CWL regression might have

led to a slightly higher degree of ERP peak attenuation when

compared with OBS and AAS. However, the noise due to MR

artifacts was significantly lower, both on single trials and on

participants’ averages. This resulted in superior SNR at both

levels of analysis and might have also led to more consistent

results across participants, which in turn led to higher effect

sizes at the group level. The better noise reduction provided

by CWL could also underly a substantive advantage of CWL

over other MR artifact reduction methods in recapturing the

ERP morphology, as revealed in the analysis of similarities and

differences with the REF ERP time courses. Correlation and

RMSD analyses also showed a slight advantage of OBS over AAS

and IAR, which suggested, in addition to marginally better SNR,

that OBS does leave lower artifact residuals in the signals than

AAS (as reported by Niazy et al., 2005 and Marino et al., 2018).

An important consideration of evaluation in the time

domain is the time locking of events with the MR signal.

In concurrent EEG-fMRI recording, the onset of events is

frequently locked to the onset of BOLD volume acquisition.

Any residual MR imaging artifacts are therefore also time-

locked to the observed ERP, which could lead to enhancement

rather than attenuation of residuals during averaging and to

systematic deformations of ERPs acquired in simultaneous EEG-

fMRI recording. This might have led to reduced correspondence

with REF ERP time courses for non-CWL methods. A possible

approach to reducing such time-locked artifact could be the

addition of slight jittering of event onsets. Jittering across the

range of about 50 ms should counteract the MR imaging artifact

time-locking without affecting the accuracy of the fMRI analyses

due to the slow evolution of the BOLD signal. The impact of this

strategy on the effect of IAR, OBS, and AAS results should be

investigated in further studies.

The a posteriori analysis of the performance of FASTR

and AAS algorithms for IAR prior to CWL yielded similar

results in recovering visual evoked potentials as in recovering

spectral content, where the performance of both methods was

comparable and the choice between the two algorithms should

not significantly affect the quality of EEG data in ERP research

(see Supplementary Figure S8).

4.3. Significance and limitations

To address the aims of the study, we kept the complexity

of our evaluation within reasonable limits. We achieved this by

focusing only on readily availableMR artifact reductionmethods

that were easy to access and limiting all methods to their default

parameters to simulate the situation relevant for a majority of

researchers. If these restrictions had been relaxed, we would

have strayed from the central thread of our study, which was

to evaluate methods that an everyday researcher would have

at hand and ready to use. However, by limiting methods to

their default parameters, we were unable to explore performance

enhancements possibly afforded by parameter optimization.

Nevertheless, our findings should provide valuable practical

information and possibly motivate and provide directions for

future evaluation studies.

In every evaluation analysis performed in this study, we

treated the REF signal, collected outside the MRI environment,

as the benchmark to which we compared differently

preprocessed variants of data collected simultaneously
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with fMRI. Thus, the evaluation was based on the assumption

that the observed neuronal responses were the same or very

similar in the two environments. The most obvious factors that

could have led to a violation of this assumption include (i) the

effects of body position on brain activity, e.g. increased cortical

inhibition in the supine position (Spironelli et al., 2016), as

the participants were seated during REF data acquisition and

in a supine position in the scanner during fMRI acquisition,

(ii) the presence of loud acoustic noises and different lighting

conditions in the scanner, and (iii) the decline in attention and

vigilance as the participants performed all three behavioral tasks

first outside the MRI environment and then again in the MRI.

The fact that each task had to be performed twice

limited the number of tasks we were able to include in the

study. With that in mind, we selected and designed tasks

that enabled us to evaluate the performance of a relatively

wide array of different neuronal responses from EEG data.

However, there are countless additional ways in which method

performance could be analyzed, ranging from various ERP to

source-space EEG functional connectivity analyses. In addition,

further improvements in artifact reduction could be enabled

by auxiliary processes that support effective artifact correction,

such as accurate R-peak detection in ECG signals, that we did

not explore.

It needs to be noted that VEP analyses were conducted

on data of summary channels, which were computed from

different numbers of channels in different evaluation analyses

(8 channels per hemisphere in the effect size analysis and 30

channels in the SNR, correlation, and RMSD analyses). This

could lead to different degrees of attenuation of non-time-locked

potentials, which may include both artifacts and non-event-

related neuronal activity. The attenuation factors were
√
8 ≈ 2.8

and
√
30 ≈ 5.5 in the effect size case and in all other VEP

analyses, respectively. This should be taken into account when

relating results from these analyses.

An important consideration is the specific MR environment

in which the data were collected, as the evaluated methods may

perform differently depending on the characteristics of the MR-

related artifacts. These differences can stem from (i) the specific

sequences used, which would impact the shape and frequency

structure of the MR imaging artifacts, (ii) the strength of the

magnetic field, which would impact the amplitude of the BCG

and motion-related artifacts, and (iii) other vendor and model-

specific characteristics, such as the extent of vibration caused by

the helium pump. Our study was based on data collected using

a multiband BOLD sequence on a 3 T Philips scanner, however,

different results might be obtained in a different environment.

Taking that in consideration, we feel that our results should

be representative of modern fMRI scanning environments.

It is also reasonable to expect that a method that performs

poorly at 3 T will perform even worse at higher magnetic

fields since any artifact should be potentiated in a stronger

magnetic field.

Further, in our evaluation we initially included only one

method for IAR. Including additional IAR methods in the

evaluation would significantly expand the number of possible

combinations of IAR and BCG artifact removal methods, which

we wanted to avoid. As imaging artifacts are deterministic and

different methods use the same or very similar implementations,

we presumed that the results of IAR would not change

substantially, which was later supported by the a posteriori

analysis where we evaluated the performance of FASTR for

IAR in combination with CWL. Employing a single, relatively

conservative IAR method for all the main analyses allowed

us to focus on the evaluation of methods for the removal

of more complex and unpredictable BCG and motion-related

MR artifacts.

Lastly, the addition of the CWL system in our evaluation

revealed the inability of conventional methods, AAS and OBS,

to recover motor-related alpha and beta activity. Without the

results of the CWL-processed datasets, we would not have

observed any spectral activity in the alpha or beta band and

would have considered the possibility that this oscillatory

activity was not expressed to the same extent in the MRI as

it was outside the MRI environment. This finding highlights

the importance of using a reference signal system in studies

involving voluntary motor actions, as it allows independent

acquisition of motion-related artifactual signals and their

removal to the extent that is not possible with other methods.

We therefore advise that tasks requiring any voluntary motor

responses, however weak they may be, utilize a reference signal-

based approach to artifact correction to ensure high-quality EEG

data for further analyses.

4.4. Guidelines for e�ective reduction of
MR artifacts

As indicated in the previous sections, selecting the most

appropriate method for artifact reduction depends to some

extent on the nature of the study and the analyses to

be conducted. Both previous studies and our empirical

results suggest that reference signal methods outperform

conventional methods while allowing real-time data processing.

The major drawback of many reference signal methods is

the added hardware complexity, although the CWL system

does not require extensive modifications or additional time for

cap preparation.

Minimizing exposure to electromagnetic induction is

the first step in achieving high-quality EEG data collected

simultaneously with fMRI. A few straightforward preventive

measures include (i) reducing movements of the leads

connecting the EEG cap to the amplifiers by fixing them to the

floor of the scanner bore with self-adhesive tape and weighting

them with sand bags (Allen et al., 1998), (ii) fixing participant’s
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Kraljič et al. 10.3389/fnimg.2022.968363

head with cushioning to reduce movements (Bénar et al., 2003),

(iii) placing the amplifiers inside the scanner bore (if warranted

by the manufacturer), as shorter connections to the cap make

the system less susceptible to MR artifacts (Assecondi et al.,

2016), and (iv) turning off the cryostat helium pump and the

ventilation system if possible andwhen higher frequency content

is of interest.

Proper data acquisition will allow effective artifact

correction in post-processing. The amplitudes of the electrical

currents induced during BOLD imaging can easily exceed

the measurement range of certain EEG amplifiers, so it is

important to carefully select the most appropriate acquisition

gain and high-pass and low-pass filter cutoff frequencies in

order to avoid signal saturation (Allen et al., 2000). The precise

temporal synchronization between the EEG and MRI clocks is a

critical factor for effective IAR, which requires precise markers

indicating the onset of MRI slice/volume acquisition. Likewise,

the effectiveness of AAS and OBS is directly dependent on

the precision and accuracy of R-peak detection, therefore a

high-quality ECG signal is essential. In cases where clock

synchronization can not be established, it is essential to sample

EEG data at the highest possible sampling frequency (≥ 5

kHz) to allow better temporal alignment of artifact sections in

post-processing (Allen et al., 2000).

Imaging artifact reduction usually represents the first step

in MR artifact reduction. The deterministic nature of the artifact

and the fact that most of the contemporary studies utilize MR-

EEG clock synchronization make the selection of an algorithm

for IAR easier than for BCG artifact reduction. In general, AAS

leads to more conservative IAR, whereas FASTR can lead to

more intense IAR, possibly attenuating neuronal information in

addition to some BCG artifacts (Bullock et al., 2021).

BCG and motion-related artifact correction should be

performed after IAR. Based on our evaluation results, we advise

investing in a CWL system, particularly for studies that can not

reduce movements in the scanner (e.g., tasks requiring motor

action, pediatric and clinical populations) or when higher-

frequency EEG content is of interest and the helium pump

or ventilation systems cannot be turned off. In cases where

reference signals were not collected and the signals of interest

are affected by the helium pump artifacts, we advise researchers

to utilize either the sliding-window AAS approach proposed

by Rothlübbers et al. (2015) or rsPCA proposed by Kim et al.

(2015). For conventional BCG artifact reduction, we propose

a less rigorous AAS when investigating weaker spectral effects

at higher frequencies and OBS for ERP studies because it

seemed to yield a higher SNR. In our evaluation, we observed

only marginal differences between the efficacy of AAS and

OBS, which is in line with conflicting conclusions regarding

AAS and OBS in the literature. We did use both methods

with default parameters, and as suggested by Shams et al.

(2015), further improvements may be achieved with additional

parameter optimization. Motion-related artifacts can be very

delicate to reduce without a reference-signal method, and even

when such methods are used, motion should be minimized.

Using head restraints is therefore the most straightforward

approach to reducing motion artifacts (Bénar et al., 2003).

An additional post-processing approach to motion-related and

muscle artifacts reduction using ICA was proposed by Mayeli

et al. (2016). Although we have not evaluated ICA for motion-

artifact reduction, we suggest researchers experiment with ICA

for additional artifact reduction, especially when other forms,

such as CWL, are not available.

5. Conclusion

In conclusion, we evaluated MR artifact reduction methods

on three different tasks eliciting diverse neuronal responses

measured by EEG to gain deeper insights into how two

conventional and readily available methods, AAS and OBS,

along a more advanced reference signal method, CWL, perform

in recovering distinct neuronal responses. Our results indicate

that CWL provides superior performance in both continuous

and event-related spectral analyses across frequency bands,

especially when tasks require motor actions that introduce

additional artifacts. In the time domain, CWL yields stronger

group-level effect sizes, superior single-trial and average ERP

SNR, and ERP time series recovery. For these reasons, we

advise investing in a CWL system for simultaneous EEG-fMRI

recordings. Inferior to CWL, AAS and OBS yield comparable

results, wherein OBS appears to perform more rigorous artifact

reduction, resulting in better performance in the time domain

but some signal loss in high-frequency spectral content.

OBS could benefit from additional parameter optimization to

individual study and data characteristics.
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