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Extracting default mode
network based on graph neural
network for resting state fMRI
study

Donglin Wang, Qiang Wu and Don Hong*

Program of Computational and Data Science, Department of Mathematical Sciences, Middle

Tennessee State University, Murfreesboro, TN, United States

Functional magnetic resonance imaging (fMRI)-based study of functional

connections in the brain has been highlighted by numerous human and animal

studies recently, which have provided significant information to explain a wide

range of pathological conditions and behavioral characteristics. In this paper,

we propose the use of a graph neural network, a deep learning technique

called graphSAGE, to investigate resting state fMRI (rs-fMRI) and extract the

default mode network (DMN). Comparing typical methods such as seed-based

correlation, independent component analysis, and dictionary learning, real

data experiment results showed that the graphSAGE is more robust, reliable,

and defines a clearer region of interests. In addition, graphSAGE requires fewer

and more relaxed assumptions, and considers the single subject analysis and

group subjects analysis simultaneously.

KEYWORDS

default mode network (DMN), graph neural network, graphSAGE, independent
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1. Introduction

Functional connectivity is usually based on two approaches: task-based fMRI analysis

and resting-state fMRI analysis. In general, task-based fMRI depends not only on the

ability of the subjects to follow the task procedure, but also on the good design of

the experiment, especially in clinical applications (Amaro and Barker, 2006; Daliri and

Behroozi, 2014; Zhang et al., 2016). In contrast, resting functional magnetic resonance

imaging can measure spontaneous fluctuations in the human brain and reflect the

relationship among different networks (Biswal et al., 1995; Fox and Raichle, 2007).

Therefore, rs-fMRI is applicable to situations in which task-related fMRI may provide

insufficient information or sometimes fail to perform (Shimony et al., 2009). In resting

state the brain is still constantly active and parts of the brain are connected by its

intrinsic connections, and some connections even show a stronger relationship when

doing certain tasks. Therefore, it is more reasonable to use resting state to study basic

functional connections, especially to identify intrinsic connectivity networks or resting

state networks (RSNs) (Greicius et al., 2003; Beckmann et al., 2005; De Luca et al., 2006;

Seeley et al., 2007; Canario et al., 2021; Morris et al., 2022). As mentioned in several

studies (Beckmann et al., 2005; De Luca et al., 2006; Fox and Raichle, 2007; Smith et al.,

2009; Cole et al., 2010), RSNs are located in the gray matter regions of the human brain,
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and these RSNs reflect the core perceptual and cognitive

processes of functional brain systems.

There are several common RSNs (Cole et al., 2010; Lee

et al., 2013) that are often identified from the resting-state fMRI

study. The most basic RSN is the default mode network (DMN)

(Greicius et al., 2003; Damoiseaux et al., 2006; Van Den Heuvel

M. et al., 2008; van den Heuvel M. P. et al., 2008; Thomas Yeo

et al., 2011; Andrews-Hanna et al., 2014; Shafiei et al., 2019)

which is active when the human brain is at rest without any

external or attention-demanding tasks. Mostly it includes the

posterior cingulate cortex (PCC) and the precuneus, the medial

prefrontal cortex (MPFC), and the inferior parietal cortex.

The Somatomotor network (SMN) is another network which

includes somatosensory and motor regions related to motor

tasks (Biswal et al., 1995; Chenji et al., 2016). The visual network

(VIN) includes the main part of the occipital cortex, which

deals with related visual activity (De Luca et al., 2006; Smith

et al., 2009; Power et al., 2011; Thomas Yeo et al., 2011;

Hendrikx et al., 2019). The dorsal attention network (DAN),

also known as the visuospatial attention network, is used to

provide attention orientation and participate in external tasks;

it is located primarily in the intraparietal sulcus and the area of

connection between the central anterior sulcus and the forehead

sulcus (Vincent et al., 2008; Lei et al., 2014; Vossel et al., 2014;

Bell and Shine, 2015; Hutton et al., 2019; Shafiei et al., 2019).

The Salience Network (SAN) mainly evaluates external stimuli

and internal events and helps direct attention by switching to

related processing systems.

There are several techniques such as seed-based correlation

method, independent component analysis (ICA), and dictionary

learning method that identify DMN from rs-fMRI, which will be

briefly reviewed in the next section. In Section 3, we propose the

use of the graph neural network, a deep leaning technique called

graphSAGE (Hamilton et al., 2017) to specifically extract DMN

from resting fMRI. In Section 4, data analysis experiments and

comparisons are performed based on two real data sets followed

by conclusions and final remarks.

2. Common methods review

For comparison purposes, we briefly review several typical

methods in rs-fMRI data studies, including the seed-based

correlation method, independent component analysis (ICA),

and the dictionary learning method.

2.1. Seed-based correlation

Seed-based correlation (SBC) method was the first method

to be used in identifying resting-state networks by Biswal

et al. (1995). It calculates the Pearson correlation coefficient

between two voxels or region of interests (ROI) from the

corresponding two time series, denoted as x = [x1, x2, x3, ..., xn]

and y =
[

y1, y2, y3, ..., yn
]

. The correlation coefficient is

calculated as usual

rxy =

∑n
i=1(xi − x)(yi − y)

√

∑n
i=1(xi − x)2

∑n
i=1(yi − y)2

, (1)

where x and y are the mean values of x and y, respectively.

Normally, there are approximately one million voxels in

one entire brain scan, and the data amount is based on the

size of voxels and the scanned brain. Though it is possible

to calculate all the correlations between any two voxels, this

will cause numerous pairs of comparisons. More often, this

method uses a seed or ROI selected earlier as a reference and

calculates the correlation with the rest of the brain voxels. A

high correlation value means closer connectivity between the

two seeds or ROIs. This method has been applied in many

research studies and identifies functional connectivity based on

rs-fMRI. In Fox et al. (2006), the authors identified a bilateral

dorsal attention system, a right-lateralized ventral attention

system, and detected a potential mediating function in the

prefrontal cortex. In Fox et al. (2005), the authors identified

two opposed brain networks based on correlations within each

network and anticorrelations between networks. One network

is related to task-related activation and the other is related to

task-related deactivation. In de Oliveira et al. (2019), the authors

used sensorimotor networks as the seed to extract similar RSNs

from rs-fMRI with those from finger tapping task fMRI data

based on eight healthy volunteers. In addition to a previously

selected seed or ROI, this method also needs a threshold to

determine the significant voxels with the seed or ROI. The

main advantages of SBC are its algorithmic simplicity and

straightforward interpretation, which make it play an important

role in the study of functional connectivity (FC). The main

disadvantage of this method is that all relationships are only

between the prior selected seeds or ROIs and the remaining

other voxels of the brain. Therefore, the univariate analysis

method completely ignores possible relationships between other

seeds. In other words, significant information between other

voxels is usually ignored. This restricts the detection of more

possible networks in FC. Therefore, the choices of seeds, sizes,

and positions directly determine the interpretation of the results

(Buckner et al., 2008; Cole et al., 2010).

2.2. Independent component analysis

Independent component analysis (ICA) is a data-driven

technique that is one of the most popular decomposition

methods for analyzing fMRI data. Since this technique was first

used in the field (McKeown et al., 1998), it has been applied in

many studies thus far. ICA assumes that the observed data is a
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linear combination of sources that are statistically independent

(Brown et al., 2001).

The purpose of ICA is to extract independent components

based on an optimization technique, such as maximum

likelihood estimation (MLE) (Stone, 2004), minimum mutual

information between sources (InfoMax) (Bell and Sejnowski,

1995), or maximumnon-Gaussianity between sources (FastICA)

(Hyvärinen and Oja, 2000).

Because ICA is looking for non-Gaussian sources, most

ICA algorithms often use Principal Component Analysis (PCA)

(Tharwat, 2016) to remove Gaussian signals in the observed

data. The difference between ICA and PCA is that ICA searches

statistically independent components with maximum possibility

and PCA searches uncorrelated components with an orthogonal

property and maximum of variance. Since fMRI is four-

dimensional data, it has to be transferred into two-dimensional

data when using ICA or PCA. ICA can be one of two types of

analysis: spatial ICA and temporal ICA, and different types of

analysis determine how to transfer fMRI data. If the spatially

independent components are detected, the columns of the

transferred matrix are voxels and the rows are the time points;

if the temporally independent components are detected, the

columns of the transferred matrix are time points and the rows

are the voxels. ICA can be divided into spatial ICA and temporal

ICA, but spatial ICA is typically used because it can produce

as many components as time points (McKeown et al., 1998;

Calhoun et al., 2001).

Here is the basic algorithm of the spatial ICA (McKeown

et al., 1998; Calhoun et al., 2001). Let X be a matrix with

dimension t× n (X ∈ R
t×n), where tmeans the number of time

points and n means the number of voxels. The goal is to solve

the following equation to findW, S:

X = WS, (2)

whereW is thematrix of mixing coefficient with dimension t×p,

S is the source matrix with dimension p× n, and the rows of the

matrix S represent spatially independent components. The basic

algorithm of temporal ICA is similar to spatial ICA (McKeown

et al., 1998; Calhoun et al., 2001), where X is the matrix with

dimension n × t (X ∈ R
n×t). The goal is to solve the following

equation to find Ŵ, Ŝ:

X = ŴŜ (3)

where Ŵ is still the matrix of the mixing coefficient with

dimension n×p, Ŝ is the source matrix with dimension p×t, and

the rows of the matrix Ŝ represent the temporally independent

time courses. Usually, spatial ICA is used more often than

temporal ICA.

There are many techniques applied in the ICA. All

algorithms fall into one of these three groups: The first is

based on the projection pursuit (Stone, 2004), which basically

extracts one component at one time. The second is based on

infomax (Bell and Sejnowski, 1995) which extracts multiple

components at one time in a parallel way. The third is based

on the estimate of the maximum likelihood (Stone, 2004), which

is a statistical tool to calculate the mixing coefficient matrix to

best fit the observed data. There are many practical methods

used in the literature, for example, in Beckmann et al. (2005),

the authors proposed a probabilistic independent component

analysis (PICA), compared with typical noise-free ICA, PICA

tried to detect the independent components under additive

noise interference. Hyvärinen and Oja (2000), introduced a

widely used method called FastICA with kurtosis as a cost

function. Beckmann et al. (2009), used multiple subjects and

dual regression to do a group comparison. To date, ICA still

plays an important role in resting state analysis.

ICA does not provide an order for independent components

(ICs), unlike PCA which offers an order for principal

components. This property makes it hard to tell which IC is

more important. To solve the mixing coefficient W and sources

S, ICA needs prior assumptions. It also becomes tricky to

determine the number of ICs, which can cause over-fitting or

under-fitting problems.

2.3. Dictionary learning

Dictionary learning (DL) is a linear decomposition

technique to extract the fundamental components. This

technique emphasizes the sparsity between components, unlike

ICA which focuses on the independence between components

or PCA which focuses on the orthogonal components. The idea

of DL is to decompose the observed data into two matrices; a

matrix is called the dictionary D which is a collection of atoms,

and the other is the corresponding spare coefficients A. Here is

the basic algorithm of dictionary learning (Olshausen and Field,

1996, 1997; Kreutz-Delgado et al., 2003; Mairal et al., 2009;

Joneidi, 2019), let Y = [y1, y2, ..., yn] be the observed data with

yi ∈ R
m and Y ∈ R

m×n, and the dictionary matrix D ∈ R
m×k

(D = [d1, d2, ..., dk]) with the corresponding sparse coefficient

matrix A ∈ R
k×n (A = [a1, a2, ..., an]). The number of columns

k in the dictionary D is the number of atoms. The purpose is to

findD and A from the following optimization problem:

Minimize
D,A

1

2
‖Y−DA‖22

Subject to
∥

∥D.,i

∥

∥

2 ≤ 1, ∀i = 1, . . . , k,
∥

∥A.,j

∥

∥

0
≤ C, ∀j = 1, . . . , n,

(4)

where C is the parameter to control the sparsity for each column

of A.

There are several improved ways to solve the optimization

problem. For example, Aharon and Elad (2008), used the

stochastic gradient descent technique to solve this problem,

and Lee et al. (2007), used the property of duality to solve
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the optimization problem. A widely used method is the K-

SVD method (Aharon et al., 2006), which uses singular value

decomposition to generate clustering K. It is an iterative process

to update the sparse matrix and dictionary matrix alternatively.

3. Graph neural network

Brain connectivity patterns from fMRI data are usually

classified as statistical dependencies, named functional

connectivity or causal interactions, called effective connectivity

among various neural units. Investigating the human brain

based on connectivity patterns reveals important information

about the brain’s structural, functional, and causal organization.

Graph theory-based methods have recently played a significant

role in understanding brain connectivity architecture. A graph

neural network (GNN) is a type of deep neural network that is

applied to graph-based data. To date, there are many variants

of GNN, such as graph convolution networks (GCN), graph

attention networks (GAN), graph autoencoders that have been

used successfully in many fields including computer vision,

recommendation system, and more. Yao et al. (2019), used

GCN for text classification in natural language processing.

The study by Kosaraju et al. (2019), proposed a new method

based on GAN to predict the future trajectories of multiple

interacting pedestrians. Pan et al. (2018), proposed a novel graph

autoencoder framework to reconstruct the graph structure.

Yao et al. (2021), discussed a mutual multi-scale triplet graph

convolutional network (MMTGCN) for classification of brain

disorders based on fMRI or diffusion MRI data. Yao et al.

(2020), proposed a temporal-adaptive graph convolution

network (TAGCN) to mine spatial and temporal information

using rs-fMRI time series. TCGCN can take advantage of both

spatial and temporal information using resting-state functional

connectivity (FC) patterns and time-series, and can also the

explicitly characterize subject-level specificity of FC patterns.

In graph theory, an undirected and unweighted graph is

represented by G(V ,E), where G is the graph, V is the set of

vertices (nodes) and E is the set of edges connected between two

vertices (Butts, 2008; van den Heuvel M. P. et al., 2008). In fMRI

data analysis, a graph G represents the network of a brain, V

represents the set or a subset of voxels or ROIs, and E is the set

of functional connections or correlations between elements inV ,

especially between the ROIs.

An adjacent matrix A with dimension N × N is used to

describe this kind of graph. The entry of A is one or zero

depending on whether there is an existing edge between two

nodes. A matrix X ∈ R
m×|V| often indicates the attributes or

features of a graph, where m is the number of features of each

node (ROI) and |V| indicates the number of nodes (ROIs).

GraphSAGE (sample and aggregate) (Hamilton et al., 2017)

is an inductive learning technique to extract node embedding.

GraphSAGE can be used in unsupervised and supervised

learning. Here, specifically for node extraction in fMRI analysis,

an unsupervised learning procedure based on GraphSAGE can

be implemented as follows:

1) Given a graph G(V ,E) and feature matrix X ∈ R
m×|V|; for

∀v ∈ V , each xv has a vector of feature withm dimension.

2) Set up a neural network withK layers and let h0 = xv indicate

the embedding of the original node for ∀v ∈ V , and this is

the feature of the node or the attribute with m dimensions

originally.

3) For the k = 1 layer, and for each v ∈ V :

(a) Let N (v) indicate the local neighborhood of nodes of v,

all information from the neighborhood is aggregated by a

function indicated by f , then the generalized aggregation

is indicated as follows:

h1
N (v) = f1(h

0
u), u ∈ N (v) (5)

aggregate function f can be one of the three: i) the

mean value function f1 =
∑

u∈N (v)

h0u
|N (v)|

which takes the

average among all the h0u; ii) the pool value function f1 =

max(Wpoolh
0
u),∀u ∈ N (v) which applies an element-wise

max-pooling operation on neighbor set nodes; iii) a long

short-termmemory (LSTM) function f1 = LSTM(h0u), u ∈

π(v) which applies LSTM to the random permutation of

the neighbor set of nodes.

(b) After summarizing information from local neighbor sets

by the aggregate function, the embedding for each node is

in the following form.

h1v = σ (W1 · concatenate(h0v , h1
N (v))) (6)

where σ is non-linearity function and W1 is the

weight matrix.

4) After all nodes through parts a) and b) from step 3), the node

embedding after the first layer is represented below:

h1v =
h1v

∥

∥h1v
∥

∥

2

, v ∈ N (v) (7)

5) For 2 ≤ k ≤ K layers step 3) and 4) are repeated. The

embedding for each node is in the form below:

hk
N (v) = fk(h

k−1
u ), ∀u ∈ N (v)

hkv = σ (Wk · concatenate(hk−1
v , hk

N (v)))

hkv =
hkv

∥

∥

∥
hkv

∥

∥

∥

2

, v ∈ N (v)

(8)

and the common form of aggregate functions is:

fk =
∑

u∈N (v)

hk−1
u

|N (v)|
(9)
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6) The embedding of node after the layer K is as follows:

zv = hKv , v ∈ V . (10)

7) The process is iterated to minimize the loss function

as follows:

J (zu) = − log(σ (z⊤u zv))− Q · Evn∼Pn(v) log(σ (−z⊤u zvn ))

(11)

where σ is non-linearity function, zv is the embedding of

neighbor node of u, Q is the negative samples (non-neighbor

node) of u and vn is from negative sample distribution Pn(v).

As one of the characteristics of GNN, it can provide a

learning procedure to identify relationships efficiently between

nodes with relatively relaxing restrictions and assumptions. The

following applications of the graphSAGE for extracting the

default mode network show that the GNN defines ROIs clearer

and provides more robust and reliable results in comparing to

the traditional methods.

4. Data analysis

In this section, two real data sets are used to extract

the default mode network, based on the methods

mentioned above. A comparison will be made among the

methods correspondingly.

Both data sets are obtained from an open shared

neuroimage data resource (http://fcon_1000.projects.nitrc.

org/fcpClassic/FcpTable.html), namely, the 1000 Functional

Connectomes Project.

4.1. Case one

The data has 84 subjects including 43 males and 41 females.

Their ages range from 7 to 49 years. The repetition time (TR) is

2 s, the number of slices is 39, and the time points are 192.

Data preprocessing is an important step before doing any

statistical analysis. There are several software packages that deal

with fMRI data preprocessing. For this data set, the DPABI (Yan

et al., 2016), a toolbox of Matlab, is used. The first ten time

points are removed. The pipeline for preprocessing is as follows;

first, time correction is done; this is followed by realignment, co-

registration between T1 weighted and functional images; head

motion model with Friston 24 parameters motion covariates is

used to reduce head motion effect (Friston et al., 1996); nuisance

regression with linear trend, average cerebrospinal fluid (CSF)

and white matters (WM) as nuisance regressors are to reduce

respiratory and cardiac effects; finally normalization to MNI

template is performed. The temporal filtering is set in the range

of 0.01∼ 0.1 Hz and the smoothing at FWHM is equal to 6 mm.

First, the SBC is performed in the CONN toolbox

(Whitfield-Gabrieli and Nieto-Castanon, 2012) in Matlab. The

FIGURE 1

xy-plane view of SBC in Case-1.

voxel threshold p-uncorrected value is set less than 0.0001 and

the familywise error rate (FWER) is set less than 0.01 which

attempts to control the probability of false positives. The |T|

value is larger than 4.09 with degree of freedom 83 for the two-

sided test. See Figure 1 for details based on the seed of posterior

cingulate cortex (PCC) from the default mode network.

Second, the group fastICA is also performed in CONN

(Whitfield-Gabrieli and Nieto-Castanon, 2012) and the

independent components are set to 10. Other parameters are

the same as SBC. See Figure 2 for details.

Third, dictionary learning is performed in Python with

the Nilearn (Abraham et al., 2014) package. As mentioned in

Section 2.3, dictionary learning focuses on sparsity between

components. The component is set to 10 and the sparsity

parameter is set to 15. See Figure 3 for details.

Lastly, the graph neural network method GraphSAGE is

performed through the package of StellarGraph (Data61, 2018)

in Python. See Figure 4 for details. Since the 800 ROIs of the

brain are used, there are 800 nodes in the graph and each two

makes an edge so that there are a total of 319,600 edges in the

graph. For each subject, the correlation between any two ROIs

is calculated based on 182 time series data. Each subject has 182

time points, which means that each ROI of each subject has 182

values. Each subject has a correlation matrix with dimension of

800× 800. There are 84 correlation matrices for 84 subjects. To

reduce complexity and noise, all the average correlation values

less than 0.1 are replaced by zero, and thus the associated edges
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FIGURE 2

xy-plane view of ICA in Case-1.

FIGURE 3

xy-plane view for DL in Case-1.

are dropped. The correlation for each node is the node feature,

which is used in the subsequent analysis. A two-layer graph

network is set for analysis. The number of walks for each node v

FIGURE 4

xy-plane view for GNN in Case-1.

is set to 10; the length of walk is 5; batch size is set to 10; 1-hop

neighbors node for each node v is set to 50 and 2-hop neighbors

node is set to 10 for each node v; the first layer is set to 200 hidden

neurons; the second layer is set to 100 neurons; the learning

rate is set to 0.01; epochs is set to 100 and dropout rate is set

to 0.15. After analysis each node embedding is represented by a

vector with 100 dimensions. To visualize the node embedding, a

principal component analysis (PCA) with 95% variation is used,

and the first two components are used for plot. Figure 5 shows

seven groups. Then the K-means (Lloyd, 1982) cluster algorithm

is performed with components extracted from PCA to group

ROIs into seven parts. The comparison of DMN network for all

algorithms is shown in Figure 6.

4.2. Case two

The second dataset has 46 subjects, including 15 men and

31 women. Their ages range from 44 to 65 years. The repetition

time (TR) is 2 s; the number of slices is 64 and the time points

are 175.

For this dataset, the fMRIPrep package (Esteban et al., 2017)

is used for data preprocessing. The first ten time points are

removed. The preprocessing pipeline and the procedure of data

processing are analogous to the case-1.

The only difference is that, we only have 165 time points

to compute the correlation between every pair of ROIs and 46

correlation matrices, corresponding to the 46 subjects. These
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are fed in to train the neural network. As all other parameters

are set the same, the dropout rate is changed to 0.05 for this

experiment. The results for SBC, fastICA, Dictionary Learning,

and GraphSAGE, are shown in Figures 7–10, respectively. The

7-cluster node embedding based on GraphSAGE is shown

in Figure 11. The comparison of DMN network from four

algorithms is illustrated in Figure 12.

5. Discussion and conclusion

Noninvasive neuroimaging techniques such as fMRI have

broadened and enhanced our understanding of the development

and functions of the brain. The resting-state fMRI has gained

popularity in studies of the brain’s functional architecture

FIGURE 5

Plot of node embedding in Case-1 with two components.

and the assessment of neural networks of the brain since it

measures integral resting-state functional connectivity across

the whole brain without relying on any explicit tasks. It

gives an ideal mean for examining possible changes of the

whole brain network organization during the developments.

Graph neural networks can be an effective framework for

representation learning of functional connections. Farahani et al.

(2019), provided a systematic review on applications of graph

theory for identifying connectivity patterns in human brain

networks. Machine learning on graph-structured network data

has proliferated in a number of important applications. Graph-

based network analysis reveals meaningful information of

topological architecture of the brain networks and may provide

FIGURE 7

xy-plan view for SBC in Case-2.

FIGURE 6

Case-1 DMN result comparison. (A) SBC, (B) ICA, (C) DL, and (D) graphSAGE.
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FIGURE 8

xy-plane view for ICA in Case-2.

FIGURE 9

xy-plan view for DL in Case-2.

novel insights into biological mechanisms underlying human

cognition, health, and disease. Many graph neural networks

achieve state-of-the-art results on nodes and graph classification

FIGURE 10

xy-plane view for GNN in Case-2.

FIGURE 11

Plot of node embedding in Case-2 with two components.

tasks, but there is limited mathematical understanding of the

GNN in general. Xu et al. (2019), presented a theoretical

framework for analyzing the expressive power of GNN’s to

capture different graph structures.

As neuroimaging methods became more accurate, data

continued to accumulate that suggested activity during resting

states followed a certain pattern. The default mode network
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FIGURE 12

Case-2 DMN result comparison. (A) SBC, (B) ICA, (C), and DL (D) graphSAGE.

refers to this resting activity in the areas of the brain that are

most active during these rest states (Raichle et al., 2001). The

DMN research development showed that brain development

is characterized by a trend of reduced segregation (i.e., local

clustering) between spatially adjacent regions and increased

integration of distant regions (Fair et al., 2007; Ma and Ma,

2018). Therefore, in regard to the study of DMN and FC for

the brain, the knowledge on normal development of brain

connectivity architecture could provide important insight into

understanding the aspects of emergence, course, and severity of

development-related brain disorders as well.

GraphSAGE is a framework for inductive representation

learning on large graphs. GraphSAGE is used to generate low-

dimensional vector representations for nodes, and is especially

useful for graphs that have rich node attribute information.

Oh et al. (2019), proposed a new data-driven sampling

algorithm trained with reinforcement learning to replace the

subsampling algorithm in graphSAGE. Transfer learning has

proven successful for traditional deep learning problems.

Kooverjee et al. (2022), recently demonstrated that transfer

learning is effective with GNNs and compared the performances

of graph convolution networks (GCN) and graphSAGE.

In this paper, we propose the use of a graph neural

network to extract DMN-based functional connectivity on rs-

fMRI data based on two data sets from the open shared

neuroimage data resource (http://fcon_1000.projects.nitrc.org/

fcpClassic/FcpTable.html).

As we can see in this study, the seed-based method can find

the default mode network in two underlying cases and show

a strong correlation with the prior selected seed of PCC. Its

results are usually affected by the chosen seed and thus other

possible networks are often ignored. The ICA and the dictionary

learningmethods can also find the default mode network in both

cases, but these two methods provide some different networks

relying on prior assumptions, some extracted networks are often

difficult to interpret, and the results usually depend on the

number of components.

The proposed graph neural network technique named

graphSAGE can extract functional connectivity of DMN well

based on the rs-fMRI data experiments. Furthermore, compared

to the seed-based method, the ICA, as well as the DL, the

graphSAGE method gives a more robust result. In addition,

the three compared methods need to make prior threshold p-

values for single subject analysis and group level analysis as

well as to assume a certain number of components for ICA

and dictionary learning before hand. Therefore, the analysis

results often depend on these prior assumptions and are more

or less subjective. In contrast, graphSAGE can be applied

under relaxing restrictions and assumptions, as well as in

consideration of the single subject analysis and group subjects

analysis simultaneously. It can give more reliable results without

subjective facts.

It is sometimes difficult to integrate all of the reported

findings as pathological brain networks due to the fact that

results often do not coincide with each other. Therefore,

more consistent comparisons should be made across the

studies. In addition, for some possible projects, statistical

learning methods for longitudinal high-dimensional data (Chen

et al., 2014) and longitudinal studies could be employed

for monitoring brain network topological changes using

different therapeutic strategies across a longer time duration

(Mears and Pollard, 2016).

Many existing studies usually characterize static properties

of the FC patterns, ignoring the time-varying dynamic

information. A model of temporal-adaptive graph convolution

network (TAGCN) to mine spatial and temporal information

using rs-fMRI time series was studied in Yao et al. (2020).

Textual descriptive information in the data can help improve

classification and prediction in modeling. But one needs

to use tools in natural language processing (NLP). For

instance, in a recent work, Xu et al. (2022), used a newly

developed NLP tool, called BERT to incorporate textual data

in predictive modeling. Yao et al. (2019), used GCN for

text classification in NLP. Incorporating textual data with
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GNN/GCN in fMRI data analysis could be a challenging but

promising study.

Data availability statement

Publicly available datasets were analyzed in this study. This

data can be found here: 1000 Functional Connectomes Project

(FCP), http://fcon_1000.projects.nitrc.org/fcpClassic/FcpTable.

html.

Ethics statement

Ethical review and approval was not required for the

study on human participants in accordance with the local

legislation and institutional requirements. Written informed

consent from the patients/participants or patients/participants’

legal guardian/next of kin was not required to participate in

this study in accordance with the national legislation and the

institutional requirements.

Author contributions

DW carried out mainly the computing tasks and

implemented the algorithm. All authors contributed equally to

the design of the research, to the analysis of the results, and to

the writing of the manuscript.

Acknowledgments

The authors gratefully thank the editor and referees for their

constructive comments and suggestions, which helped improve

the quality of the paper. DH would like to thank his NIA award

support fromMTSU.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller,
A., Kossaifi, J., et al. (2014). Machine learning for neuroimaging
with scikit-learn. Front. Neuroinform. 8, 14. doi: 10.3389/fninf.2014.
00014

Aharon, M., and Elad, M. (2008). Sparse and redundant
modeling of image content using an image-signature-
dictionary. SIAM J. Imaging Sci. 1, 228–247. doi: 10.1137/070
70156X

Aharon, M., Elad, M., and Bruckstein, A. (2006). K-svd: an algorithm for
designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal
Process. 54, 4311–4322. doi: 10.1109/TSP.2006.881199

Amaro Jr, E., and Barker, G. J. (2006). Study design in fMRI: basic principles.
Brain Cogn. 60, 220–232. doi: 10.1016/j.bandc.2005.11.009

Andrews-Hanna, J. R., Smallwood, J., and Spreng, R. N. (2014). The default
network and self-generated thought: component processes, dynamic control, and
clinical relevance. Ann. N. Y. Acad. Sci. 1316, 29. doi: 10.1111/nyas.12360

Beckmann, C. F., DeLuca, M., Devlin, J. T., and Smith, S. M.
(2005). Investigations into resting-state connectivity using independent
component analysis. Philos. Trans. R. Soc. B Biol. Sci. 360, 1001–1013.
doi: 10.1098/rstb.2005.1634

Beckmann, C. F., Mackay, C. E., Filippini, N., and Smith, S. M. (2009). Group
comparison of resting-state fmri data using multi-subject ica and dual regression.
Neuroimage 47(Suppl. 1), S148. doi: 10.1016/S1053-8119(09)71511-3

Bell, A. J., and Sejnowski, T. J. (1995). An information-maximization approach
to blind separation and blind deconvolution. Neural Comput. 7, 1129–1159.
doi: 10.1162/neco.1995.7.6.1129

Bell, P. T., and Shine, J. M. (2015). Estimating large-scale network
convergence in the human functional connectome. Brain Connect. 5, 565–574.
doi: 10.1089/brain.2015.0348

Biswal, B., Zerrin Yetkin, F., Haughton, V. M., and Hyde, J. S. (1995). Functional
connectivity in the motor cortex of resting human brain using echo-planar mri.
Magn. Reson. Med. 34, 537–541. doi: 10.1002/mrm.1910340409

Brown, G. D., Yamada, S., and Sejnowski, T. J. (2001). Independent
component analysis at the neural cocktail party. Trends Neurosci. 24, 54–63.
doi: 10.1016/S0166-2236(00)01683-0

Buckner, R. L., Andrews-Hanna, J. R., and Schacter, D. L. (2008). The brain’s
default network: anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci.
1124, 1–38. doi: 10.1196/annals.1440.011

Butts, C. T. (2008). Social network analysis: a methodological introduction.
Asian J. Soc. Psychol. 11, 13–41. doi: 10.1111/j.1467-839X.2007.00241.x

Calhoun, V. D., Adali, T., Pearlson, G., and Pekar, J. J. (2001). Spatial and
temporal independent component analysis of functional mri data containing a pair
of task-related waveforms. Hum Brain Mapp. 13, 43–53. doi: 10.1002/hbm.1024

Canario, E., Chen, D., and Biswal, B. (2021). A review of resting-state
fmri and its use to examine psychiatric disorders. Psychoradiology 1, 42–53.
doi: 10.1093/psyrad/kkab003

Chen, S., Grant, E., Wu, T. T., and Bowman, F. D. (2014). Some recent statistical
learning methods for longitudinal high-dimensional data. Wiley Interdisc. Rev.
Comput. Stat. 6, 10–18. doi: 10.1002/wics.1282

Chenji, S., Jha, S., Lee, D., Brown, M., Seres, P., Mah, D., et al. (2016).
Investigating default mode and sensorimotor network connectivity in amyotrophic
lateral sclerosis. PLoS ONE 11, e0157443. doi: 10.1371/journal.pone.0157443

Cole, D. M., Smith, S. M., and Beckmann, C. F. (2010). Advances and pitfalls in
the analysis and interpretation of resting-state fmri data. Front. Syst. Neurosci. 4, 8.
doi: 10.3389/fnsys.2010.00008

Daliri, M. R., and Behroozi, M. (2014). Advantages and disadvantages of resting
state functional connectivity magnetic resonance imaging for clinical applications.
OMICS J. Radiol. 3, e123. doi: 10.4172/2167-7964.1000e123

Frontiers inNeuroimaging 10 frontiersin.org

https://doi.org/10.3389/fnimg.2022.963125
http://fcon_1000.projects.nitrc.org/fcpClassic/FcpTable.html
http://fcon_1000.projects.nitrc.org/fcpClassic/FcpTable.html
https://doi.org/10.3389/fninf.2014.00014
https://doi.org/10.1137/07070156X
https://doi.org/10.1109/TSP.2006.881199
https://doi.org/10.1016/j.bandc.2005.11.009
https://doi.org/10.1111/nyas.12360
https://doi.org/10.1098/rstb.2005.1634
https://doi.org/10.1016/S1053-8119(09)71511-3
https://doi.org/10.1162/neco.1995.7.6.1129
https://doi.org/10.1089/brain.2015.0348
https://doi.org/10.1002/mrm.1910340409
https://doi.org/10.1016/S0166-2236(00)01683-0
https://doi.org/10.1196/annals.1440.011
https://doi.org/10.1111/j.1467-839X.2007.00241.x
https://doi.org/10.1002/hbm.1024
https://doi.org/10.1093/psyrad/kkab003
https://doi.org/10.1002/wics.1282
https://doi.org/10.1371/journal.pone.0157443
https://doi.org/10.3389/fnsys.2010.00008
https://doi.org/10.4172/2167-7964.1000e123
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Wang et al. 10.3389/fnimg.2022.963125

Damoiseaux, J. S., Rombouts, S., Barkhof, F., Scheltens, P., Stam, C. J., Smith,
S. M., et al. (2006). Consistent resting-state networks across healthy subjects. Proc.
Natl. Acad. Sci. U.S.A. 103, 13848–13853. doi: 10.1073/pnas.0601417103

Data61, C. (2018). Stellargraph Machine Learning Library. Available online at:
https://github.com/stellargraph/stellargraph.

De Luca, M., Beckmann, C. F., De Stefano, N., Matthews, P. M., and
Smith, S. M. (2006). fmri resting state networks define distinct modes of
long-distance interactions in the human brain. Neuroimage 29, 1359–1367.
doi: 10.1016/j.neuroimage.2005.08.035

de Oliveira, B. G., Alves Filho, J. O., Esper, N. B., de Azevedo, D. F. G., and
Franco, A. R. (2019). “Automated mapping of sensorimotor network for resting
state fmri data with seed-based correlation analysis,” in XXVI Brazilian Congress
on Biomedical Engineering (Armação de Buzios: Springer), 537–544.

Esteban, O., Blair, R., Markiewicz, C. J., Berleant, S. L., Moodie, C., Ma, F., et al.
(2017). poldracklab/fmriprep: 1.0.0-rc5. Zenedo. doi: 10.5281/zenodo.996169

Fair, D., Dosenbach, N. U. F., Church, J., Cohen, A. L., Brahmbhatt, S.,
Miezin, F. M., et al. (2007). Development of distinct control networks through
segregation and integration. Proc. Natl. Acad. Sci. U.S.A. 104, 13507–13512.
doi: 10.1073/pnas.0705843104

Farahani, F., Karwowski, W., and Lighthall, N. (2019). Application of graph
theory for identifying connectivity patterns in human brain networks: a systematic
review. Front Neurosci. 13, 585. doi: 10.3389/fnins.2019.00585

Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L., and Raichle,
M. E. (2006). Spontaneous neuronal activity distinguishes human dorsal and
ventral attention systems. Proc. Natl. Acad. Sci. U.S.A. 103, 10046–10051.
doi: 10.1073/pnas.0604187103

Fox, M. D., and Raichle, M. E. (2007). Spontaneous fluctuations in brain
activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci.
8, 700–711. doi: 10.1038/nrn2201

Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., and
Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic,
anticorrelated functional networks. Proc. Natl. Acad. Sci. U.S.A. 102, 9673–9678.
doi: 10.1073/pnas.0504136102

Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S., and Turner, R. (1996).
Movement-related effects in fMRI time-series. Magn. Reson. Med. 35, 346–355.
doi: 10.1002/mrm.1910350312

Greicius, M. D., Krasnow, B., Reiss, A. L., and Menon, V. (2003). Functional
connectivity in the resting brain: a network analysis of the default mode hypothesis.
Proc. Natl. Acad. Sci. U.S.A. 100, 253–258. doi: 10.1073/pnas.0135058100

Hamilton, W., Ying, Z., and Leskovec, J. (2017). “Inductive representation
learning on large graphs,” in Advances in Neural Information Processing
Systems (Long Beach, CA), 1024–1034.

Hendrikx, D., Smits, A., Lavanga, M., De Wel, O., Thewissen, L., Caicedo, A.,
et al. (2019). Measurement of neurovascular coupling in neonates. Front. Physiol.
10, 65. doi: 10.3389/fphys.2019.00065

Hutton, J. S., Dudley, J., Horowitz-Kraus, T., DeWitt, T., and Holland, S. K.
(2019). Functional connectivity of attention, visual, and language networks during
audio, illustrated, and animated stories in preschool-age children. Brain Connect.
9, 580–592. doi: 10.1089/brain.2019.0679

Hyvärinen, A., and Oja, E. (2000). Independent component
analysis: algorithms and applications. Neural Networks 13, 411–430.
doi: 10.1016/S0893-6080(00)00026-5

Joneidi, M. (2019). Functional brain networks discovery using dictionary
learning with correlated sparsity. arXiv preprint arXiv:1907.03929.
doi: 10.48550/arXiv.1907.03929

Kooverjee, N., James, S., and van Zyl, T. (2022). Investigating
transfer learning in graph neural networks. arXiv:2022.00740v1 [cs.LG].
doi: 10.20944/preprints202201.0457.v1

Kosaraju, V., Sadeghian, A., Martín-Martín, R., Reid, I., Rezatofighi, H., and
Savarese, S. (2019). “Social-bigat: multimodal trajectory forecasting using bicycle-
gan and graph attention networks,” in Neural Information Processing Systems 32
(Vancouver, BC).

Kreutz-Delgado, K., Murray, J. F., Rao, B. D., Engan, K., Lee, T.-W., and
Sejnowski, T. J. (2003). Dictionary learning algorithms for sparse representation.
Neural Comput. 15, 349–396. doi: 10.1162/089976603762552951

Lee, H., Battle, A., Raina, R., and Ng, A. Y. (2007). “Efficient sparse coding
algorithms,” in Advances in Neural Information Processing Systems (Vancouver,
BC), 801–808.

Lee, M. H., Smyser, C. D., and Shimony, J. S. (2013). Resting-state fMRI: a
review of methods and clinical applications. Am. J. Neuroradiol. 34, 1866–1872.
doi: 10.3174/ajnr.A3263

Lei, X., Wang, Y., Yuan, H., and Mantini, D. (2014). Neuronal oscillations
and functional interactions between resting state networks. Hum. Brain Mapp. 35,
3517–3528. doi: 10.1002/hbm.22418

Lloyd, S. (1982). Least squares quantization in pcm. IEEE Trans. Inf. Theory 28,
129–137. doi: 10.1109/TIT.1982.1056489

Ma, Z., and Ma, Y.,and Zhang, N. (2018). Development of brain-
wide connectivity architecture in awake rats. Neuroimage 176, 380e389.
doi: 10.1016/j.neuroimage.2018.05.009

Mairal, J., Bach, F., Ponce, J., and Sapiro, G. (2009). “Online dictionary learning
for sparse coding,” in Proceedings of the 26th Annual International Conference on
Machine Learning (Montreal, QC), 689–696.

McKeown, M. J., Makeig, S., Brown, G. G., Jung, T.-P., Kindermann,
S. S., Bell, A. J., et al. (1998). Analysis of fmri data by blind separation
into independent spatial components. Hum. Brain Mapp. 6, 160–188.
doi: 10.1002/(SICI)1097-0193(1998)6:3andlt;160::AID-HBM5andgt;3.0.CO;2-1

Mears, D., and Pollard, H. B. (2016). Network science and the human brain:
using graph theory to understand the brain and one of its hubs, the amygdala, in
health and disease. J. Neurosci. Res. 94, 590–605. doi: 10.1002/jnr.23705

Morris, T., Kucyi, A., Anteraper, S., Geddes, M. R., Nieto-Castañon, A.,
Burzynska A., et al. (2022). Resting state functional connectivity provides
mechanistic predictions of future changes in sedentary behavior. Scientific Rep. 12,
940. doi: 10.1038/s41598-021-04738-y

Oh, J., Cho, K., and Bruna, J. (2019). Advancing graphsage with a data-driven
node sampling. arXiv:1904.12935v1 [cs.LG]. doi: 10.48550/arXiv.1904.12935

Olshausen, B. A., and Field, D. J. (1996). Emergence of simple-cell receptive
field properties by learning a sparse code for natural images. Nature 381, 607–609.
doi: 10.1038/381607a0

Olshausen, B. A., and Field, D. J. (1997). Sparse coding with an
overcomplete basis set: a strategy employed by v1? Vision Res. 37, 3311–3325.
doi: 10.1016/S0042-6989(97)00169-7

Pan, S., Hu, R., Long, G., Jiang, J., Yao, L., and Zhang, C. (2018).
Adversarially regularized graph autoencoder for graph embedding. arXiv preprint
arXiv:1802.04407. doi: 10.24963/ijcai.2018/362

Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J.
A., et al. (2011). Functional network organization of the human brain. Neuron 72,
665–678. doi: 10.1016/j.neuron.2011.09.006

Raichle, M., MacLeod, A., Snyder, A., Powers, W., Gusnard, D., and Shulman, G.
(2001). A default mode of brain function. Proc. Natl. Acad. Sci. U.S.A. 98, 676–682.
doi: 10.1073/pnas.98.2.676

Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G.
H., Kenna, H., et al. (2007). Dissociable intrinsic connectivity networks
for salience processing and executive control. J. Neurosci. 27, 2349–2356.
doi: 10.1523/JNEUROSCI.5587-06.2007

Shafiei, G., Zeighami, Y., Clark, C. A., Coull, J. T., Nagano-Saito, A., Leyton,
M., et al. (2019). Dopamine signaling modulates the stability and integration of
intrinsic brain networks. Cereb. Cortex 29, 397–409. doi: 10.1093/cercor/bhy264

Shimony, J. S., Zhang, D., Johnston, J. M., Fox, M. D., Roy, A., and
Leuthardt, E. C. (2009). Resting-state spontaneous fluctuations in brain activity:
a new paradigm for presurgical planning using fmri. Acad. Radiol. 16, 578–583.
doi: 10.1016/j.acra.2009.02.001

Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P.M.,Mackay, C. E., et al.
(2009). Correspondence of the brain’s functional architecture during activation and
rest. Proc. Natl. Acad. Sci. U.S.A. 106, 13040–13045. doi: 10.1073/pnas.0905267106

Stone, J. V. (2004). Independent Component Analysis: A Tutorial Introduction.
MIT Press. doi: 10.7551/mitpress/3717.001.0001

Tharwat, A. (2016). Principal component analysis: an overview. Pattern Recog.
3, 197–240. doi: 10.1504/IJAPR.2016.10000630

Thomas Yeo, B., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D.,
Hollinshead, M., et al. (2011). The organization of the human cerebral cortex
estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165.
doi: 10.1152/jn.00338.2011

Van Den Heuvel, M., Mandl, R., and Pol, H. H. (2008). Normalized
cut group clustering of resting-state fmri data. PLoS ONE 3, e2001.
doi: 10.1371/journal.pone.0002001

van den Heuvel, M. P., Stam, C. J., Boersma, M., and Hulshoff Pol,
H. E. (2008). Small-world and scale-free organization of voxel-based resting-
state functional connectivity in the human brain. Neuroimage 43, 528–539.
doi: 10.1016/j.neuroimage.2008.08.010

Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E., and Buckner, R. L.
(2008). Evidence for a frontoparietal control system revealed by intrinsic functional
connectivity. J. Neurophysiol. 100, 3328–3342. doi: 10.1152/jn.90355.2008

Frontiers inNeuroimaging 11 frontiersin.org

https://doi.org/10.3389/fnimg.2022.963125
https://doi.org/10.1073/pnas.0601417103
https://github.com/stellargraph/stellargraph
https://doi.org/10.1016/j.neuroimage.2005.08.035
https://doi.org/10.5281/zenodo.996169
https://doi.org/10.1073/pnas.0705843104
https://doi.org/10.3389/fnins.2019.00585
https://doi.org/10.1073/pnas.0604187103
https://doi.org/10.1038/nrn2201
https://doi.org/10.1073/pnas.0504136102
https://doi.org/10.1002/mrm.1910350312
https://doi.org/10.1073/pnas.0135058100
https://doi.org/10.3389/fphys.2019.00065
https://doi.org/10.1089/brain.2019.0679
https://doi.org/10.1016/S0893-6080(00)00026-5
https://doi.org/10.48550/arXiv.1907.03929
https://doi.org/10.20944/preprints202201.0457.v1
https://doi.org/10.1162/089976603762552951
https://doi.org/10.3174/ajnr.A3263
https://doi.org/10.1002/hbm.22418
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1016/j.neuroimage.2018.05.009
https://doi.org/10.1002/(SICI)1097-0193(1998)6:3andlt;160::AID-HBM5andgt;3.0.CO;2-1
https://doi.org/10.1002/jnr.23705
https://doi.org/10.1038/s41598-021-04738-y
https://doi.org/10.48550/arXiv.1904.12935
https://doi.org/10.1038/381607a0
https://doi.org/10.1016/S0042-6989(97)00169-7
https://doi.org/10.24963/ijcai.2018/362
https://doi.org/10.1016/j.neuron.2011.09.006
https://doi.org/10.1073/pnas.98.2.676
https://doi.org/10.1523/JNEUROSCI.5587-06.2007
https://doi.org/10.1093/cercor/bhy264
https://doi.org/10.1016/j.acra.2009.02.001
https://doi.org/10.1073/pnas.0905267106
https://doi.org/10.7551/mitpress/3717.001.0001
https://doi.org/10.1504/IJAPR.2016.10000630
https://doi.org/10.1152/jn.00338.2011
https://doi.org/10.1371/journal.pone.0002001
https://doi.org/10.1016/j.neuroimage.2008.08.010
https://doi.org/10.1152/jn.90355.2008
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Wang et al. 10.3389/fnimg.2022.963125

Vossel, S., Geng, J. J., and Fink, G. R. (2014). Dorsal and ventral attention
systems: distinct neural circuits but collaborative roles. Neuroscientist 20, 150–159.
doi: 10.1177/1073858413494269

Whitfield-Gabrieli, S., and Nieto-Castanon, A. (2012). Conn: a functional
connectivity toolbox for correlated and anticorrelated brain networks. Brain
Connect. 2, 125–141. doi: 10.1089/brain.2012.0073

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2019). How powerful are graph
neural networks? arXiv:1810.00826v3 [cs.LG]. doi: 10.48550/arXiv.1810.00826

Xu, S., Zhang, C., and Hong, D. (2022). Bert-based nlp techniques for
classification and severity modeling in basic warranty data study. Insurance Math.
Econ. 107, 57–67. doi: 10.1016/j.insmatheco.2022.07.013

Yan, C.-G., Wang, X.-D., Zuo, X.-N., and Zang, Y.-F. (2016). Dpabi:
data processing analysis for (resting-state) brain imaging. Neuroinformatics 14,
339–351. doi: 10.1007/s12021-016-9299-4

Yao, D., Sui, J., Wang, M., Yang, E., Jiaerken, Y., Luo, N., et al. (2021). A
mutual multi-scale triplet graph convolutional network for classification of brain
disorders using functional or structural connectivity. IEEE Trans. Med. Imaging 40,
1279–1289. doi: 10.1109/TMI.2021.3051604

Yao, D., Sui, J., Yang, E., Yap, P.-T., Shen, D., and Liu, M. (2020). “Temporal-
adaptive graph convolutional network for automated identification of major
depressive disorder using resting-state fMRI,” in International Workshop on
Machine Learning in Medical Imaging (Limu: Springer), 1–10.

Yao, L., Mao, C., and Luo, Y. (2019). Graph convolutional networks
for text classification. Proc. AAAI Conf. Artif. Intell. 33, 7370–7377.
doi: 10.1609/aaai.v33i01.33017370

Zhang, S., Li, X., Lv, J., Jiang, X., Guo, L., and Liu, T. (2016). Characterizing
and differentiating task-based and resting state fmri signals via two-stage sparse
representations. Brain Imaging Behav. 10, 21–32. doi: 10.1007/s11682-015-9359-7

Frontiers inNeuroimaging 12 frontiersin.org

https://doi.org/10.3389/fnimg.2022.963125
https://doi.org/10.1177/1073858413494269
https://doi.org/10.1089/brain.2012.0073
https://doi.org/10.48550/arXiv.1810.00826
https://doi.org/10.1016/j.insmatheco.2022.07.013
https://doi.org/10.1007/s12021-016-9299-4
https://doi.org/10.1109/TMI.2021.3051604
https://doi.org/10.1609/aaai.v33i01.33017370
https://doi.org/10.1007/s11682-015-9359-7
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org

	Extracting default mode network based on graph neural network for resting state fMRI study
	1. Introduction
	2. Common methods review
	2.1. Seed-based correlation
	2.2. Independent component analysis
	2.3. Dictionary learning

	3. Graph neural network
	4. Data analysis
	4.1. Case one
	4.2. Case two

	5. Discussion and conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


