
TYPE Methods

PUBLISHED 26 July 2022

DOI 10.3389/fnimg.2022.953215

OPEN ACCESS

EDITED BY

Maria Ruz,

University of Granada, Spain

REVIEWED BY

Jo Etzel,

Washington University in St. Louis,

United States

Alejandro De La Vega,

University of Texas at Austin,

United States

*CORRESPONDENCE

René Weber

renew@ucsb.edu

SPECIALTY SECTION

This article was submitted to

Neuroimaging for Cognitive

Neuroscience,

a section of the journal

Frontiers in Neuroimaging

RECEIVED 25 May 2022

ACCEPTED 28 June 2022

PUBLISHED 26 July 2022

CITATION

Chen Y, Hopp FR, Malik M, Wang PT,

Woodman K, Youk S and Weber R

(2022) Reproducing FSL’s fMRI data

analysis via Nipype: Relevance,

challenges, and solutions.

Front. Neuroimaging 1:953215.

doi: 10.3389/fnimg.2022.953215

COPYRIGHT

© 2022 Chen, Hopp, Malik, Wang,

Woodman, Youk and Weber. This is an

open-access article distributed under

the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other

forums is permitted, provided the

original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

Reproducing FSL’s fMRI data
analysis via Nipype: Relevance,
challenges, and solutions

Yibei Chen1, Frederic R. Hopp2, Musa Malik1, Paula T. Wang1,

Kylie Woodman1, Sungbin Youk1 and René Weber1,3*

1Media Neuroscience Lab, Department of Communication, College of Letters and Science,

University of California, Santa Barbara, Santa Barbara, CA, United States, 2Amsterdam School of

Communication Research, University of Amsterdam, Amsterdam, Netherlands, 3Department of

Communication and Media, Ewha Womans University, Seoul, South Korea

The “replication crisis” in neuroscientific research has led to calls for improving

reproducibility. In traditional neuroscience analyses, irreproducibility may

occur as a result of issues across various stages of themethodological process.

For example, di�erent operating systems, di�erent software packages, and

even di�erent versions of the same package can lead to variable results.

Nipype, an open-source Python project, integrates di�erent neuroimaging

software packages uniformly to improve the reproducibility of neuroimaging

analyses. Nipype has the advantage over traditional software packages (e.g.,

FSL, ANFI, SPM, etc.) by (1) providing comprehensive software development

frameworks and usage information, (2) improving computational e�ciency,

(3) facilitating reproducibility through su�cient details, and (4) easing the steep

learning curve. Despite the rich tutorials it has provided, the Nipype community

lacks a standard three-level GLM tutorial for FSL. Using the classical Flanker

task dataset, we first precisely reproduce a three-level GLM analysis with FSL

via Nipype. Next, we point out some undocumented discrepancies between

Nipype and FSL functions that led to substantial di�erences in results. Finally,

we provide revised Nipype code in re-executable notebooks that assure result

invariability between FSL and Nipype. Our analyses, notebooks, and operating

software specifications (e.g., docker build files) are available on the Open

Science Framework platform.

KEYWORDS

Nipype, FSL, fMRI analysis, reproducibility, methods

Introduction

The challenge to reproduce research findings has been a long-standing issue in

many scientific fields, including neuroscience (Baker, 2016). In order to improve the

reproducibility of neuroimaging results, recent calls emphasize stronger commitments

toward open science by improving the transparency of design decisions, data, methods,

and analytic approaches (Poldrack and Poline, 2015; Gorgolewski and Poldrack, 2016;

Gilmore et al., 2017; Gleeson et al., 2017; Gorgolewski et al., 2017; Poldrack, 2019;

Wagner et al., 2022). Focusing on the reproducibility of data analytic pipelines,

Frontiers inNeuroimaging 01 frontiersin.org

https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org/journals/neuroimaging#editorial-board
https://www.frontiersin.org/journals/neuroimaging#editorial-board
https://www.frontiersin.org/journals/neuroimaging#editorial-board
https://www.frontiersin.org/journals/neuroimaging#editorial-board
https://doi.org/10.3389/fnimg.2022.953215
http://crossmark.crossref.org/dialog/?doi=10.3389/fnimg.2022.953215&domain=pdf&date_stamp=2022-07-26
mailto:renew@ucsb.edu
https://doi.org/10.3389/fnimg.2022.953215
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnimg.2022.953215/full
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Chen et al. 10.3389/fnimg.2022.953215

previous research (Tustison et al., 2014; Glatard et al., 2015;

Dickie et al., 2017; Kennedy et al., 2019; Botvinik-Nezer

et al., 2020) has identified that even slight variations in

analytic decisions (from the operating system and software

choices to statistical modeling) can diminish reproducibility.

For example, libmath—mathematical operations manipulating

single-precision floating-point numbers—has evolved across

different versions of GNU/Linux-based operating systems,

leading to numerical differences in computational results. While

those differences are often negligible at individual steps, their

accumulating effects frequently lead to substantially different

results in commonly-used analyses, including independent

component analysis (ICA) (Glatard et al., 2015). Similarly,

different neuroimaging software, such as FreeSurfer (Fischl,

2012) and Advanced Normalization Tools (ANTs, Avants et al.,

2009), produces variable predictions of age and gender based on

cortical thickness. This poses problems when age and gender

are important imaging biomarkers of cognition, phenotype, or

disease (Tustison et al., 2014). In addition, different statistical

methods chosen by different research teams to test the same

hypotheses on the same dataset can lead to variable conclusions

(Botvinik-Nezer et al., 2020).

In view of these issues, being as transparent and detailed

as possible about operating system, software, and analytic

steps is instrumental for reproducibility (Gorgolewski and

Poldrack, 2016). Therefore, this paper aims to contribute to

the transparency and reproducibility of brain imaging data

analysis in the following ways: First, we develop, compare, and

offer re-executable Python-based Jupyter (https://jupyter.org/)

notebooks for a three-level general linearmodel (GLM) based on

Nipype (http://nipy.org) and FSL (https://fsl.fmrib.ox.ac.uk/).

Although there are “blog-style” online tutorials and scripts1, 2, 3

for performing individual steps in univariate brain imaging,

there currently exists no thoroughly documented, quality-

controlled and peer-reviewed, easily re-executable workflow for

a three-level GLM in FSL via Nipype. Second, we perform

our analyses in an openly available computing environment to

minimize variability in results caused by differences in operating

system and software versions. Third, by using an openly available

dataset, our analyses can directly be reproduced and lend

themselves for instructional purposes in neuroimaging courses.

Challenges using Nipype and FSL

Computational methods are nowadays an essential part of

data analysis in all sciences; therefore, programming, software

development, and computational thinking are becoming

increasingly important in scientific practice (Wilson, 2006).

1 https://miykael.github.io/nipype_tutorial/

2 https://dpaniukov.github.io/

3 https://github.com/poldracklab/ds003-post-fMRIPrep-analysis

Nipype (Gorgolewski et al., 2011), a neuroimaging library in

Python, has witnessed a rapid increase in the number of studies

using it. This popularity can at least partially be attributed to

Nipype’s uniform interface to existing neuroimaging software,

such as ANTs, FSL, and SPM. In typical neuroscience practice,

researchers tend to incorporate different software packages at

different stages of the analysis. Examples include using ANTs for

registering structural MRI images into the standard MNI space,

or FSL and SPM for statistical analysis. Those packages, however,

are accessed and integrated through multiple ways, such as

shell scripting (FSL, ANTs), the MATLAB compiler for SPM, or

dedicated graphical user interfaces (GUI, e.g., FSL). A common

consequence of this variable integration of analytic tools is the

difficulty to reproduce the exact analytic sequence using the

exact same configurations. To counter this problem, Nipype

presents a uniform and standardized interface in which analysts

can use functions from diverse neuroimaging tools under the

framework of a unified programming language—Python.

Introductions to Nipype’s architecture are made available

via a few hands-on tutorials developed by the neuroimaging

community, covering its basic components (e.g., interface, node,

and mapnode) and exemplary workflows (e.g., preprocessing

and first-level analysis), to advanced usage (e.g., cloud

computing). Notwithstanding their instructional value,

these tutorials remain limited in important ways: First,

tutorials frequently do not feature quality-controls that assess

whether a particular result produced by Nipype replicates

results produced by a typical workflow using stand-alone

software. Because tutorials are typically reduced to “minimal

working examples”, many additional—and often implicit—

steps executed when running analyses with a full-stack

GUI software library (e.g., SPM, FSL) are discarded. Hence,

variable results are likely between simplified Nipype tutorials

vs. comprehensive neuroimaging suites. Considering that a

majority of neuroscientists still rely on GUI-guided analysis

pipelines, it is vital that Nipype tutorials accurately mirror

these analyses. Second, tutorials are frequently geared toward

learning individual steps and components, but yet need to cover

more comprehensive analyses that can accommodate common

paradigms spanning multiple subjects and runs. Among the

oldest and most frequently used statistical models for the

analysis of neuroimaging data are multi-level GLMs (Friston

et al., 1995; Worsley and Friston, 1995). Yet, a comprehensive

tutorial covering a standard three-level GLM in Nipype is not

available. To fill this gap, we introduce a series of tutorials using

the FSL suite via Nipype.

Focusing on fMRI data analyses, FSL has implemented

GLMs for fMRI data analysis in a powerful tool—FEAT (FMRI

Expert Analysis Tool). FEAT includes advanced three-level GLM

and has become a popular choice for neuroimaging analysts

(Jenkinson et al., 2012). Integrating FSL/FEAT analysis into

a flexible but standardized analytical pipeline via Nipype is

desirable due to the reasons mentioned above. However, if

Frontiers inNeuroimaging 02 frontiersin.org

https://doi.org/10.3389/fnimg.2022.953215
https://jupyter.org/
http://nipy.org
https://fsl.fmrib.ox.ac.uk/
https://miykael.github.io/nipype_tutorial/
https://dpaniukov.github.io/
https://github.com/poldracklab/ds003-post-fMRIPrep-analysis
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Chen et al. 10.3389/fnimg.2022.953215

we decide to use Nipype (and as some fellow analysts have

done in the recent past; e.g., Esteban et al., 2020), we have to

assume that running FSL/FEAT separately via scripting or its

GUI and running it via Nipype lead to the exact same results.

Surprisingly, this was not the case using the available online

tutorials and documentation, despite using a standardized

computing environment.

Therefore, the work presented here contributes to the

neuroimaging community by precisely reproducing the results

of a three-level GLM analysis with FSL/FEAT via Nipype,

using the classical Flanker task dataset (Kelly et al., 2008).

After standardizing the operating system and the software

versions, we reveal undocumented discrepancies between the

Nipype-based and the standalone FSL/FEAT functions that can

lead to substantial differences in final results. We then provide

revised Nipype code in re-executable Jupyter notebooks that

assure result invariability between Nipype-based and standalone

FSL/FEAT analyses. Our analyses, result comparisons,

notebooks, and operating software specifications (e.g., Docker

file) are available on the Open Science Framework platform4.

Materials and methods

Procedure

We used the Flanker dataset (described below) from

OpenNeuro5 for our demonstration. We analyzed the dataset

via a classic three-level GLM. For each GLM level, we first

conducted the analysis with the FSL GUI, following a popular,

step-by-step online tutorial6. Notably, FSL generates a detailed

log file of all executed operations. We used this log file as a

template, manually converting each command into Python to

interface with Nipype’s FSL packages. Finally, we compared all

generated outputs between FSL GUI and Nipype.

Dataset description

The Flanker dataset (Kelly et al., 2008) comprises data

from 26 healthy adults who performed a slow event-related

Eriksen Flanker task in two 5-min blocks (i.e., runs). Each run

contains 12 congruent and 12 incongruent trials, presented in a

pseudorandom order. On each trial of the task, participants used

one of two buttons on a response pad to indicate the direction

of a central arrow in an array of 5 arrows. The central arrow

4 https://osf.io/prg53/

5 https://openneuro.org/datasets/ds000102/versions/

58016286cce88d0009a335df

6 https://andysbrainbook.readthedocs.io/en/latest/fMRI_Short_Course/

fMRI_Intro.html

is either pointing in the same direction (congruent) or opposite

direction (incongruent) of the 5-arrow array.

Functional imaging data were acquired using a Siemens

Allegra 3.0 T scanner, with a standard Siemens head coil, located

at the New York University Center for Brain Imaging. This

dataset contains 146 contiguous echo planar imaging (EPI)

whole-brain functional volumes (TR = 2,000ms; acquisition

voxel size = 3 × 3 × 4mm) for each of the two runs. A

high-resolution T1-weighted anatomical image was acquired

using a magnetization prepared gradient echo sequence (TR =

2,500 ms).

Computing environment

The three-level GLM was carried out via the FSL GUI

(version 6.0.4) on a Linux workstation (Ubuntu 20.04.4 LTS).

The FSL Nipype equivalent of the three-level GLM was run

within a Docker container (version 20.10.12), generated

via Neurodocker7. Neurodocker generates all specified

(neuroimaging) software—including version specifications—in

a stand-alone container, thereby allowing researchers to export

their exact computing environment. Importantly, we ensured

that the Docker container and our Linux desktop workstation

had the same operating system and FSL version. Additional

Python-based computing libraries included in the Docker

container can be found in the corresponding docker file8.

FMRIB software library

FSL can be accessed through both the GUI and the shell

script. In this study, we used the FSL GUI to generate results

from the three-level GLMs, supplemented by its log file that we

transformed into an FSL shell script to generate files for step-

wise comparisons with the Nipype outputs, as otherwise the FSL

GUI would automatically overwrite files at each step.

FSL provides comprehensive analysis tools (e.g., BET and

FEAT) for functional, structural and diffusion MRI brain

imaging data (Smith et al., 2004). Here, we focused on

its tools for functional MRI, specifically, FEAT–a complete

tool for model-based fMRI analysis. FEAT carries out data

preprocessing, first-level GLM analysis (i.e., within-run level);

registration to subject-specific structural images and standard

space; and higher-level GLM analyses (i.e., within-subject-cross-

run and cross-subject level) on task-based functional images. In

our case, there were two runs in our dataset, so each subject had

two sets of functional images. We also used the Brain Extraction

7 https://github.com/ReproNim/neurodocker

8 More details see our OSF repository, https://osf.io/prg53/?view_only=

9d7974834a484cdb972bcc3989589b78.

Frontiers inNeuroimaging 03 frontiersin.org

https://doi.org/10.3389/fnimg.2022.953215
https://osf.io/prg53/
https://openneuro.org/datasets/ds000102/versions/58016286cce88d0009a335df
https://openneuro.org/datasets/ds000102/versions/58016286cce88d0009a335df
https://andysbrainbook.readthedocs.io/en/latest/fMRI_Short_Course/fMRI_Intro.html
https://andysbrainbook.readthedocs.io/en/latest/fMRI_Short_Course/fMRI_Intro.html
https://github.com/ReproNim/neurodocker
https://osf.io/prg53/?view_only=9d7974834a484cdb972bcc3989589b78
https://osf.io/prg53/?view_only=9d7974834a484cdb972bcc3989589b78
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Chen et al. 10.3389/fnimg.2022.953215

Tool (BET) on each subject’s structural image before FEAT to

generate subject-specific structural images.

General setup of Nipype

Nipype has three major components (Gorgolewski et al.,

2011): (1) interfaces to external tools (e.g., FSL) for setting

up inputs, executing, and retrieving outputs; (2) a workflow

engine to connect inputs and outputs of interfaces as a directed

acyclic graph (DAG); and (3) plug-ins to execute workflows

locally or in a distributed system. In the present project, we

advance the usage of the workflow that connects inputs and

outputs of FSL (interface) for the three-level GLMs in a local

environment (plug-in).

To use FSL functions in Nipype, we wrapped those functions

in either Node or MapNode objects. In graph theory, a node

is a fundamental unit of which graphs are formed; similarly,

a Node or MapNode object is the basic unit of a Nipype

workflow. We can view each Node or MapNode as a function

of FSL; the difference between a Node and a MapNode is that

a Node operates on a single input while a MapNode enables

operations on multiple inputs. For example, a Node is suitable

for processing the brain imaging data from a single run of a

single subject, while a MapNode is a better choice for processing

data from multiple runs of multiple subjects. A workflow can

thus be visualized as a directed acyclic graph of connected Node

and MapNode objects, in which the connective sequence of

the graph reflects the necessary chronological order of each

functional step. Further details regarding setting up an analytical

pipeline in Nipype can be found at https://nipype.readthedocs.

io.

The first-level GLM

Conducting a first-level (within-run) GLM analysis includes

two steps: data preprocessing and within-run GLM time series

analysis. The inputs are participants’ structural and functional

images plus the event information that indicates the onset,

duration, and condition type of each trial.

In FSL, we first conducted a series of analyses on two runs

of a single participant, and obtained the setup file “design.fsf ”

for each run. With these two setup files as the template, we used

scripting and performed the same analysis for two runs of all

26 participants9. Specifically, we performed brain extraction via

BET on the structural brain images with a fractional intensity

threshold of 0.5. Then, using the functional images, the full

first-level analysis via FEAT included data preprocessing and

statistical modeling with a GLM. The preprocessing involved:

9 More details see https://andysbrainbook.readthedocs.io/en/latest/

fMRI_Short_Course/fMRI_06_Scripting.html.

motion correction (MCFLIRT), spatial smoothing (full width

half maximum, FWHM, as 5mm), temporal filtering (highpass

cutoff 100 s), registration to the structural image (output from

BET) and standard space (MNI152 T1-weighted 2mm brain)10

For the statistical modeling–using the “Stats” tab in the FSL

GUI–we set up four t-contrasts: (1) incongruent > baseline,

which is the average beta weight for the incongruent condition

compared to the baseline; (2) congruent > baseline, the average

beta weight for the congruent condition compared to the

baseline; (3) incongruent> congruent, which is the difference of

the average beta weights between the incongruent and congruent

conditions, highlighting the activation from the incongruent

condition; and (4) congruent > incongruent, which is similar to

(3) but highlights the activation from the congruent condition.

We kept all other settings at their default.

FSL saves results in a FEAT folder11 along with a log file,

providing detailed shell scripts commands of settings in the

GUI. This log file was then used as a guide to create the

first-level GLM in Nipype. Our Nipype first-level GLM also

includes data preprocessing and statistical modeling but in a

more efficient and flexible manner. Firstly, instead of analyzing

a single participant’s data to generate the template for all

participants, Nipype can simultaneously process data from all

participants via a MapNode. Secondly, the FSL GUI requires

performing BET before FEAT, but only uses the BET result

at the late stage of FEAT; in contrast, Nipype can organize

all functions (i.e., MapNodes/Nodes) in a chronological order

based on their operative roles (Figure 1). Lastly, with Nipype the

output structure can be customized, thereby effectively saving

storage space. Whereas, FSL saves all files that were generated,

in Nipype we can choose to only retain those that are related

to parameter estimations and are necessary for a second-level

GLM. Important output files that serve as input in the second-

level analysis include the contrast of parameter estimates (cope)

for each contrast, the variance of parameter estimates (varcope)

for each contrast, and the binary brain mask. Therefore, we

have four copes, four varcopes, and one mask per run for

each participant.

The second-level GLM

The second-level (within-subject-cross-run) GLM generally

have two major parts: (1) warping the results (i.e., statistical

images, such as copes, and varcopes) of the first-level GLM onto

a standard template, and (2) setting up and fitting a fixed-effects

model, which averages parameter estimations across two runs

within each participant. Accordingly, the inputs of a second-

level GLM are the results from the first-level GLMs.

10 More details see https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases.

11 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT/UserGuide#FEAT_Output

Frontiers inNeuroimaging 04 frontiersin.org

https://doi.org/10.3389/fnimg.2022.953215
https://nipype.readthedocs.io
https://nipype.readthedocs.io
https://andysbrainbook.readthedocs.io/en/latest/fMRI_Short_Course/fMRI_06_Scripting.html
https://andysbrainbook.readthedocs.io/en/latest/fMRI_Short_Course/fMRI_06_Scripting.html
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT/UserGuide#FEAT_Output
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Chen et al. 10.3389/fnimg.2022.953215

FIGURE 1

The directed acyclic graph (DAG) for the first-level GLM in Nipype. Everything before modelspec is about data preprocessing. From modelspec

to level1estimate are the first-level model setup. The warpfunc represents transforming the first-level outputs to the standard space.

Frontiers inNeuroimaging 05 frontiersin.org

https://doi.org/10.3389/fnimg.2022.953215
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Chen et al. 10.3389/fnimg.2022.953215

FIGURE 2

The directed acyclic graph (DAG) for the second-level GLM in Nipype.

In the FSL GUI, warping parameters are set up in the first-

level GLMmenus under “Registration”. However, it is only after

we initiate the second-level GLM analysis that FSL warps the

cope and varcope files using transform matrices generated from

the first-level, creating a subfolder that is used for the fixed-effect

modeling. Since the fixed-effect model averages across two runs,

our major outputs at this level are likewise four copes and four

varcopes for each participant. Again, a log file is generated by

FSL at this stage.

In Nipype, similarly, we set up the warping at the end of

the first-level GLM and import the warped copes and varcopes

into the second level GLM. The second-level GLM in Nipype

(Figure 2) then includes merging two copes and two varcopes,

respectively, masking the merged copes and varcopes, and fitting

the fixed-effect model. We only keep the relevant outputs (one

cope, one varcope, and one mask for each participant) for the

third-level GLM analysis.

The third-level GLM

The third-level (cross-subject) GLM is also known

as a group-level analysis and has two central steps: (1)

choosing a statistical model based on the experimental

design, and (2) choosing a thresholding method (including

multiple comparison correction) for determining the statistical

significance of the results. A mixed-effect model is normally

used in the group analysis to make results generalizable

to the population. Given that the experiment here is a

single-group design, one sample t-test12 was used for

group inference. For thresholding, we kept the default

setting—cluster-level correction at Z = 3.1 (p < 0.005).

The inputs of the third-level GLM are the results from the

second-level GLMs.

In the FSL GUI, we specified the number of inputs

(participants) as 26, specified the input data path, set up

the output directory, selected “Mixed effects: FLAME 1”, and

used “single group average” in the “Model Setup Wizard”.

For everything else, we chose default settings. FSL completes

the third-level GLM with results written in one top folder

encompassing four subfolders, one for each of the four contrasts

defined at the first level. Each subfolder contains parameter

estimates (e.g., cope and varcope) as well as cluster level

corrected results. The corresponding log file can be found in the

top folder.

The third-level GLM in Nipype starts with merging

26 copes and 26 varcopes for the single group averaging,

then specifying the model and fitting it, and lastly

correcting the results at the cluster level (Figure 3).

The output contains both raw and corrected parameter

estimates for each of the four contrasts specified on the

first level.

12 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT/UserGuide#Single-

Group_Average_.28One-Sample_T-Test.29

Frontiers inNeuroimaging 06 frontiersin.org

https://doi.org/10.3389/fnimg.2022.953215
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT/UserGuide#Single-Group_Average_.28One-Sample_T-Test.29
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT/UserGuide#Single-Group_Average_.28One-Sample_T-Test.29
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Chen et al. 10.3389/fnimg.2022.953215

FIGURE 3

The directed acyclic graph (DAG) for the third-level GLM in Nipype.

Output comparison

We conducted detailed comparisons for all outputs from

the FSL GUI and from Nipype. For the first-level GLM, we did

stepwise comparisons as there was data preprocessing involved

and even a slight difference in output for a few voxels at

one of the preprocessing steps caused major result deviations

for subsequent preprocessing steps. Our stepwise comparisons

converted imaging files into arrays and used the Python package

NumPy to compare (1) number of voxels and (2) value within

each voxel13. Since FSL rewrites files generated from preceding

preprocessing steps, we used shell scripting to create separate

files at each preprocessing step in FSL and compared these files

with the results from Nipype at each preprocessing step. For

the second- and third-level GLMs, we only compared the final

output files with the results. The shell scripts, the comparison

13 Code can be found in nipype fsl comp.ipynb fron our OSF repository.

notebook, and all files we used for the comparisons are available

in our OSF repository.

Results and troubleshooting

Overall, our three-level GLM pipeline in Nipype provided

here successfully reproduced the results in FSL, but only after

extensive troubleshooting and significant adjustments that are

not documented in available Nipype tutorials. In this section,

we visualize results from our Nipype pipeline and the GLMs we

ran via the FSL GUI that turned out to be identical. Next, we

point out the difficulties that we have encountered in producing

identical results. We conclude the section with describing the

adjustments that were necessary to obtain identical results. In

addition, we offer our three-level GLM pipeline in Nipype as

a sharable and re-executable notebook and as a solution to the

problem of deviating results when using the FSL via its GUI or

via Nipype.

Frontiers inNeuroimaging 07 frontiersin.org

https://doi.org/10.3389/fnimg.2022.953215
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Chen et al. 10.3389/fnimg.2022.953215

FIGURE 4

Voxel-wise di�erence between FSL and Nipype cope results. In this comparison, we used FWHM = 5mm instead of 4.9996179300001655 in

Nipype during preprocess and obtained cope files of the first level GLM. This figure demonstrates the di�erence in the cope file of the first

contrast (incongruent > baseline) between FSL and Nipype outputs for subject 11, run 1.

The first-level GLM

The first-level GLM was conducted on each of two runs for

all 26 participants and contained four contrasts (incongruent

> baseline, congruent > baseline, incongruent > congruent,

and congruent > incongruent). For each contrast, our Nipype

pipeline produced the same cope and varcope files (i.e.,

identical values at the voxel-level) as the first-level GLM via

the FSL GUI. Similar to the first-level stepwise comparison,

we converted the statistical map files into arrays and used

NumPy to compare (1) number of voxels and (2) value within

each voxel.

There were two major obstacles that initially impeded the

reproduction of the first-level GLMs in Nipype. First, FSL

performs more calculations in its backend than it explicitly

presents in its GUI. For example, the first step in the first-

level GLM—initialization (i.e., converting functional images to

float representation and extracting the middle volume of the

first run as the reference)—is not documented in the GUI; one

can only find this step in the log file. Similarly, most settings

in the FSL GUI lead to multiple undisclosed computations,

which are not automatically reproduced when using FSL via

Nipype. Without a full understanding of FSL’s computing logic,

a successful reproduction via Nipype is impossible to achieve.

In this regard, we made use of FSL’s log files and the FSL

UserGuide14 to precisely reconstruct every analytic step of FSL’s

14 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL

first-level GLMs in Nipype. Nevertheless, we ran into additional

troubles with our goal to obtain identical results in Nipype

and FSL. In the FSL GUI where SUSAN noise reduction is

specified, a brightness threshold (bt) is needed and estimated

from a FWHM smoothing kernel. Surprisingly, even a slight

difference in bt can lead to very different results in the final

stage of the GLM analysis. We used FWHM as 5mm in

FSL and obtained a bt of 2.12314225053. Yet, Nipype uses a

different algorithm [bt = float (fwhm)/np.sqrt (8 ∗ np.log (2))]

to calculate bt from FSL. Therefore, to acquire the same bt,

FWHM should be set as 4.9996179300001655 in Nipype rather

than 5. This issue could not be identified until we did a stepwise

outcome comparison.

To better demonstrate how this small difference in FWHM

can cause substantial deviations in the first-level GLM results,

we compared (1) the files from FSL and Nipype at the

step of SUSAN noise reduction and (2) the cope files from

FSL and Nipype when setting FWHM as 5 instead of

4.9996179300001655 in Nipype. Our numerical comparison

shows that (1) there are 27,981,621 out of 34,887,430 voxels

that have different values after SUSAN noise reduction15 and (2)

there are 223,069 out of 238,955 voxels different in the cope file

at the first level16 (Figure 4).

15 See Step 11 in nipype fsl comp.ipynb fron our OSF repository.

16 See Step 15 in nipype fsl comp.ipynb fron our OSF repository.

Frontiers inNeuroimaging 08 frontiersin.org

https://doi.org/10.3389/fnimg.2022.953215
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Chen et al. 10.3389/fnimg.2022.953215

The second-level GLM

The second-level GLM used a fixed-effect model to average

parameter estimations across two runs within each subject.

Our Nipype pipeline managed to produce the same results

(i.e., identical value at the voxel level) as FSL GUI after a

few adjustments.

There were two problems that emerged with respect to the

registration step and the general linear model setup. Before any

processing happens at the second level, FSL first transforms

the results (e.g., copes and varcopes) from the first-level into

a standard space. Again, this step happens in FSL’s backend

and has no representation in FSL’s GUI. In the FSL log file,

this registration procedure is performed through the function

featregapply. However, there is no featregapply in Nipype; instead

a function called FEATRegister17 is used, which can register

FEAT directories to a specific standard. The problem is that the

outputs of the first-level GLM in Nipype are not structured as

FEAT directories. To solve this registration problem, we chose

an alternative approach. Instead of setting up the second-level

GLM with all 26 participants, we just used two participants18.

The resulting FSL log file then provided the details under

featregapply that FLIRT indeed used for transformation for all

participants.We then adopted this function in Nipype, applied it

to all 26 participants, and eventually obtained the same standard

images as the FSL GUI does.

In setting the fixed-effect model, FSL averages the first-

level results from two runs for each participant, and this

procedure is conducted for all participants simultaneously.

However, Nipype recommends in its documentation using the

L2Model19 to set up the model, which generates subject-specific

second-level estimates. In other words, L2Model performs the

second-level analysis on each participant separately. Instead of

adopting L2Model, we chose to maintain consistency with the

FSL GUI bye using MultipleRegressDesign20, which, as its name

indicates, can simultaneously perform the estimation on all

26 participants.

The third-level GLM

After the adjustments on the first- and second-level outlined

above, no further adjustments had to be made in Nipype for the

17 https://nipype.readthedocs.io/en/latest/api/generated/nipype.interfaces.fsl.

model.html#featregister

18 The minimal number of input files in FSL is two, and one participant

only have two copes for each contrast, which is not enough, so we set

the model up with two participants.

19 https://nipype.readthedocs.io/en/latest/api/generated/nipype.interfaces.fsl.

model.html#l2model

20 https://nipype.readthedocs.io/en/latest/api/generated/nipype.interfaces.fsl.

model.html#multipleregressdesign

third-level GLM analysis; we obtained identical copes in Nipype

and via the FSL GUI before and after thresholding.

Lessons learned and discussion

Our work offers a well-documented pipeline and

environment for reproducing a full three-level GLM analysis

via the FSL GUI in Nipype. As one of the most widely used

statistical models in fMRI analysis, GLM analyses still play

an important role in studying human cognition. Typically,

GLMs in FSL are mainly executed through its GUI, which

may impede reproducibility as analysts can fail to precisely

document the options they have selected. Even if analysts

document their selected settings, these settings can lead to

different computational outputs that do not always correspond

to what Nipype uses by default in its FSL interface nodes. One

possible solution could be to always provide FSL log files in

addition to the results produced by the FSL GUI or use FSL

command line scripts instead. However, as we have shown, FSL

commands in its log file cannot always be easily translated back

to GUI options and vice versa. Our adjusted Nipype pipeline

for a complete three-level GLM analysis provides an alternative

to both the “black box” nature of a GUI-based approach

and the less accessible nature of a command-line script. Our

step-by-step pipeline clearly demonstrates how the input data

are arranged, transformed, calculated, and grouped into the

outputs. Moreover, Python, which relies on English-like syntax,

makes those logical transitions within the computing procedure

easier to grasp. Therefore, our pipeline not only contributes

to increasing reproducibility in neuroimaging studies, but

also serves as an educational and instructive tool for a better

understanding of brain imaging analyses.

Importantly, however, given the obstacles we have

encountered when reproducing results from FSL’s GUI in

Nipype, we recommend using Nipype with some caution

and always providing complete documentation of code and

procedures to promote reproducibility. We also recommend

using our adjusted Nipype pipeline for three-level GLM

analyses. With the original Nipype paper (Gorgolewski et al.,

2011) as the seed paper, we selected the top 5% (N = 51) cited

publications that cited the seed paper or used Nipype for their

data analyses and recorded whether analytical pipelines were

provided.We found that only 35.3% (N = 18) of those 51 articles

made their code available. Fellow researchers who have used

Nipype pipelines for GLM-based analyses with standard setups

using Nipype’s available documentation may want to check their

results and evaluate to what extent the results deviate from the

results obtained by the FSL GUI. Of course, this suggests that

the FSL GUI is the standard for result accuracy and valid result

interpretations, which can be likewise questionable. In any case,

as surely a substantial number of analysts still use the FSL’s GUI

on a regular basis for their analyses and result interpretations,

Frontiers inNeuroimaging 09 frontiersin.org

https://doi.org/10.3389/fnimg.2022.953215
https://nipype.readthedocs.io/en/latest/api/generated/nipype.interfaces.fsl.model.html#featregister
https://nipype.readthedocs.io/en/latest/api/generated/nipype.interfaces.fsl.model.html#featregister
https://nipype.readthedocs.io/en/latest/api/generated/nipype.interfaces.fsl.model.html#l2model
https://nipype.readthedocs.io/en/latest/api/generated/nipype.interfaces.fsl.model.html#l2model
https://nipype.readthedocs.io/en/latest/api/generated/nipype.interfaces.fsl.model.html#multipleregressdesign
https://nipype.readthedocs.io/en/latest/api/generated/nipype.interfaces.fsl.model.html#multipleregressdesign
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Chen et al. 10.3389/fnimg.2022.953215

Nipype analysts who strongly support reproducibility of results

across analytical platforms may want to produce workflows

that match the results of the corresponding analytical interfaces

when used separately from Nipype.

Data availability statement

The code and supplementary material which supports

the findings of this study are available via OSF (https://osf.

io/prg53/) and Github (https://github.com/medianeuroscience/

nipype_repro).

Ethics statement

Ethical review and approval was not required for the study

on human participants in accordance with the local legislation

and institutional requirements. Written informed consent from

the patients/participants legal guardian/next of kin was not

required to participate in this study in accordance with the

national legislation and the institutional requirements.

Author contributions

YC and RW conceived the idea. YC developed

the first draft and ran the initial analyses. All authors

contributed equally to revising the initial draft and adding to

the analyses.

Funding

Funding for this study was received by UCSB’s Open Access

Publishing Fund.

Conflict of interest

The authors declare that the research was conducted in

the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

Avants, B. B., Tustison, N., and Johnson, H. (2009). Advanced normalization
tools (ANTS). Insight J. 2, 1–35. doi: 10.54294/uvnhin

Baker, M. (2016). 1,500 scientists lift the lid on reproducibility. Nature 533,
452–454. doi: 10.1038/533452a

Botvinik-Nezer, R., Holzmeister, F., Camerer, C. F., Dreber, A., Huber, J.,
Johannesson, M., et al. (2020). Variability in the analysis of a single neuroimaging
dataset by many teams. Nature 582, 84–88. doi: 10.1038/s41586-020-2314-9

Dickie, E., Hodge, S., Craddock, R., Poline, J.-B., and Kennedy, D. (2017). Tools
matter: comparison of two surface analysis tools applied to the abide dataset. Res.
Ideas Outcomes 3, e13726. doi: 10.3897/rio.3.e13726

Esteban, O., Ciric, R., Finc, K., Blair, R.W., Markiewicz, C. J., Moodie, C. A., et al.
(2020). Analysis of task-based functional MRI data preprocessed with fMRIPrep.
Nat. Protocols 15, 2186–2202. doi: 10.1038/s41596-020-0327-3

Fischl, B. (2012). FreeSurfer. NeuroImage 62, 774–781.
doi: 10.1016/j.neuroimage.2012.01.021

Friston, K. J., Holmes, A. P., Poline, J.-B., Grasby, P. J., Williams, S. C.
R., Frackowiak, R. S. J., et al. (1995). Analysis of fMRI time-series revisited.
NeuroImage 2, 45–53. doi: 10.1006/nimg.1995.1007

Gilmore, R. O., Diaz,M. T.,Wyble, B. A., and Yarkoni, T. (2017). Progress toward
openness, transparency, and reproducibility in cognitive neuroscience. Ann. N. Y.
Acad. Sci. 1396, 5–18. doi: 10.1111/nyas.13325

Glatard, T., Lewis, L. B., Ferreira da Silva, R., Adalat, R., Beck, N., Lepage, C.,
et al. (2015). Reproducibility of neuroimaging analyses across operating systems.
Front. Neuroinform. 9, 12. doi: 10.3389/fninf.2015.00012

Gleeson, P., Davison, A. P., Silver, R. A., and Ascoli, G. A. (2017).
A commitment to open source in neuroscience. Neuron 96, 964–965.
doi: 10.1016/j.neuron.2017.10.013

Gorgolewski, K., Burns, C. D., Madison, C., Clark, D., Halchenko, Y. O.,
Waskom, M. L., et al. (2011). Nipype: a flexible, lightweight and extensible
neuroimaging data processing framework in python. Front. Neuroinform. 5, 13.
doi: 10.3389/fninf.2011.00013

Gorgolewski, K. J., Alfaro-Almagro, F., Auer, T., Bellec, P., Capotă, M.,
Chakravarty, M. M., et al. (2017). BIDS apps: improving ease of use, accessibility,
and reproducibility of neuroimaging data analysis methods. PLOS Comput. Biol.
13, e1005209. doi: 10.1371/journal.pcbi.1005209

Gorgolewski, K. J., and Poldrack, R. A. (2016). A practical guide for improving
transparency and reproducibility in neuroimaging research. PLoS Biol. 14,
e1002506. doi: 10.1371/journal.pbio.1002506

Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M.W., and Smith, S.
M. (2012). FSL. NeuroImage 62, 782–790. doi: 10.1016/j.neuroimage.2011.09.015

Kelly, A. M. C., Uddin, L. Q., Biswal, B. B., Castellanos, F. X., and Milham, M.
P. (2008). Competition between functional brain networks mediates behavioral
variability. NeuroImage 39, 527–537. doi: 10.1016/j.neuroimage.2007.08.008

Kennedy, D. N., Abraham, S. A., Bates, J. F., Crowley, A., Ghosh, S.,
Gillespie, T., et al. (2019). Everything matters: the repronim perspective on
reproducible neuroimaging. Front. Neuroinform. 13, 1. doi: 10.3389/fninf.2019.
00001

Poldrack, R. A. (2019). The costs of reproducibility. Neuron 101, 11–14.
doi: 10.1016/j.neuron.2018.11.030

Poldrack, R. A., and Poline, J.-B. (2015). The publication and
reproducibility challenges of shared data. Trends Cogn. Sci. 19, 59–61.
doi: 10.1016/j.tics.2014.11.008

Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T.
E. J., Johansen-Berg, H., et al. (2004). Advances in functional and structural

Frontiers inNeuroimaging 10 frontiersin.org

https://doi.org/10.3389/fnimg.2022.953215
https://osf.io/prg53/
https://osf.io/prg53/
https://github.com/medianeuroscience/nipype_repro
https://github.com/medianeuroscience/nipype_repro
https://doi.org/10.54294/uvnhin
https://doi.org/10.1038/533452a
https://doi.org/10.1038/s41586-020-2314-9
https://doi.org/10.3897/rio.3.e13726
https://doi.org/10.1038/s41596-020-0327-3
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1006/nimg.1995.1007
https://doi.org/10.1111/nyas.13325
https://doi.org/10.3389/fninf.2015.00012
https://doi.org/10.1016/j.neuron.2017.10.013
https://doi.org/10.3389/fninf.2011.00013
https://doi.org/10.1371/journal.pcbi.1005209
https://doi.org/10.1371/journal.pbio.1002506
https://doi.org/10.1016/j.neuroimage.2011.09.015
https://doi.org/10.1016/j.neuroimage.2007.08.008
https://doi.org/10.3389/fninf.2019.00001
https://doi.org/10.1016/j.neuron.2018.11.030
https://doi.org/10.1016/j.tics.2014.11.008
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Chen et al. 10.3389/fnimg.2022.953215

MR image analysis and implementation as FSL. NeuroImage 23, S208–S219.
doi: 10.1016/j.neuroimage.2004.07.051

Tustison, N. J., Cook, P. A., Klein, A., Song, G., Das, S. R., Duda, J. T.,
et al. (2014). Large-scale evaluation of ANTs and FreeSurfer cortical thickness
measurements. NeuroImage 99, 166–179. doi: 10.1016/j.neuroimage.2014.
05.044

Wagner, A. S., Waite, L. K., Wierzba, M., Hoffstaedter, F., Waite, A. Q., Poldrack,
B., et al. (2022). FAIRly big: a framework for computationally reproducible

processing of large-scale data. Sci. Data 9, 80. doi: 10.1038/s41597-022-01
163-2

Wilson, G. (2006). Software carpentry: getting scientists to write better
code by making them more productive. Comput. Sci. Eng. 8, 66–69.
doi: 10.1109/MCSE.2006.122

Worsley, K. J., and Friston, K. J. (1995). Analysis of fMRI time-
series revisited—again. NeuroImage 2, 173–181. doi: 10.1006/nimg.1
995.1023

Frontiers inNeuroimaging 11 frontiersin.org

https://doi.org/10.3389/fnimg.2022.953215
https://doi.org/10.1016/j.neuroimage.2004.07.051
https://doi.org/10.1016/j.neuroimage.2014.05.044
https://doi.org/10.1038/s41597-022-01163-2
https://doi.org/10.1109/MCSE.2006.122
https://doi.org/10.1006/nimg.1995.1023
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org

	Reproducing FSL's fMRI data analysis via Nipype: Relevance, challenges, and solutions
	Introduction
	Challenges using Nipype and FSL
	Materials and methods
	Procedure
	Dataset description
	Computing environment
	FMRIB software library
	General setup of Nipype
	The first-level GLM
	The second-level GLM
	The third-level GLM
	Output comparison

	Results and troubleshooting
	The first-level GLM
	The second-level GLM
	The third-level GLM

	Lessons learned and discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	1Publisher's note
	References


