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Parkinson’s disease (PD) is a common and complex neurodegenerative disorder with

five stages on the Hoehn and Yahr scaling. Characterizing brain function alterations with

progression of early stage disease would support accurate disease staging, development

of new therapies, and objective monitoring of disease progression or treatment response.

Functional magnetic resonance imaging (fMRI) is a promising tool in revealing functional

connectivity (FC) differences and developing biomarkers in PD. While fMRI and FC

data have been utilized for diagnosis of PD through application of machine learning

approaches such as support vector machine and logistic regression, the characterization

of FC changes in early-stage PD has not been investigated. Given the complexity and

non-linearity of fMRI data, we propose the use of a long short-term memory (LSTM)

network to distinguish the early stages of PD and understand related functional brain

changes. The study included 84 subjects (56 in stage 2 and 28 in stage 1) from

the Parkinson’s Progression Markers Initiative (PPMI), the largest-available public PD

dataset. Under a repeated 10-fold stratified cross-validation, the LSTMmodel reached an

accuracy of 71.63%, 13.52% higher than the best traditional machine learning method

and 11.56% higher than a CNN model, indicating significantly better robustness and

accuracy compared with other machine learning classifiers. Finally, we used the learned

LSTM model weights to select the top brain regions that contributed to model prediction

and performed FC analyses to characterize functional changes with disease stage and

motor impairment to gain better insight into the brain mechanisms of PD.

Keywords: Parkinson’s disease, early-stage characterization, fMRI, long short-term memory, deep learning,

functional connectivity

1. INTRODUCTION

Parkinson’s disease (PD) is a common and complex neurodegenerative disorder (Bloem et al.,
2021), affecting around 9.4 million people around the world in 2020 (Maserejian et al., 2020).
According to the Hoehn and Yahr scaling, five stages of disease severity have been proposed for PD
(Hoehn and Yahr, 1998). In the early stages, patients only have mild signs affecting one side (stage
1) or both sides (stage 2) of the body. Accurate disease staging is crucial for treatment planning,
enrollment in clinical trials, and following disease progression.
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In recent years, resting-state functional magnetic resonance
imaging (rs-fMRI) has been increasingly used to investigate the
brain basis of motor and non-motor symptoms, disease severity,
and disease progression in PD (Tinaz, 2021). Many of these
rs-fMRI studies used the functional connectivity (FC) within
and between neural networks as a potential biomarker of PD
pathophysiology (Prodoehl et al., 2014; Engels et al., 2018; Wang
et al., 2018), but the results have been heterogeneous.

Some studies have investigated machine learning (ML)
approaches in early diagnosis of PD using rs-fMRI data (Zhang,
2022). Model-based techniques such as logistic regression are
strongly based on prior statistical assumptions, which may not
be applicable to real data with variable dependencies (Gao
et al., 2018). Model-free algorithms including support vector
machine and random forest are able to adapt to inherent
characteristics of the dataset with fewer assumptions (Gao et
al., 2018) and outperform traditional model-based classifiers
in real-world clinical applications. A support vector machine
model trained on randomized logistic regression feature selection
was implemented to discriminate cognitive status in PD from
connection-wise FC patterns and reached an accuracy of 80.0%
(Abós et al., 2017). The support vector machine analysis based
on inter-group dynamic amplitude of low-frequency fluctuations
in PD was found to have significantly higher classification
accuracy in reference to controls (Zhang et al., 2019). The
random forest algorithm has been successfully implemented
for brain connectivity markers and depression and cognitive
impairment in PD (Lin et al., 2020, 2021). A brain network
graph analysis using rs-fMRI, which identified PD-associated
brain network alterations and achieved an average accuracy of
95%, has also been proposed for diagnostic purposes in PD
(Kazeminejad et al., 2017). To date, most current classification
work using rs-fMRI data has mainly focused on distinguishing
between PD patients and healthy control subjects (Dehsarvi
and Smith, 2019; Haq et al., 2020; Vivar-Estudillo et al., 2021),
but not on disease progression within early PD cohorts. We
think that further characterization of the early stages of PD, e.g.,
understanding brain differences in stage 1 and 2, is necessary to
better understand the mechanism and progression of PD.

Recently, deep learning has been successfully implemented in
patient representation learning. Convolutional neural networks
(CNNs; Kim, 2017) have been widely applied in medical image
analysis cases (Anwar et al., 2018). A CNN analysis based
on electroencephalogram (EEG) data showed high accuracy
(88.25%) for detection of early PD (Oh et al., 2020). Similarly,
a CNN model trained on time-frequency representation of EEG
was proposed for detection of PD (Khare et al., 2021). A CNN
model was trained on structural MRI data to classify PD and
healthy controls by transfer learning, and achieved an accuracy
of 88.9% (Sivaranjini and Sujatha, 2020). However, the huge
time and computational consumption required for CNN training
on 4D fMRI data presents an obstacle for its maturation in
clinical practice. Furthermore, the black-box nature of CNN
methods is a challenge for model interpretability, which is crucial
for model utility beyond classification success. Finally, CNNs
are well-suited for processing spatial information, but do not
take advantage of the temporal sequence of fMRI volumes. On

the other hand, the recurrent neural networks (RNN; Medsker
and Jain, 2001) have the capacity to capture the temporal
dynamics and execute sequential prediction efficiently. The long
short-termmemory (LSTM; Hochreiter and Schmidhuber, 1997)
unit, a prominent variant of RNN with sophisticated gating
mechanisms, is designed to overcome the vanishing gradient
problem in long sequences. RNNs and LSTMs have first achieved
great success in natural language processing (NLP) tasks (Young
et al., 2018), and the medical application is also emerging rapidly.
Using rs-fMRI datasets, the LSTM model has been investigated
on autism identification (Dvornek et al., 2017) and Alzheimer’s
disease prediction (Hong et al., 2019). The LSTM network has
been successfully implemented on voice samples (Rizvi et al.,
2020) and walking patterns (Balaji et al., 2021) in PD, but these
studies did not investigate the abnormalities in brain functional
connectivity. The combination of CNN and RNN has also
been investigated in rs-fMRI analysis for neurological disorders.
For schizophrenia discrimination, a multi-scale RNN model
combining CNN and RNN was proposed, reaching an accuracy
of 83.2% (Yan et al., 2019). In Alzheimer’s disease (AD) diagnosis,
a spatiotemporal model that combines both convolutional and
recurrent components was reported to improve AD classification
compared with other state-of-the-art approaches (Wang et al.,
2019). In major depressive disorder classification, a temporal
adaptive graph convolutional network was proposed on rs-fMRI
data and FC mapping, achieving a higher accuracy than other
state-of-the-art methods of 73.5% (Yao et al., 2020). Nevertheless,
in the field of deep learning, PD early-stage characterization has
not been investigated with rs-fMRI datasets.

Currently, most rs-fMRI studies in PD enroll a relatively
small number (<50) of patients. Due to the variations in
data acquisition and pre-processing pipelines among different
institutions, as well as the heterogeneity of PD, current research
still lacks reproducibility and accuracy across independent
datasets. This is certainly a concern for the data-driven
approaches. However, some of these concerns can be alleviated
with the landmark open data project in PD called the Parkinson’s
Progression Markers Initiative (PPMI; Marek et al., 2018).
The PPMI has organized the first large-scale and the largest-
size public multicenter clinical study to study PD progression,
including advanced imaging, biologic sampling, and clinical and
behavioral assessments.

In this work, we propose to characterize the early stages of
PD using the rs-fMRI data obtained from the PPMI database by
applying an LSTM-based model. To the best of our knowledge,
this project would be the first use of LSTMs to distinguish the
early stages of PD (stage 1 vs. stage 2) using rs-fMRI data. The
LSTM model allows for the analysis of the raw time-series data
from the brain regions of interest (ROIs), retaining more original
imaging information compared to models that predict from the
pre-processed FC data. We trained and validated the LSTM
model under a 5-times repeated 10-fold stratified cross validation
and compared the results with a CNN model and traditional
machine learning classifiers that predict from FC measures.
We also assessed model validity by measuring the association
between model output scores and a continuous measure of
motor severity in PD. Finally, we interpreted the LSTM model
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TABLE 1 | The demographic information of the cohort.

Stage Male Female Age (year; mean ± standard deviation)

HY1 16 12 58.2 ± 9.5

HY2 41 15 62.5 ± 9.6

and highlighted the top brain regions and FC measures that
contributed most to the classification of the early stages of PD.

2. MATERIALS AND METHODS

2.1. Dataset and Pre-processing
All subject data were carefully selected and extracted from the
public PPMI database, noting each subject’s sex, age, disease
onset side, and disease stage. The original PPMI study was
conducted following the Declaration of Helsinki and the Good
Clinical Practice (GCP) guidelines approved by the local ethics
committees of the 24 participating sites in the US (18), Europe
(5), andAustralia (1) with informed consent obtained from all the
enrolled subjects (Marek et al., 2018). Data from 90 subjects were
originally curated, but six subjects were excluded due to poor
image normalization or excessive head motion. Thus, a total of
84 age-matched (p > 0.05, unpaired two-sample t-test) subjects
who were also matched for sex and disease onset side (p > 0.05,
Pearson’s chi-squared test) were selected, including 56 subjects at
stage 2 and 28 subjects at stage 1. The demographic information
of the cohort is summarized in Table 1. All rs-fMRI images were
acquired for 8.5 min with TR = 2,400 ms, TE = 25 ms, flip angle
= 80◦, matrix = 68× 66, and FOV = 222 mm. After the first four
frames were discarded, each patient’s raw rs-fMRI scan contained
206 frames in the 4D sequence (8.24 min), yielding a total of
17,304 frames in the dataset. Each single frame was saved in nifti
format.

Pre-processing was performed using the CONN functional
connectivity toolbox v17 (Whitfield-Gabrieli and Nieto-
Castanon, 2012). The pre-processing steps included motion
correction, outlier detection, normalization to the MNI template,
smoothing, ROI extraction, and sequence cropping. Outliers
were defined as frame-wise displacement above 0.9 mm or global
signal changes above five standard deviations. The head motion
data of all the subjects are displayed in Table 2, and no significant
differences in head motion measures between stages were found.
Each frame was aligned to the AAL-116 atlas (Tzourio-Mazoyer
et al., 2002) with functional and structural simultaneous gray
matter (GM)/white matter (WM)/cerebrospinal fluid (CSF)
segmentation and MNI normalization. A Gaussian smoothing at
8 mm full-width at half-maximum (FWHM) was implemented.
De-noising steps included correction for physiological and other
sources of noise by regressing out the principal components
of the white matter and cerebrospinal fluid signal using the
CompCor method (Chai et al., 2012), regression of motion
artifacts and outliers, and linear detrending. Global signal
was not removed. Finally, data were bandpass-filtered (0.008
Hz < f < 0.09 Hz) to capture the fluctuations of the blood
oxygenation level-dependent signal that typically occur within

TABLE 2 | Head motion characteristics of the rs-fMRI data (mean ± standard

deviation).

Stage Maximum motion (mm) Mean motion (mm) Outlier scans

HY1 1.2261 ± 0.8207 0.2481 ± 0.1004 5.3928 ± 5.9587

HY2 1.0343 ± 0.8539 0.2342 ± 0.1039 3.8392 ± 9.0549

this frequency range at rest. The mean of the voxel values in each
ROI was used as that region’s signal. Along the time dimension,
each mean ROI time-series was extracted and standardized
by dividing by the standard deviation among time frames to
represent the relative change.

Considering the relatively small number of early stage subjects
for deep learning training, data augmentation was introduced
to help the model generalize better and prevent overfitting. The
input time sequences were cropped with a fixed sequence length
w = 50 (representing 2 min of imaging) and stride length s = 1
to move along the time dimension of the rs-fMRI series. Thus,
for each subject, 156 cropped sequences were acquired, which
boosted the sample size to 13,104 in total. This augmentation was
applied to all the subjects in both training and testing.

2.2. LSTM Model
We aimed to investigate an LSTM model for PD early stage
characterization from rs-fMRI data. We hypothesized that the
early stage classification performance would improve compared
with traditional ML classifiers that predict from FCmeasures and
CNN-based models that analyze local information. The overall
workflow of our project is shown in Figure 1.

LSTMs are a special type of RNN that can address the
vanishing gradient and limited long-term memory problems in
a vanilla RNN model, taking the previous information and the
current data input to update the cell state and hidden state. The
key equations in an LSTM cell are:

it =σ
(

Wixt + Uiht−1 + bi
)

(1)

ft =σ
(

Wf xt + Uf ht−1 + bf
)

(2)

c̃t = tanh
(

Wcxt + Ucht−1 + bc
)

(3)

ct =it ∗ c̃t + ft ∗ ct−1 (4)

ot =σ
(

Woxt + Uoht−1 + bo
)

(5)

ht =ot ∗ tanh (ct) (6)

where at time step t, xt ∈ R
N is the vector of N ROI values,

ht ∈ R
M is the hidden state, ct ∈ R

M is the cell state, with an
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FIGURE 1 | The overall workflow of our project.

FIGURE 2 | The proposed LSTM model structure.

input gate it ∈ R
M deciding what information from the current

estimated cell state is updated, a forget gate ft ∈ R
M deciding

how much of the previous hidden state should be discarded, and
an output gate ot ∈ R

M filtering the cell state to update the
hidden state. W ∈ R

M×N is the matrix of weights applied to the
input,U ∈ R

M×M is thematrix of weights applied to the previous
hidden state, b ∈ R

M is the bias, and σ is the sigmoid activation
function.

The proposed LSTM model structure is similar to the model
in Dvornek et al. (2017) and shown in Figure 2. The model takes
the average time-series of ROIs as the input and then utilizes
the output of each time step, which aggregates the decoded
hidden state of each cell as the input of the fully connected
(dense) layer with 1 node. A dropout layer with dropout rate
= 0.5 was integrated between the dense layer and the sigmoid
activation layer to prevent overfitting, and the final output of the
sigmoid layer would be interpreted as the probability of being
assigned as each stage, where higher probabilities correspond
to higher likelihood of stage 2. This architecture would directly
take the signal at every time point into consideration, which
would improve the network’s robustness handling noisy rs-fMRI
data.

To evaluate the effect of a temporal analysis model, we
implemented a CNN model with similar structure as in Oh et
al. (2020) on the average time-series ROIs. The CNN model
contains three 1-D convolutional layers with stride equal to 1
and kernel size as 7, 5, and 3, respectively. The numbers of the
output channels in each layer are 16, 32, and 32, respectively.
Following each convolutional layer, a max pooling layer was
applied with sliding window size as 2 and stride as 2. The
final output was then given by three consecutive dense layers
with hidden size as 64, 32, and 1. Similarly, a dropout layer
with dropout rate = 0.5 was incorporated after each dense layer
to prevent overfitting. The Rectified Linear Unit (ReLU) was
applied as the activation function for each layer except the
sigmoid activation for the last dense layer, as the final output
could be interpreted as the likelihood of being classified as each
stage.

We also conducted traditional ROI-based machine learning
methods in rs-fMRI analysis as the baseline. A standard pipeline
is calculating the FC matrix, representing the correlation or
covariance between each ROI pair (connectome), and then using
the FC matrices as predictors in a traditional machine learning
classifier (Dadi et al., 2019). Here, we tested random forest (RF),
linear support vector machine classifier (SVC) (as in Abós et
al., 2017; Zhang et al., 2019) and logistic regression (LR). The
FC matrices were calculated using the Ledoit Wolf estimator
(Ledoit and Wolf, 2004) for large covariance matrices, and only
the upper triangle of the matrices were used as the inputs of the
ML classifiers to prevent redundancy since the FC matrices are
symmetric.
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2.3. Model Training and Evaluation
To comprehensively evaluate the model performances, five
repeats of 10-fold stratified cross validation was implemented.
For each repeated run, 10% of subjects are selected as test set,
10% are selected as validation set, and the remaining 80% are the
training set. Note that the random split was carried out on both
stage 1 and stage 2 in order to stratify the imbalanced dataset
and keep the ratio of the two stages roughly the same in all the
splits. To handle the class imbalance, sample weights are assigned
inversely proportional to the stage ratio in the dataset. For the
LSTM model and all the ML models, the hyperparameter tuning
was first performed by using the validation set to evaluate the
performance of the models trained on the training set under the
different hyperparameters. After the best hyperparameters were
selected, the final model was trained on both the training and the
validation set and then evaluated on the test set to best utilize the
relatively smaller dataset.

For the LSTMmodel setup, the initial hidden and cell states of
the LSTMwere set as all zeros. The input length was set to 50 time
points based on initial testing on a random cross-validation fold
(details in Supplementary Material). The hidden size M of the
LSTM layer was tuned from the list of [16, 32, 64, 128]. To prevent
overfitting on the LSTM model, L2 regularization and the early-
stopping mechanism were introduced to enhance the model’s
generalization ability. For both deep learning models, training
was terminated when the validation loss had not reduced in 10
epochs or when the maximum epoch number 50 was reached.
Both LSTM and CNN networks were trained using the cross
entropy loss function, Adam optimizer with learning rate = 1e-
4, batch size = 200, dropout rate fixed at 0.5, the λ of the L2
regularization at 0.01, and other default parameter settings. Both
the LSTM and CNN models were implemented using PyTorch
and trained on aNVIDIAGeForce GTX 1080 GPU at the Farnam
Cluster of the Yale Center for Research Computing.

All the other ML models were implemented via Scikit-
learn. The regularization parameter inversely proportional to the
regularization strength of LR was searched in the range of [1e-9,
10] and the search range of SVC was [0.01, 10], both with step
size as 1e-1 in log scale. For RF, the number of trees were tuned
from the list of [10, 50, 100, 200, 500]. Themaximum depth of the
tree was searched from 2 to 6. The minimum number of samples
to split an internal node was selected from the list of [10, 20, 50,
100, 200, 500, 1,000, 2,000, 3,000] and the searching list of the
minimum number of samples in a leaf node was [10, 50, 100, 200,
300, 500]. All the other hyperparameters were set as default.

All the evaluationmetrics were based on subject-level outputs,
which are given by the majority vote of all the sequences from
one subject. Evaluation at the subject level better matches the real
clinical diagnosis of one label per subject, and the ensembling
also has improved performance compared to the sample-wise
results. The subject-wise accuracy, precision, recall (sensitivity),
specificity, and F1 score were reported. The equations for
accuracy, precision, recall, specificity, and F1 score calculation
are as below,

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

Specificity =
TN

FP + TN
(10)

F1 =
2 ∗ Precision ∗ Recall

Precision+ Recall
(11)

where positive and negative refer to stage 2 and stage 1,
respectively, TP is the true positive, TN is the true negative, FP
is the false positive, and FN is the false negative.

The corrected repeated k-fold cross validation test (Bouckaert
and Frank, 2004) was conducted as the significance test for model
performance comparison. For a r-times k-fold cross-validation,
the following statistic is calculated,

t =

k
∑

i=1

r
∑

j=1
xij

(

k ∗ r
)

√

(

1
k∗r

+
n2
n1

)

σ̂ 2

(12)

where xij is the difference in the statistic of interest between
two models being compared from the ith fold of the jth cross-
validation run, n1 is the number of subjects used for training, n2
is the number of subjects used for testing, and σ̂ 2 is the estimated
variance of the differences xij. This test corrects the estimate of
the variance by taking the dependency between cross-validation
samples into account. The significance level α was set at 0.05.

We also compared the model outputs to a separate measure
of PD severity to further assess validity of model predictions
for disease staging. The Movement Disorders Society-Unified
Parkinson’s Disease Rating Scale (MDS-UPDRS) is the standard
assessment tool for disease severity and progression of PD (Goetz
et al., 2008). The MDS-UPDRS part III motor exam score (range:
0–132) rates the severity of motor impairment. Higher scores
indicate worse motor impairment. The MDS-UPDRS-III scores
of stage 1 subjects are 14.00± 5.57, and that of stage 2 subjects are
23.69± 10.70.We computed the Pearson correlation between the
model output scores and the MDS-UPDRS-III scores to evaluate
whether the stage classification model output is associated with a
more continuous measure of disease severity.

2.4. Model Interpretation and Connectivity
Analysis
We interpreted the LSTM model by exploring the learnable
input-hidden weightsW of the LSTM cell (Dvornek et al., 2017).
The ROIs associated with high magnitudes of the weights that are
directly applied to the ROI time-series data play a significant role
in giving the output, and thus will be given high importance in
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TABLE 3 | Early-stage PD classification results (mean ± standard deviation).

Accuracy F1 Precision Recall (Sensitivity) Specificity

LR 0.5664 ± 0.1897 0.6346 ± 0.2032 0.6993 ± 0.2089 0.6173 ± 0.2402 0.4666 ± 0.3605

RF 0.5862 ± 0.1510 0.6745 ± 0.1341 0.7199 ± 0.1548 0.6580 ± 0.1702 0.4433 ± 0.3155

SVC 0.5811 ± 0.1451 0.6508 ± 0.1721 0.7216 ± 0.1930 0.6373 ± 0.2253 0.4766 ± 0.3496

CNN 0.6007 ± 0.1399 0.6939 ± 0.1549 0.6952 ± 0.1435 0.7293 ± 0.2240 0.3266 ± 0.2807

LSTM 0.7163 ± 0.1318 0.7912 ± 0.1050 0.7794 ± 0.1047 0.8226 ± 0.1579 0.5833 ± 0.2948

The best results were marked in bold.

the model analysis. After z-score normalization, we highlighted
the ROIs with the magnitudes of the associated weights above
mean and one standard deviation of the weights. These ROIs
were considered as the important ROIs for early stage PD
classification.

Pairwise FC analysis was then conducted based on the selected
top ROIs. The covariance matrices for all subjects were computed
from the top ROIs. Then for each edge, the Welch’s t-test
(Ruxton, 2006) was used to compare the FC for the ROI pairs
between the stage 1 and stage 2 subjects, taking into consideration
the different number of subjects in each stage. The significance of
the Welch’s t-statistic was assessed using a permutation test with
10,000 random permutations of the subject stage labels to find
whether there was a significant difference in the FC between the
two stages. Correction for multiple comparisons was performed
by controlling the false discovery rate (FDR; Benjamini and
Hochberg, 1995).

Regression analysis was performed to analyze the association
between the FC of top ROIs and the MDS-UPDRS-III scores.
The elastic net model (Zou and Hastie, 2005) implemented
using Scikit-learn was used to predict MDS-UPDRS-III scores
from the pairwise FC between top ROIs. The elastic net
regularization parameters were searched using the repeated
cross-validation splitting strategy (3 runs, 10 folds), and the
optimal hyperparameters were then applied to the model for the
entire dataset. The searching range of both α and l1_ratio is [0, 1].
The selected regularization parameters for LSTMwere α = 0.1936
and l1_ratio = 0.1000.

The permutation test with 10,000 runs was again used to
assess significance of the regression coefficients, where the subject
MDS-UPDRS-III scores were randomly shuffled and the p-values
were calculated as the percentage of permutation results with a
coefficient magnitude greater than the magnitude of the original
observation. The top ROI analysis results were also compared
with results of similar whole-brain FC analysis to see whether the
top ROIs play a dominant part in disease stage progression. All
the FC differences were visualized via BrainNet Viewer (Xia et
al., 2013).

3. RESULTS

3.1. Characterization Results
Table 3 summarizes the classification results of the LSTM
model, the CNN model, and all the ML classifiers. All the
models have been selected with the best hyperparameters. The
proposed LSTM model yielded the highest values among all the

TABLE 4 | Correlation between the model output scores and the MDS-UPDRS-III

scores (mean ± standard deviation of 5 runs).

Pearson correlation

LR 0.3212 ± 0.0550

RF 0.3911 ± 0.0231

SVC 0.1748 ± 0.0455

CNN 0.2686 ± 0.0230

LSTM 0.4270 ± 0.0595

The best result was highlighted in bold.

quantitative metrics, outperforming the CNN model and all the
other ML methods. Under the corrected repeated k-fold cross
validation test (k = 10, r = 5, n2 = 8, n1 = 76, degree of freedom
= 49, and tthre = −2.010), the results of the LSTM model showed
significant improvement in accuracy, F1, and recall compared to
all other models. In precision and specificity, the LSTM model
showed significant improvement compared to SVC.

Table 4 presents the correlation between the model output
scores and the MDS-UPDRS-III scores. The SVC model, which
resulted in the second highest precision and specificity for stage
classification (Table 3), did not produce significant correlation
of model output and MDS-UPDRS-III scores (r = 0.1748,
p = 0.12). The LSTM model showed the highest correlation
between the stage prediction score with MDS-UPDRS-III scores
(r = 0.4270, p = 0.00003).

3.2. Brain Abnormality Detection
We detected the top ROIs related to the brain abnormality in
disease development by investigating the learnable weights in the
LSTM model. Table 5 displays the top ROIs with the greatest
absolute weights for the overall LSTMmodel in descending order.
The level is the computed z-score of the absolute value of the
extracted weights, showing how much the region magnitude is
above the mean weight magnitude of all the ROIs.

3.3. Brain Connectivity Analysis
The brain connectivity analysis was carried out first by assessing
FC differences between stages 1 and 2 for all the pairwise
connections between the top ROIs by using the permutation
Welch’s t-test. The edges that showed significant differences
between the two stages are listed in Table 6, and the nodes
and edges are displayed in Figure 3. All listed edges were
weaker in stage 2 than in stage 1, indicating that a more
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advanced disease stage in PD is associated with decreased
functional connectivity.

For motor impairment-related connectivity analysis, the
elastic net regression was used to regress the MDS-UPDRS-III
score on the FC edges and permutation testing was conducted
to assess the significance of regression coefficients. Table 7

summarizes the significant edges of the regression results and
the related direction of association with motor score. The nodes
and edges are displayed in Figure 4. After applying the FDR

TABLE 5 | Top ROIs and the associated brain functions with the greatest weight

magnitudes in the LSTM model.

Region Level Function

Vermis_10 2.4741 Motor functions

Inferior frontal gyrus, orbital part,

right

2.2505 Higher cognitive functions

Calcarine sulcus, right 1.9351 Visual functions

Middle frontal gyrus, orbital part,

left

1.8824 Higher cognitive functions

Insula, right 1.8568 Emotional functions

Calcarine sulcus, left 1.8407 Visual functions

Middle frontal gyrus, orbital part,

right

1.8824 Higher cognitive functions

Caudate nucleus, right 1.7248 Motor functions

Superior occipital gyrus, right 1.5491 Visual functions

Superior frontal gyrus, medial,

left

1.5404 Higher cognitive functions

Amygdala, left 1.5041 Emotional functions

Postcentral gyrus, right 1.4804 Somatosensory functions

Cerebellum_3, left 1.4733 Motor functions

Posterior cingulate gyrus, right 1.4275 Default mode functions

Supplementary motor area, left 1.3535 Motor functions

Cerebellum_7b, right 1.4733 Motor functions

Lenticular nucleus (putamen and

globus pallidus), right

1.1469 Motor functions

Cerebellum_6, right 1.4733 Motor functions

Superior occipital gyrus, left 1.0606 Visual functions

correction with a false discovery rate of 0.2, the top three edges
remained significant.

A conventional whole-brain FC permutation Welch’s t-test
and MDS-UPDRS-III score regression analysis were conducted
as a comparison with the sub-ROI group analysis (details in
Supplementary Figures 1, 2, respectively). Note that none of
the edges detected by whole-brain analysis survived the FDR
correction, potentially indicating overfitting in the traditional
whole-brain analysis results.

4. DISCUSSION

In this work, we investigated an LSTM model for early-stage
PD characterization using rs-fMRI data. Under a 5-run, 10-fold
repeated stratified cross-validation, the proposed LSTM model
performed significantly better than the CNN model and the
other traditional ML methods for the classification of stage 1
and stage 2 PD subjects. The model output scores were also

TABLE 6 | Significantly different edges in stage 1 and 2 by permutation Welch’s

t-test for the LSTM model.

Edges connecting ROIs P-value

Postcentral gyrus, right-Superior occipital gyrus, left 0.0022

Calcarine sulcus, right-Superior occipital gyrus, left 0.0077

Inferior frontal gyrus, orbital part, right- Middle frontal gyrus, orbital

part, right

0.0093

Superior occipital gyrus, right-Postcentral gyrus, right 0.0096

Middle frontal gyrus, orbital part, right-Postcentral gyrus, right 0.0159

Calcarine sulcus, right-Postcentral gyrus, right 0.0201

Middle frontal gyrus, orbital part, left-Postcentral gyrus, right 0.0275

Calcarine sulcus, right-Middle frontal gyrus, orbital part, left 0.0287

Calcarine sulcus, left-Postcentral gyrus, right 0.0310

Middle frontal gyrus, orbital part, left-Calcarine sulcus, left 0.0327

Middle frontal gyrus, orbital part, right-Superior occipital gyrus,

right

0.0329

FIGURE 3 | Significantly different edges in stage 1 and 2 by permutation Welch’s t-test for the LSTM model. All edges showed decreased connectivity in stage 2.

PoCG, postcentral gyrus; SOG, superior occipital gyrus; CAL, calcarine sulcus; ORBsupmed, orbitofrontal cortex, superior medial part; IFGo, inferior frontal gyrus,

orbital part.
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better correlated with the motor severity scale. The learnable
weights in the well-trained LSTM model produced meaningful
interpretations. The post-hoc FC analysis revealed edges that
differed significantly between stages 1 and 2 in both classification
and regression analyses. The findings of potentially influential
top brain regions and abnormal FC among them could provide a
deeper understanding of the neuroanatomical substrates of early
disease stages in PD.

The classification results suggest the LSTM model has the
potential to better extract and utilize temporal information from
the rs-fMRI data. The conventional ML analysis methods are FC-
based, i.e., the FC matrices are the input of the ML methods
instead of the original rs-fMRI series. This requires an additional
step of data pre-processing, which needs additional time and
computation, while it may also cause some loss in the functional
information. Our proposed method directly uses the rs-fMRI

TABLE 7 | Edges with significant weights by permutation test of the elastic net

regression of MDS-UPDRS-III scores for the LSTM model.

Edges connecting ROIs P-value Direction

Calcarine sulcus, left-Postcentral gyrus, right 0.0004 Decreased

Calcarine sulcus, right-Postcentral gyrus, right 0.0005 Decreased

Superior occipital gyrus, right-Postcentral gyrus, right 0.0019 Decreased

Superior occipital gyrus, left-Postcentral gyrus, right 0.0089 Decreased

Calcarine sulcus, left- Calcarine sulcus, right 0.0106 Decreased

Vermis_10-Superior occipital gyrus, left 0.0217 Increased

Middle frontal gyrus, orbital part, right-Superior occipital

gyrus, right

0.0233 Decreased

Posterior cingulate gyrus, right-Cerebellum_6, right 0.0234 Decreased

Vermis_10-Postcentral gyrus, right 0.0238 Increased

Inferior frontal gyrus, orbital part, right-Postcentral gyrus, right 0.0243 Decreased

Middle frontal gyrus, orbital part, right-Cerebellum_6, right 0.0258 Decreased

Vermis_10-Supplementary motor area, left 0.0325 Increased

Calcarine sulcus, right-Superior occipital gyrus, left 0.0434 Decreased

series as the input, which successfully preserved brain functional
information while reducing noise and redundancy. While both
the LSTM and CNN models used the rs-fMRI series as input, the
LSTM model performed better than the CNN model. The input
gate, forget gate, and output gate in the LSTM cell are designed
to handle temporal dependencies in relatively long sequences,
which could successfully extract temporal information along the
time dimension in a time- and computation-efficient way.

Furthermore, the LSTM model outputs produced the highest
correlation with the MDS-UPDRS-III scores. A high correlation
is desired, as the degree of motor impairment plays an important
part in early stage distinction. Thus, the proposed LSTM model
not only resulted in the best stage classification performance, but
also the confidence of the LSTM model’s classification produced
the highest correlation with a closely related continuous rating of
disease severity.

In brain abnormality detection, a diverse set of ROIs were
important for predicting disease severity. Most notably, the basal
ganglia structures including the lenticular nucleus and caudate,
and the supplementary motor area together with the postcentral
gyrus are implicated in sensorimotor impairment in PD (Ji et al.,
2018). The cerebellum is involved in tremor generation (Ma et
al., 2015; Zhang et al., 2016). The amygdala and insula are limbic
structures involved in emotional processing and play a role in
anxiety and depression in PD (Tinaz et al., 2021). The calcarine
sulcus and superior occipital gyrus are visual processing areas
implicated in visual symptoms of PD such as hallucinations (Bejr-
kasem et al., 2019). The posterior cingulate is themajor hub in the
default mode network that shows abnormal FC in PD and other
neurodegenerative disorders (Tinaz, 2021). Finally, the frontal
regions mediate higher cognitive and executive functions and
are implicated in cognitive dysfunction in PD even in the early
stages and in the absence of dementia (Tinaz, 2021). Thus, the top
influential ROIs for the LSTM model that play an important role
in distinguishing early-stage PD are also relevant brain regions
linked to motor and non-motor functions that are affected in PD.

In brain connectivity analysis, interestingly, the influential
edges are mostly between the nodes related to non-motor

FIGURE 4 | The edges with significant weights by permutation t-test of elastic net regression of MDS-UPDRS-III score for the LSTM model. Red: edges with positive

coefficients. Blue: edges with negative coefficients. SMA, supplementary motor area; PoCG, postcentral gyrus; SOG, superior occipital gyrus; PCG, posterior

cingulate gyrus; CAL, calcarine sulcus; ORBsupmed, orbitofrontal cortex, superior medial part; IFGo, inferior frontal gyrus, orbital part; VERM10, vermis_10; CRBL6,

cerebellum_6.
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brain functions. This finding has important clinical implications
suggesting that progression even in the early stages of the
disease involves FC changes in non-motor networks, underlining
the importance of evaluating the severity of not only motor
but also non-motor impairment in clinical progression studies
and prediction models (Tinaz et al., 2021). Current clinical
works investigating non-motor neuropsychiatric symptoms in
PD (Alzahrani et al., 2015) and the related FC analyses (Baggio
et al., 2015) supports this finding as well.

In motor impairment-related connectivity analysis, higher
MDS-UPDRS-III scores indicate worse motor impairment.
Therefore, the “increased” direction in Table 7 denotes a positive
relationship between edge strength and motor impairment,
whereas “decreased” shows the opposite relationship. The
edge strength between the cerebellar vermis and sensorimotor
(supplementary motor area and postcentral gyrus) and visual
areas (superior occipital gyrus) is associated with worse motor
impairment suggesting an reorganization of brain circuits.
Similar shifts from the defective basal ganglia circuits to the
cerebellar circuits have been reported in PD (Tinaz, 2021).

The brain connectivity analysis of the LSTMmodel was based
on the top ROIs with high magnitudes of the learned weights,
which showed its superiority compared with the conventional
whole-brain FC analysis. While the results of the LSTM ROI
analysis showed similar trends as the traditional whole-brain FC
analysis in terms of highlighting similar regions with increased
or decreased connectivity, the very large number of connections
in the whole-brain FC analysis not only hinders interpretation
but also did not survive correction, thus, were not informative.
Furthermore, given the relatively smaller number of subjects,
the whole-brain FC analysis could result in overfitting. Thus,
these analyses may not be robust in revealing FC changes that
generalize to the greater PD population. The post hoc regression
results of the LSTM model using the FC between the top ROIs
also highlighted the connections that may be implicated in
disease severity, whereas the traditional FC analysis did not show
a significant relationship between disease severity and whole-
brain FC across the entire group. In conclusion, the LSTMmodel
was able to accurately classify the two early disease stages by
identifying the specific brain regions and edges that contribute
strongly to disease stage and motor impairment.

There are some limitations of this work that require further
investigation. First, we applied a single pipeline for the pre-
processing of the rs-fMRI data without global signal regression
(GSR). Other pre-processing strategies including GSR could
reveal different FC results (Murphy et al., 2017). As there is not
a single right way of pre-processing rs-fMRI data (Murphy et
al., 2017), a future direction of this study would be investigating
the effect of other pre-processing strategies such as GSR on
the FC results in PD early stage characterization. Also, the
current work focuses on the usage of only rs-fMRI data in
early stage PD classification. Future work should introduce
multimodal data into the characterization, such as task-based
fMRI data, cognitive and behavioral assessments, and other
biological markers. This will fully utilize each patient’s clinical
profile and more comprehensively assess factors that may
predict disease stage, potentially improving stage classification

and thus producing more fruitful features for characterizing
differences between the two early stages. Another promising
future direction is investigating the usage of other advanced
temporal deep learning models such as gated recurrent unit (Cho
et al., 2014) and transformer (Vaswani et al., 2017) networks.
By implementing various network backbone structures, the
classification performance is expected to further improve with
insightful biomarker findings.

5. CONCLUSION

We proposed the usage of an LSTM model for early stage PD
characterization using rs-fMRI data from the majority of the
PPMI dataset. Under the repeated stratified cross-validation,
the LSTM model significantly outperformed the CNN model
and other ML methods in accuracy, F1 score, and recall,
with the highest correlation between model output scores
and the MDS-UPDRS-III motor scores. The LSTM model
interpretation results suggested the highly influential ROIs in
early stage PD progression, and the brain connectivity analysis
results identified prominent edges in brain FC changes and
the disease severity. The propounded regions and edges are
related to the symptoms of PD, which supports the validity
of our proposed LSTM model for early stage characterization.
Identification of brain regions and functional connections
affected by early PD progression could potentially help unravel
the mechanisms of PD and facilitate the development of new
therapeutic targets.
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