
TYPE Mini Review

PUBLISHED 05 August 2022

DOI 10.3389/fnimg.2022.934514

OPEN ACCESS

EDITED BY

Duygu Tosun,

University of California, San Francisco,

United States

REVIEWED BY

Mónica López-Vicente,

Erasmus MC University Medical

Center, Netherlands

*CORRESPONDENCE

Sara Godina

SAG189@pitt.edu

†These authors have contributed

equally to this work and share first

authorship

SPECIALTY SECTION

This article was submitted to

Population Neuroimaging,

a section of the journal

Frontiers in Neuroimaging

RECEIVED 02 May 2022

ACCEPTED 14 June 2022

PUBLISHED 05 August 2022

CITATION

Godina S, Jacob ME and Ganguli M

(2022) Tutorials in population

neuroimaging: Using epidemiology in

neuroimaging research.

Front. Neuroimaging 1:934514.

doi: 10.3389/fnimg.2022.934514

COPYRIGHT

© 2022 Godina, Jacob and Ganguli.

This is an open-access article

distributed under the terms of the

Creative Commons Attribution License

(CC BY). The use, distribution or

reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Tutorials in population
neuroimaging: Using
epidemiology in neuroimaging
research

Sara Godina1*†, Mini E. Jacob2† and Mary Ganguli1,3,4

1Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States, 2Department

of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States,
3Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States, 4Department of

Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States

Epidemiology is the foundation of all public health research and practice.

Epidemiology confers many important uses for the advancement of

neuroimaging research. Epidemiology serves as a framework to organize

pieces of data and guide critical thinking in the research process from the

early stages of study design to the end goal of reaching appropriate inferences.

Epidemiology accounts for the profound heterogeneity in populations,

thoroughly describes study samples, and identifies consequential threats

to study validity. Finally, epidemiology is a discovery tool that can lead

researchers to uncover new risk factors, disease states, and subpopulations.

The neuroimaging investigator with a grasp of the principles of epidemiology

is in a unique position to undertake valid clinical epidemiology and

etiological research.
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Introduction

The researcher who wants to study a neurological condition or disease using

neuroimaging methods has an appreciation of the key characteristics of the condition,

specifically, causes, pathophysiology, clinical manifestations, and prognosis. Although

this foundational knowledge is a critical asset for the successful neuroimaging

investigator, it is not sufficient to design a research study that is valid and reliable.

The Five Ws (who, what, when, where, why) are taught in journalism as the necessary

pieces of information for any story to be complete. An epidemiological framework

will challenge neuroimaging researchers to ask similar questions for a more complete

research picture: participant (who), health exposure or outcome (what), timing (when),
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place (where), and risk factors (why). It is imperative for

neuroimaging researchers to critically think about who the

individuals are in their study: where have they been before

getting in a scanner? What exposures have they encountered,

when, and for how long? How are these specific individuals

different from the target population, and how will that impact

inference and validity of conclusions? Evenwith the best possible

neuroimaging methodology and a thorough understanding of

the pathophysiology of the disease, the study’s results may not

be reliable if the source of data and sampling strategies lead

to a sample that is not representative. For example, compared

to a community hospital, a specialized clinic may attract

primarily high-income participants with high socioeconomic

status. Sampling is not only important in geographic terms,

but also temporally, in instances when disease trends change

over time due to changes in the environment, diet availability,

etc. The discipline of epidemiology serves to address such

challenges. The thoughtful neuroimaging investigator, armed

with an understanding of the principles of epidemiology, can

combine cutting-edge neuroimaging methodologies with state-

of-the-art study design and is in a particularly advantageous

position to advance scientific knowledge through neuroimaging

research on vital clinical questions.

What is epidemiology?

Classically, epidemiology is defined as “(1) the study of

the distribution and determinants of health-related states and

events in populations; and (2) the application of this study

to the prevention and control of health problems” (Jacob and

Ganguli, 2016). The field of epidemiology is frequently described

as a “bridge” between basic biological science and population

prevention policies. As we know it, the field of epidemiology

originated in a milestone study of an outbreak of cholera by

physician John Snow in 1850s in England. By discovering that

cholera was being spread throughout London via consumption

of contaminated water from the (now infamous) Broad Street

pump, Snow transformed how the pathogenesis of cholera

was understood. Since Snow’s breakthrough, epidemiologic and

public health research has led to revolutionizing measures to

improve the health of populations, ranging from eradication of

smallpox through vaccination to transforming HIV-AIDS from

a terminal disease to a manageable chronic disease through

antiretroviral treatment.

Past the investigation of communicable diseases, applying

the same principles, epidemiology has expanded to understand

chronic diseases at the population level. Advances in technology

have led to the development of subspecialty fields, such as

genetic epidemiology and geospatial epidemiology. However,

the translational process of taking lab discoveries and turning

them into quantifiable health benefits in human populations

is complicated. Basic and clinical neuroscience research has

TABLE 1 Goals to advance population neuroscience (Falk et al., 2013).

1. Integrate brain imaging into existing representative (sub)samples

2. Development of methods to scale up neuroimaging studies to larger and more

representative samples with methods allowing for cross-study, cross-age, and

cross-culture comparisons

3. Use strategic sampling when recruiting for stand-alone neuroimaging studies

4. Explore moderators of brain-behavior links and neural predictors of relevant

outcomes

5. Changing of the cultures in neuroscience and population research

6. Emphasis on development and ecological interactional models

yielded pivotal advancements in our understanding of the

structure and function of the human brain, it has become

obvious that researchers must look beyond small convenience

samples of patients and toward larger representative samples

to explore the pathogenesis of diseases and conditions of the

central nervous system. This is the underlying motivation for

the field of “population neuroscience,” which aims to merge the

knowledge base and skill sets of epidemiologists with those of

neuroscientists (Paus, 2010; Falk et al., 2013).

Population neuroscience

Population neuroscience seeks to leverage interdisciplinary

expertise and limitations of both epidemiology and

neuroscience. Incorporating neuroscience measures into well-

characterized epidemiologic cohorts allows for the examination

of mechanisms that underlie the associations between exposures

and outcomes. The application of epidemiologic methods to

neuroscience variables will further allow for consideration of

mediators andmoderators along the hypothesized pathways and

improved generalizability due to population-based sampling

methods. Six concrete goals to advance such an integrative

and collaborative framework between neuroscience and

epidemiology have been outlined by Falk et al. (2013) (Table 1)

and describe how team-based science can begin to link analyses

from the neuronal level up to the population level.

Epidemiology serves as a guiding
research framework

Study designs

A clear and concise question should be the start of any

research proposal, which in turn determines an appropriate

study design. An investigator might employ the use of

the “patient/population, intervention, comparison, outcome,

timing, setting (PICOTS)” mnemonic as a starting framework
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TABLE 2 Classification of epidemiologic studies.

Observational

Descriptive

Analytic

Ecologic

Cross-Sectional

Case–Control

Cohort

Experimental

Randomized controlled trials

Community trials

Field trials

to define the necessary components of a clinical or healthcare-

related question: PICOTS. After a well-defined research question

has been formulated, an investigator is able to select an

appropriate study design, and further, appropriate inferences

can be drawn from results, based on design. Thus, before any

participants are even recruited for a study and/or data collected,

a thoughtful investigator will be able to delineate the strengths

and weaknesses of their chosen study design.

Epidemiologists use an assortment of different study

designs to estimate associations among social, environmental,

or biologic predictors and health outcomes. Generally, these

study designs can be classified in two ways: observational

or experimental (Table 2). As the name would suggest,

in observational studies, participants are observed

without researcher intervention, and data are collected

on the variables needed to test the research question.

In contrast, the researcher intervenes in experimental

studies to try and influence a health outcome. Here,

we briefly discuss the most common study designs, the

corresponding effect measures, and the conclusions of

each design.

Observational studies

Descriptive studies

A descriptive study describes an outcome in relation to

its magnitude and distribution by person, place, and time, but

does not formally estimate any exposure/outcome associations.

For example, the tabulation of the mortality rate due to

stroke in a country over several decades is used to describe

the mortality trend over time. More formal analytic studies

are necessary to properly evaluate the factors associated

with a trend and potentially determine its causes. Purely

descriptive studies are rare; a descriptive analysis is often the

preliminary stage of an epidemiologic study that eventually

tests associations.

Cross-sectional studies

In cross-sectional studies, both the predictor and outcome

aremeasured in a sample of the population at a single time point,

akin to a “snapshot.” Cross-sectional studies are frequently

used because they are time, money, and resource efficient, and

typically low burden to participants (and researchers). The low

burden is especially important for participants of advanced age,

who might not be in great health, and might be unable or

unwilling to make it to repeated research visits. Time efficiency

is important to aging researchers studying diseases of aging

that exhibit steep rates of decline in health. Cross-sectional

studies are further beneficial for researchers in the aging field

because we can include many individuals across the lifespan

in the same study. However, since exposure and outcome are

measured at the same time, we cannot establish temporality

in cross-sectional studies, or assert that exposure is causally

related to outcome in any way. Furthermore, any average pulled

from cross-sectional data could be misrepresentative of the

true data, as an assumption in cross-sectional designs is that

changes from one age group to another mirror changes from

one individual to another (and we know the aging process

is highly heterogeneous); cross-sectional and longitudinal data

might not agree with each other. However, given all of these

limitations, consistent exposure/outcome associations that have

been observed in cross-sectional studies are usually the first

evidence of a “signal” of a “true” relationship before more

advanced study designs are employed.

Case–control studies

In case–control studies, a group of individuals with

identified disease (cases) is compared to a group of individuals

without the disease (controls). Cases are typically recruited

based on referrals in a clinical setting or bymedia advertisement,

from a broadly defined population (e.g., residents of a given city).

The same broadly defined population criteria are used to select

controls, so controls can be as similar as possible to the cases

with the exception of having the disease. Appropriate control

selection is a critical aspect of case–control studies; if systematic

differences between cases and controls exist in characteristics

other than the disease itself, the “true” association between the

exposure and disease will be obscured. The association may

be completely missed or if there is no association, a spurious

association may be observed. Similarly, it is important to collect

data from both cases and controls in a similar fashion. For

example, it would be inappropriate if the exposure data was

indirectly obtained from family members of the cases but

directly from the case. For both cases and controls, exposure data

are typically captured through self-report, clinical examination,

or laboratory tests. An odds ratio is the effect measure used

when estimating the association between an exposure and

outcome in a case–control study; the odds ratio is a reasonable

approximation of the relative risk for rare diseases. Case–control

study designs are ideal for an investigator to use when studying
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a rare disease that might have too low a prevalence to be cost-

effectively detected by traditional random sampling methods.

Cohort studies

Cohort studies prospectively follow a representative group

of individuals over time (longitudinally). Typically, a group

without disease or outcome of interest is followed over time

to detect incident cases of disease as they arise. At both study

entry and follow-up assessments, exposure status is measured,

and the entire cohort is assessed for disease development. As

new cases are detected, it is possible to calculate an incidence

rate, and relative risk is used to measure associations between

first exposure and later disease.

Although cohort studies are an ideal study design for

investigating predictors of diseases and health outcomes,

they are burdensome with respect to money and time. It

is challenging and labor-intensive to recruit and retain a

random sample of participants over a follow-up of many years.

Participant drop-out impacts the internal validity of a cohort

study, as attrition potentially introduces bias. Individuals who

do not drop-out or are not lost to follow-up in a high-

burden longitudinal study are likely to be significantly different

from other participants that do drop-out and the greater

target population.

Experimental studies

Experimental studies involve testing the effects of an

intervention in a sample of individuals. Disease or health

outcomes are compared between those that received the

intervention under study and those that did not. Ethical

considerations must be at the forefront of a researcher’s mind

when designing and implementing an experimental study.

Randomized controlled trials (RCTs) are the most common

experimental study design.

Randomized controlled trials

Randomized controlled trials randomly allocate whether

participants receive an intervention or not. Theoretically,

randomization helps to ensure that at study entry the

intervention and control groups are comparable, e.g., there is no

bias in selection for intervention.

Epidemiologic inference

Sample size

Whether actively designing a new study or reading a

research manuscript, it is imperative to understand the ways

in which results are easily influenced based on sample size.

With an increasing number of participants in a study, there

is an increasing likelihood that the sample is representative

of the source population. In contrast, smaller samples are

more vulnerable to the influence of variability throughout

the sampling process, as human populations are largely

heterogeneous. Given the difficulty and expense of recruiting a

large and random sample, sample size calculation is a critical

factor to consider in study design. Such calculations will yield

the minimum number of participants needed to test a specific

hypothesis or research question. When calculating sample size,

the following values are considered.

P-Value

The p-value is the probability that an observed association

is due to chance, assuming the null hypothesis is true and no

other biases (information, selection, or confounding) are present

in the study. Random error is always possible, as even when

individuals are identified via random sampling methods, the

ultimate study sample can still be different or show associations

that are not found in the parent population. Conventionally, an

alpha of 0.05 is utilized in studies to constrain the probability of

this error. Such a threshold minimizes the chance of rejecting

a “true” null hypothesis, e.g., incorrectly interpreting a chance

finding as genuine (also known as alpha or type 1 error). The

p-values are sensitive to the characteristics of the study sample

and might be low for many reasons. The p-value changes with

confounding, selection, or information bias, as the line that

defines a “significant” threshold in the distribution shifts with

the introduction of bias. The p-values are also impacted by

sample size, as sample size increases, the p-value decreases.

Finally, a very low p-value might be evidence of the null

hypothesis not being true, and that there is a “true” association

underlying the data; your data are highly unlikely with a true null

hypothesis, these numbers would rarely occur by chance alone.

Historical over reliance and misinterpretation of p-values have

been a recent hot topic in the scientific community, with some

scientists going so far as to call for the abandonment of statistical

significance altogether (Amrhein et al., 2019).

Normal distribution and confidence limits

Here, we assume that readers are familiar with the concepts

of normal distribution, central tendency, and dispersion.

An underlying assumption of many formal statistical tests

commonly used to estimate differences between groups is that

variables of interest are normally distributed in the target

population of interest. However, even if this is not the case, many

statistical tests will be sufficiently robust, given a large enough

sample size. Conventionally, a sample size of 30 or greater,

with no fewer than five individuals per compared subgroup is

considered appropriate (Pett, 1997; Salkind, 2004).

The 95% confidence limits are corollaries of the p-value

threshold of 0.05 described above. In the absence of bias

(information, selection, or confounding), if we were to repeat

the experiment 100 times, the estimated 95% confidence interval
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TABLE 3 Power, Type I, and Type II error.

“Truth”

Null

hypothesis

false

Null

hypothesis

true

Conclusion Reject null

hypothesis

True Positive

(Power, 1-β)

False Positive

(Type 1 error, α)

Accept null

hypothesis

False Negative

Type 2 error (β)

True Negative

would include the true value 95 times out of 100. However, we do

know whether this interval contains the “true” estimate or not.

To determine whether or not there is a “signal” in the confidence

interval, we can interpret from a precision point, and how close

estimates range together. However, again, this assumes no bias

as estimates can be very precise and/or similar but still biased.

The more narrow confidence intervals are, the more precise

the corresponding estimates will be. In general, the greater the

sample size, the more narrow the confidence interval will be.

Power

Power is the probability of correctly detecting a difference

between groups in a sample, given said difference exists in the

parent population. Conventionally, power is set in a range of 80–

95% to minimize the possibility of beta or type 2 error, e.g., the

probability of accepting a false null hypothesis or missing a true

difference. The relationship between a study’s power, type 1 and

type 2 errors, all within the context of the conclusions drawn vs.

“true reality,” is shown in Table 3.

E�ect size

The estimate of the effect size captures the magnitude of

the difference between study groups. Effect size is a necessary

component of sample size calculations; more power (larger

sample size) is needed to detect smaller differences in effect size.

In such calculations, expected effect sizes are typically estimated

based on prior research findings and/or clinical relevance.

Epidemiology accounts for the
profound heterogeneity in
populations

Sampling

Once a thoughtful research question has been defined,

an appropriate study is designed, and consideration of how

power and sample size will impact any conclusions, a

neuroimaging researcher, critiquing their study through the

lens of an epidemiologist, might then turn their attention to

a thorough discussion of the participants who make it into

their study, and again, how these specific participants impact

appropriate inferences.

Random sampling

Employing random sampling techniques ensure that each

individual in the target population of interest has an equal

chance of selection. Researchers must carefully consider the

impacts of drawing their samples from certain populations. For

example, it is perfectly reasonable to estimate the prevalence

of stroke in a clinic sample or dementia in a nursing home

sample, given the researcher takes into account that estimates

will likely be substantially higher in such settings, compared

to the general public. Furthermore, since individuals in clinics

and nursing homes themselves are not randomly drawn from

all individuals with stroke or dementia in the community, there

are inherent selection biases and consequential limitations on

appropriate inferences that can be generalized to the target

population of interest. Observational or experimental studies

that employ convenience samples of patients or volunteers with

strict eligibility criteria and burdensome study procedures are

similarly vulnerable to such selection factors and generalizability

of findings.

Validity

The word “generalizability” is frequently used as a default

criticism or limitation, since no study is fully representative

of (i.e., generalizable to) all populations. Internal validity

can be compromised if the variables under investigation and

selection factors are associated with themselves. Sometimes

these associations are unavoidable, such as an age effect where

older adults with an age-related disease or health outcome are

less likely to participate in research compared to younger adults

with the same disease or outcome. Other times, the investigator

imposes selection factors through study design or eligibility, e.g.,

if criteria for participation in an Alzheimer’s disease (AD) study

exclude individuals with stroke, any association between stroke

and AD will be unable to be studied.

For a research study to have external validity, appropriate

population sampling is needed so the sample is representative

of the larger target population that it purports to be drawn

from. Replication of results is a cornerstone of the scientific

process; however, it is expected that not every replication study

will yield similar results. For example, we would not expect that

results from a study of traumatic brain injury (TBI) outcomes

in teachers would be generalizable to similar research in military

veterans, given inherent differences in exposures and TBI rates

in the two groups. However, given appropriate sampling, it is

reasonable to expect results from a sample of teachers would be
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true of the larger population of teachers where the study sample

was drawn from and ultimately to the target population of all

teachers. Furthermore, if similar exposure/outcome associations

were found in both populations (teachers and veterans), there

is a greater likelihood that the findings are reflective of a true

relationship (Kukull and Ganguli, 2012).

Representative samples

To reiterate, the ultimate purpose of drawing a

representative sample is so a researcher can appropriately

extrapolate that the results from the study sample are also “true”

in the larger population from which it was drawn. Ideally, the

average value of a characteristic (e.g., brain volume) measured

in the study sample would also be the average value of that

characteristic found in the larger population. Furthermore, this

holds true for predictors and exposures of interest. For example,

the proportion of individuals in the sample population with a

certain attribute (e.g., hypertension) should be similar to the

underlying proportion in the larger population.

Threats to study validity

Bias

Bias is a consequence of systematic error found within the

design and conduct of a study, wherein observed and “true”

results differ. Typically, studies are vulnerable to bias in the

chosen method of participant recruitment (selection) and/or

in the measurement of exposure or outcome. We describe two

general categories of bias: selection and information bias.

Selection bias

Selection bias occurs if systematic differences exist between

individuals in the population selected for participation in a

study, compared to those in the population who are not selected.

For example, there is a larger proportion of individuals with AD

who carry the APOE∗4 genotype if the study recruits from a

research clinic, compared with surveillance population estimates

within the same area (Tsuang et al., 1996). Subsequently, it

was found that compared to population estimates, individuals

with AD recruited from a clinic were more likely to exhibit

characteristics associated with the allele: they tended to be

younger, with earlier Alzheimer’s onset, and in a more advanced

disease state. Thus, this underlying selection bias found in the

individuals recruited from a clinic sample yielded a biased

estimate of the relative risk and was overestimated, compared

to the risk in the larger population.

Prevalence or length bias is a selection bias that occurs

because prevalent cases of a disease or health outcome are

found in individuals who have survived to a certain point in

time. Similar to the selection bias discussed earlier, prevalence

bias can over or under estimate associations between predictors

and outcomes. Many case–control studies from the 1990s

consistently showed a protective association between smoking

status and odds of AD (Kukull, 2001). Taking prevalence bias

into consideration, it was later discovered that smokers who

developed AD died earlier when compared to non-smokers who

developed AD, due to other adverse health outcomes associated

with smoking. The apparent protective association was induced

because of an inflated proportion of controls who smoked and

a reduced proportion of cases who smoked. This phenomenon

is also known as “competing risks” where a predictor of interest

(here, smoking) is associated with multiple outcomes (here, AD

and death), and the occurrence of one outcome (death) prevents

the researcher from observing the other outcome (AD).

Attrition bias is another important selection bias to consider,

especially in longitudinal study designs. Study participants

that are lost to follow-up over time are likely to be different

when compared to participants that stay in the study until

completion. For example, participants that are lost to follow-up

in a study due to death are likely more critically ill, compared

to individuals who survive long enough to complete the study.

Ignoring the impact of this selection and assuming individuals

were lost to follow up at random would bias results and effect

estimates. Realistically, attrition is unavoidable in most studies,

and there are methodologies available to capture and address the

impact of attrition bias on a study’s results. Inverse probability

weighting is the most common method to address the problem

of attrition in cohort studies. Inverse probability of attrition

weighting utilizes logistic regression methods to model the

likelihood of participant study dropout, so the researcher can

determine the extent to which dropout might have impacted the

observed results.

Information bias

Information bias occurs when there are inaccuracies in the

quantification and/or classification of exposure and outcome.

Case–control studies are vulnerable to a type of information

bias termed recall bias, as cases are more likely to report

previous exposures compared to controls. Several previous

case–control studies of AD and head trauma showed an

association (Mortimer et al., 1991) that could not be replicated

in prospective study designs when exposure status is captured

prior to dementia onset (Chandra et al., 1989). Observer bias

occurs when the personmeasuring the disease or health outcome

has knowledge of the subject’s exposure status, (inaccurately)

influencing themeasurement. Blinding investigators to exposure

status minimizes the likelihood of observer bias.

Confounding

Confounding occurs when a certain exposure “A” is

associated with both the exposure of interest “B” and the disease

or health outcome of interest “C,” and its effect has not been

appropriately separated out. Erroneously, a researcher might

conclude that exposure and outcome of interest are associated,
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FIGURE 1

Age as a confounder in the associationbetween Alzheimer’s disease and brain atrophy.

when in fact the relationship is spurious and induced due to the

third variable. An apparent association between AD and brain

atrophy might be confounded by age, as older individuals are

more likely to have brain atrophy and are also more likely to

have AD (Franke et al., 2010), as demonstrated in Figure 1.

There are several methods to control confounding in the

study design stage, including randomization, matching, and

restriction. As discussed earlier, experimental studies frequently

employ random allocation of intervention (i.e., randomization)

in an effort to balance potential confounding factors between

intervention and control groups. In case–control studies,

matching cases and controls on confounding factors (frequently

age, sex, race, etc.) are commonly employed. Restriction utilizes

exclusion criteria to eliminate potential confounders in the

selection of participants. When analyzing data, confounders

can be controlled by including them as covariates in statistical

models and/or running separate analyses for individuals with

and without the potential confounder (stratification).

Even after using the above strategies to mitigate the

influence of confounding, there is likely to be a degree

of persistent confounding, as it is not feasible for every

confounder to be identified and/or measured—we call this

residual (unmeasured) confounding.

E�ect modification

In contrast to confounding, when themagnitude of the effect

between exposure and outcome of interest differs depending on

the level of a third variable, effect modification (interaction)

is present. If effect modification is present and a researcher

(erroneously) computes an overall estimate, the estimate will

again be distorted, as when confounding is present. Effect

modification is best examined by stratifying estimates for each

level of the third variable. However, it is important for the

researcher to keep in mind that the choice to stratify results in

a consequential loss of power.

Mediation

For a third variable to be considered a mediator, it must

exist on the causal pathway between exposure and outcome.

Mediation analysis methods are available to disentangle both

direct and indirect effects of a third variable in the exposure-

outcome association.

Strategies to mitigate bias

So far, we have discussed how both systematic and random

errors are inherent in scientific research. Weaknesses in

methodology and/or execution of a study that can affect validity

are considered a systematic error. As opposed to random error,

there are tools to quantitatively measure and avoid systematic

errors. Quantitative bias analyses (QBAs) are used to estimate

direction, magnitude, and uncertainty resulting from systematic

error (Lash et al., 2014).

Epidemiology is a discovery tool

At the most basic level, epidemiologic research questions

surround testing an association between a specified exposure

and the outcome of interest in human populations. Asking

such questions in well-designed studies with large, generalizable

samples and finding consistent results lead to estimates of an

individual’s chance and risk of the outcome of interest. By

employing population studies, we have more precise estimates

(and confidence) to extrapolate down to the individual level.

Then, based on consistent results gleaned from epidemiologic

studies, researchers can use the information on individual

morbid risk to evaluate the efficacy of treatment options

and preventive strategies. But, without valid computation

of individual morbid risk (and risk factors), we would be

unable to effectively judge treatments and prevention level

Frontiers inNeuroimaging 07 frontiersin.org

https://doi.org/10.3389/fnimg.2022.934514
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Godina et al. 10.3389/fnimg.2022.934514

TABLE 4 Bradford-Hill criteria.

1. Strength of association

2. Consistency of data

3. Specificity

4. Temporality

5. Dose-Response

6. Biological plausibility

7. Coherence

8. Experimental evidence

9. Analogy

interventions. Again, if we see consistent results across well-

designed epidemiologic studies (starting with descriptive cross-

sectional work, moving into cohort and case–control, and final

the “gold standard” of randomized controlled trials), we have the

confidence to speak to the necessary community intervention

and policies to treat and prevent such an outcome.

Causal inference

Establishing causality

The process of establishing whether an observed

exposure/outcome association is reflective of a “true” underlying

cause-and-effect relationship is termed “causal inference.” It is

complicated to attempt to establish causation; theoretically, we

could only truly determine causality if we were to examine the

exact same group of participants with and without exposure

(simultaneously) and observe any disease or health outcome.

This counterfactual framework is impossible in the real world;

however, experimental RCTs are our best approximation of

such a scenario. Of course, it is not possible to randomize every

exposure, e.g., we cannot randomize participants to smoke

or not smoke, or to experience or not experience stroke. In

addition to advanced statistical methods, epidemiologists use

several other tools to help distinguish between association and

causation, including directed acyclic graphs (causal diagrams)

and Bradford-Hill criteria (Table 4). Although the use of any

of these tools can help a researcher’s confidence in taking

their results from association to causation, triangulation of the

complete body of evidence from both animal and human studies

is typically necessary to establish causality.

Completing the clinical picture

Diseases are classically first observed and described in

clinical settings. However, due to the aforementioned selection

factors that influence the type of individuals that make it to

such settings, individuals seen in clinical settings are likely to be

atypical when compared to those with the same disease in the

larger population. In the early 1900s, Alois Alzheimer detailed

the pathology and symptomology of a singular case study of

presenile dementia in a 51-year-old woman. Consequentially,

the disease was considered to be an uncommon disease in

middle-aged individuals (Cipriani et al., 2011). It would not be

until the 1960s that Alzheimer’s disease would be established

as a relatively common disease among older adults, after a

population-based neuropathologic study by Roth et al. (1966).

Delineating new syndromes

Parkinsonism and Guillain–Barré syndrome were initially

identified in clinical settings and were discussed as case

studies or series in the scientific literature. Subsequently,

the development of case definitions and delineation of

subtypes came out of epidemiologic studies. For example, an

epidemiologic study of a large sample of individuals with

Guillain–Barre syndrome in China determined that acute

motor axonal neuropathy as an important subtype (Mckhann

et al., 1993). A large population-based study established

psychological and behavioral disturbances as common features

of dementia, when they had previously been disregarded in

clinical research (Lyketsos et al., 2000). It is imperative to

employ a clinical epidemiology approach, so these distinct

subtypes of disease can be identified, based on differing

clinical presentation, response to therapeutics, and pathogenesis.

Epidemiologic methods have also promoted the identification

and prioritization of phenomena, which do not always

directly present to a clinician, e.g., subclinical cardiovascular

disease (Chaves et al., 2004). Epidemiology helped to link

metabolic syndrome (Reaven, 1997) and frailty syndrome

(Fried et al., 2001), two syndromes previously thought to be

disparate phenomena.

Cohort e�ects

Cohort effects are variations over time, in one (or

more) factors, among groups of people defined by a shared

event such as birth year, or dates of specific exposure.

Any given population contains numerous subcohorts with

differing exposure and outcome rates. Thus, although the larger

population might appear heterogeneous, smaller subcohorts

might show more homogeneity that was previously masked

in the larger cohort. For example, an association between

age and cognitive impairment may be reflective of a cohort

effect and not an age effect. Individuals born in earlier

cohorts grew up during the Depression Era when many boys

stopped their schooling in their pre-teens to work in the

coal mines. Subsequent poor cognition in their late life could

result from either their lack of secondary education and/or

environmental exposures from the coal mines, in contrast
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to later generations, and is not simply a function of “age.”

In addition to cohort and age effects, period effects are due

to events that happened at a specific time, e.g., a nuclear

radiation exposure, or the development of a new therapeutic

class of drugs.

When assessing trends over time, other factors to consider

include changes in screening and/or diagnostic criteria and

changes in the age of the population. If any of these factors are

present, they can inappropriately induce changes in incidence

and/or prevalence estimates, which are not indicative of a true

trend due to, e.g., introduction of a new therapeutic treatment

of disease.

Putting it all together: Relevance to
the neuroimaging researcher

A recent review of over one-thousand brain magnetic

resonance imaging (MRI) papers over two decades (1990–

2012) found the majority of highly cited experimental MRI

studies average sample sizes of <50 participants (Szucs and

Ioannidis, 2020). Furthermore, the same review evaluated more

recent practices (2017–2018) and found only a minority of

highly cited neuroimaging research report power calculations

and specification of effect sizes (Szucs and Ioannidis, 2020).

Given such small sample sizes and consequential low power,

it is likely that some highly cited neuroimaging research has a

high likelihood of type 1 and type 2 errors. These compounding

issues ranging from study design to sample populations make

it problematic to draw appropriate inferences from the data, let

alone to the target population. Thoughtful use of epidemiologic

methods and principles can help the field of neuroscience

overcome such common limitations.

Thus far, we discussed at some length how the use of

epidemiologic principles can inform neuroimaging research.

It is important to close with a brief discussion of a few

common “misuses” of epidemiology. These are common

practices reflective of a misunderstanding of the principles of

epidemiology we described. First, the use of “epidemiologic”

to denote a specific study design instead of a global

framework for understanding and examining health outcomes

at the population level. Second, using cross-sectional data

to make directional inferences. Third, generalizing results

to a larger target population based on data from biased

(non-representative) samples. Fourth, making the incorrect

assumption that an observed exposure/outcome relationship

is causal (i.e., an observed association is a signal). Fifth,

not taking timing and duration of exposure into account

when describing recommendations and future interventions,

based on observational data. Finally, failing to consider

biological plausibility and/or underlying mechanisms when

reporting associations.

Here, we summarized the main strengths of incorporating

epidemiology into neuroimaging research, along with

motivating examples from the literature. Using an epidemiologic

framework, with the knowledge of intentional sampling and

selection of appropriate study design, identification of

threats to study validity, and strategies on how to mitigate

bias, the thoughtful neuroimaging researcher will be better

equipped to incorporate population methods into their

own work.

Author contributions

All authors contributed to the production of this manuscript

and have approved the final version.

Funding

SG was supported by the NIH award (T32AG055381) and

the K. Leroy Irvis Fellowship at the Graduate School of Public

Health, University of Pittsburgh.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

Amrhein, V., Greenland, S., and Mcshane, B. (2019). Scientists rise up
against statistical significance. Nature 567, 305–307. doi: 10.1038/d41586-01
9-00857-9

Chandra, V., Kokmen, E., Schoenberg, B. S., and Beard, C. M. (1989). Head
trauma with loss of consciousness as a risk factor for Alzheimer’s disease.Neurology
39, 1576–1578. doi: 10.1212/WNL.39.12.1576

Frontiers inNeuroimaging 09 frontiersin.org

https://doi.org/10.3389/fnimg.2022.934514
https://doi.org/10.1038/d41586-019-00857-9
https://doi.org/10.1212/WNL.39.12.1576
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Godina et al. 10.3389/fnimg.2022.934514

Chaves, P. H., Kuller, L. H., O’leary, D. H., Manolio, T. A.,
and Newman, A. B. (2004). Subclinical cardiovascular disease
in older adults: insights from the cardiovascular health study.
Am. J. Geriatr. Cardiol. 13, 137–151. doi: 10.1111/j.1076-7460.20
04.02120.x

Cipriani, G., Dolciotti, C., Picchi, L., and Bonuccelli, U. (2011).
Alzheimer and his disease: a brief history. Neurol. Sci. 32, 275–279.
doi: 10.1007/s10072-010-0454-7

Falk, E. B., Hyde, L. W., Mitchell, C., Faul, J., Gonzalez, R., Heitzeg, M. M.,
et al. (2013). What is a representative brain? Neuroscience meets population
science. Proc. Natl. Acad. Sci. U.S.A. 110, 17615–17622. doi: 10.1073/pnas.1310
134110

Franke, K., Ziegler, G., Klöppel, S., and Gaser, C. (2010).
Estimating the age of healthy subjects from T1-weighted MRI
scans using kernel methods: exploring the influence of various
parameters. NeuroImage 50, 883–892. doi: 10.1016/j.neuroimage.2010.
01.005

Fried, L. P., Tangen, C. M., Walston, J., Newman, A. B., Hirsch, C., Gottdiener,
J., et al. (2001). Frailty in older adults: evidence for a phenotype. J. Gerontol. A Biol.
Sci. Med. Sci. 56, M146–M156. doi: 10.1093/gerona/56.3.M146

Jacob, M. E., and Ganguli, M. (2016). Epidemiology for the clinical neurologist.
Handb. Clin. Neurol. 138, 3–16. doi: 10.1016/B978-0-12-802973-2.00001-X

Kukull, W. A. (2001). The association between smoking and Alzheimer’s
disease: effects of study design and bias. Biol. Psychiatry 49, 194–199.
doi: 10.1016/S0006-3223(00)01077-5

Kukull, W. A., and Ganguli, M. (2012). Generalizability: the trees, the forest, and
the low-hanging fruit. Neurology 78, 1886–1891. doi: 10.1212/WNL.0b013e3182
58f812

Lash, T. L., Fox, M. P., Maclehose, R. F., Maldonado, G., Mccandless, L. C., and
Greenland, S. (2014). Good practices for quantitative bias analysis. Int. J. Epidemiol.
43, 1969–1985. doi: 10.1093/ije/dyu149

Lyketsos, C. G., Steinberg, M., Tschanz, J. T., Norton, M. C., Steffens, D. C., and
Breitner, J. C. (2000). Mental and behavioral disturbances in dementia: findings
from the cache county study on memory in aging. Am. J. Psychiatry 157, 708–714.
doi: 10.1176/appi.ajp.157.5.708

Mckhann, G. M., Cornblath, D. R., Griffin, J. W., Ho, T. W., Li, C. Y., Jiang,
Z., et al. (1993). Acute motor axonal neuropathy: a frequent cause of acute flaccid
paralysis in China. Ann. Neurol. 33, 333–342. doi: 10.1002/ana.410330402

Mortimer, J. A., Van Duijn, C. M., Chandra, V., Fratiglioni, L., Graves, A.
B., Heyman, A., et al. (1991). Head trauma as a risk factor for Alzheimer’s
disease: a collaborative re-analysis of case-control studies. EURODEM
risk factors research group. Int. J. Epidemiol. 20 (Suppl. 2), S28–35.
doi: 10.1093/ije/20.Supplement_2.S28

Paus, T. (2010). Population neuroscience: why and how. Hum. Brain Mapp. 31,
891–903. doi: 10.1002/hbm.21069

Pett, M. A. (1997). Nonparametric Statistics for Health Care Research: Statistics
for Small Samples and Unusual Distributions. Thousand Oaks, CA: Sage.

Reaven, G. M. (1997). Banting lecture 1988. Role of insulin resistance in human
disease 1988. Nutrition 13, 65. doi: 10.1016/0899-9007(97)90878-9

Roth, M., Tomlinson, B. E., and Blessed, G. (1966). Correlation between scores
for dementia and counts of ’senile plaques’ in cerebral grey matter of elderly
subjects. Nature 209, 109–110. doi: 10.1038/209109a0

Salkind, N. J. (2004). Statistics for People Who (Think They) Hate Statistics.
Thousand Oaks, CA: Sage.

Szucs, D., and Ioannidis, J. P. A. (2020). Sample size evolution in
neuroimaging research: an evaluation of highly-cited studies (1990–2012) and of
latest practices (2017–2018) in high-impact journals. NeuroImage 221, 117164.
doi: 10.1016/j.neuroimage.2020.117164

Tsuang, D., Kukull, W., Sheppard, L., Barnhart, R. L., Peskind, E., Edland, S. D.,
et al. (1996). Impact of sample selection on APOE epsilon 4 allele frequency: a
comparison of two Alzheimer’s disease samples. J. Am. Geriatr. Soc. 44, 704–707.
doi: 10.1111/j.1532-5415.1996.tb01836.x

Frontiers inNeuroimaging 10 frontiersin.org

https://doi.org/10.3389/fnimg.2022.934514
https://doi.org/10.1111/j.1076-7460.2004.02120.x
https://doi.org/10.1007/s10072-010-0454-7
https://doi.org/10.1073/pnas.1310134110
https://doi.org/10.1016/j.neuroimage.2010.01.005
https://doi.org/10.1093/gerona/56.3.M146
https://doi.org/10.1016/B978-0-12-802973-2.00001-X
https://doi.org/10.1016/S0006-3223(00)01077-5
https://doi.org/10.1212/WNL.0b013e318258f812
https://doi.org/10.1093/ije/dyu149
https://doi.org/10.1176/appi.ajp.157.5.708
https://doi.org/10.1002/ana.410330402
https://doi.org/10.1093/ije/20.Supplement_2.S28
https://doi.org/10.1002/hbm.21069
https://doi.org/10.1016/0899-9007(97)90878-9
https://doi.org/10.1038/209109a0
https://doi.org/10.1016/j.neuroimage.2020.117164
https://doi.org/10.1111/j.1532-5415.1996.tb01836.x
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org

	Tutorials in population neuroimaging: Using epidemiology in neuroimaging research
	Introduction
	What is epidemiology?
	Population neuroscience

	Epidemiology serves as a guiding research framework
	Study designs
	Observational studies
	Descriptive studies
	Cross-sectional studies
	Case–control studies
	Cohort studies

	Experimental studies
	Randomized controlled trials


	Epidemiologic inference
	Sample size
	P-Value
	Normal distribution and confidence limits
	Power
	Effect size


	Epidemiology accounts for the profound heterogeneity in populations
	Sampling
	Random sampling
	Validity
	Representative samples

	Threats to study validity
	Bias
	Selection bias
	Information bias
	Confounding
	Effect modification
	Mediation

	Strategies to mitigate bias


	Epidemiology is a discovery tool
	Causal inference
	Establishing causality

	Completing the clinical picture
	Delineating new syndromes
	Cohort effects


	Putting it all together: Relevance to the neuroimaging researcher
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


