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Alzheimer’s Disease (AD) shows both complex alterations of functional dependencies

between brain regions and a decreased ability to perform Visual Short-Term

Memory Binding (VSTMB) tasks. Recent advances in network neuroscience toward

understanding the complexity of hierarchical brain function here enables us to establish

a link between these two phenomena. Here, we study data on two types of dementia

at Mild Cognitive Impairment (MCI) stage—familial AD patients (E280A mutation of

the presenilin-1 gene) and elderly MCI patients at high risk of sporadic AD, both

with age-matched controls. We analyzed Electroencephalogram (EEG) signals recorded

during the performance of Visual Short-TermMemory (VSTM) tasks by these participants.

Functional connectivity was computed using the phase-lag index in Alpha and Beta; and

network analysis was employed using network indices of hierarchical spread (degree

variance) and complexity. Hierarchical characteristics of EEG functional connectivity

networks revealed abnormal patterns in familial MCI VSTMB function and sporadic

MCI VSTMB function. The middle-aged familial MCI binding network displayed a

larger degree variance in lower Beta compared to healthy controls (p = 0.0051,

Cohen’s d = 1.0124), while the elderly sporadic MCI binding network displayed greater

hierarchical complexity in Alpha (p = 0.0140, Cohen’s d = 1.1627). Characteristics in

healthy aging were not shown to differ. These results indicate that activity in MCI exhibits

cross-frequency network reorganization characterized by increased heterogeneity of

node roles in the functional hierarchy. Aging itself is not found to cause VSTM functional

hierarchy differences.
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INTRODUCTION

Functional disconnections caused by Alzheimer’s disease (AD)
can be characterized using brain network methodologies
of patients and those at risk of this type of dementia
(Badhwar et al., 2017). Yet, key issues remain unsolved

including their validity for assessment of both familial
AD (commonly used to model pre-clinical phases
of the disease) and far more prevalent sporadic AD,

and their ability to separate changes due to aging
from those caused by the neurodegeneration (Ibáñez
and Parra, 2014). The current study focuses on these
outstanding issues through the implementation of a novel
EEG functional connectivity methodology that unveils

network topology changes (i.e., hierarchical spread and
hierarchical complexity; Smith and Escudero, 2017) during
performance of a memory task considered a marker
for AD—the Visual Short-Term Memory Binding Test
(VSTMBT) (Costa et al., 2017).

Although the links between genotype and phenotype in AD
remain to be elucidated, earlier reports suggested that the E280A-
PSEN1 mutation variant, presents clinically similarly to the
sporadic late-onset AD (FAD) (Lopera et al., 1997; Acosta-
Baena et al., 2011). Indeed, previous studies have consistently
demonstrated that the E280A-PSEN1 FAD and sporadic AD
(SAD) share a memory binding phenotype (Parra et al., 2010a,b).
In fact, using EEG to analyse the ERP linked to this memory
function in cases at risk of SAD and E280A-PSEN1 FAD, it has
been demonstrated that these risk variants are indistinguishable
both behaviorally and electrophysiologically (Pietto et al., 2016).
We have highlighted the value of such evidence as it indicates
that short-term memory binding impairments and their neural
correlates are AD features shared across sporadic and genetic (i.e.,
E280A-PSEN1) variants.

Small-world deviations in AD from healthy aging in EEG
connectivity have been related to a loss of complexity and
efficiency (Stam et al., 2007a, 2009; De Haan et al., 2009).
Progressively, investigations have looked into the key role of
the deterioration of network hubs related to degradation of
functional integration due to pathology (Buckner et al., 2009;
Stam et al., 2009; Miao et al., 2011; De Haan et al., 2012),
with more disruptions of complex functional network degree
hierarchies, such as loss of assortativity (De Haan et al., 2009)
and loss of hub connectivity to distant nodes (Liu et al., 2014; Dai
et al., 2015), being found. Given this, we look specifically into the
hierarchical layout of functional networks of neurodegeneration
in terms of degree variance (hierarchical spread) and hierarchical
complexity (Smith and Escudero, 2017).

Although functional connectivity of memory tasks in AD
has been documented (Pijnenburg et al., 2004; Sperling et al.,
2010), little is known of the effect of AD on the topology of
working memory networks underpinning the impaired function
of VSTMB and of age-related factors which separate familial
and sporadic forms of the disease. Studying VSTMB in familial
and sporadic Mild Cognitive Impairment (MCI) can unveil
previously unknown features of the disconnecting pathology
caused by AD which could expand recent findings from brain

connectivity studies (Parra et al., 2017; Smith et al., 2017b) and
shed new light on AD’s key clinical manifestation of memory
decline together with other cognitive impairments.

Moreover, the extent to which impairments found in specific
cognitive functions in patients with AD can be solely attributed to
the disease process and not to the normal course of aging remains
little understood (Bondi et al., 2003; Spaan et al., 2003; Wakefield
et al., 2014; Spaan, 2016). Evidence has accrued indicating
that aging spares some cognitive systems while affecting others
(Grady, 2008; Logie and Maylor, 2009; Reuter-Lorenz and Park,
2014). One such age-insensitive system is that subserving VSTMB
(Brockmole et al., 2008; Parra et al., 2009; Read et al., 2016;
Hoefeijzers et al., 2017; Rhodes et al., 2017).

We hypothesize that: (1) Those embarked on the course
of familial and sporadic variants of AD will exhibit notable
deviations in their VSTMB functions, (2) that such deviations will
be accounted for by changes in network topology which would be
similar across variants of risk of AD, and (3) VSTMB functional
dependencies will not exhibit age-related changes.

MATERIALS AND METHODS

Participants
The data in this study have been used in two previous studies
(Pietto et al., 2016; Parra et al., 2017). It consists of people
with familial MCI and their controls and people with sporadic
MCI and their controls, detailed separately below. In both cases
patients were evaluated with the Mini-Mental State Examination
(MMSE) with results previously described (Pietto et al., 2016).
The tasks were performed in an electrically shielded room with
dim lighting. Participants sat comfortably at a desk facing the task
display screen. The subjects were checked to ensure that none had
a history of psychiatric or neurological diseases.

The familial MCI data consisted of 10 patients diagnosed with
MCI (age 44.4± 3.2, years of education 7.3± 4.1) and 10 healthy
controls (age 44.3 ± 5.6, years of education 6.8 ± 2.9) from
Antioquia, Colombia. Each patient carried the mutation E280A
of the presenilin-1 gene which leads to familial AD in 100% of
carriers. The data consist of sixty-channel EEG activity recorded
with a 64 channel EEG cap using SynAmps 2.5 in Neuroscan at
500Hz and bandpass filtered from 1 to 100Hz with impedances
below 10 KΩ . Four ocular channels were discarded after being
used to factor out oculomotor artifacts. The patients had not yet
developed clinical symptoms warranting a diagnosis of dementia.
Analysis of power-frequency spectrum showed that this data had
been subject to a low pass filter with cut-off at 20 Hz.

EEG Recordings
The sporadic MCI data consisted of 13 patients diagnosed with
MCI (age 73.1 ± 9.0, years of education 14.1 ± 4.4) and 19
healthy controls (age 67.2 ± 10.14, years of education 16.5
± 2.0) recruited from the Institute of Cognitive Neurology
(INECO), Buenos Aires, Argentina. Criteria implemented for
diagnosis derived from Petersen (2004) andWinblad et al. (2004).
Nine of the patients were at particularly high risk from AD
conversion having been classified as single or multi-domain
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amnestic MCI while three classified as non-amnestic MCI multi-
domain (Mitchell et al., 2009). The data consist of EEG activity
recorded with a Biosemi Active 128-channel Two system at
512Hz and bandpass filtered from 1 to 100Hz. This was then
downsampled to 256 Hz.

For both datasets we use data from the encoding period during
the performance of shape only and shape-color binding tests
since deficits at this stage seem to be responsible for the VSTM
binding problems found in AD (Parra et al., 2017). This consists
of 1.2 s of continuous activity with 0.2 s pre-stimulus. Signals
were re-referenced to an average reference before proceeding,
following (Chella et al., 2016). Further oculomotor artifacts were
removed using visual inspection and independent component
analysis and epochs with other artifacts exceeding±100 µVwere
discarded as detailed in Pietto et al. (2016). We seek to uncover
underlying physiological substrates of the impaired binding
function. In this way incorrect responses are not informative so
only the trials where the subject responded correctly are included
(Pietto et al., 2016).

Behavioral Traits
From a neuropsychological perspective, the two groups of
patients presented with similar backgrounds, Table 1. Both
groups showed similar level of global cognitive impairment
as denoted by the MMSE with instrumental abilities (IADL)
denoting very mild but similar level of impairment. Memory
and executive functions were affected in both groups as denoted
by the recall of the Rey Figure and Fluency Tests. Attention
was preserved in both groups as informed by the TMT-A (see
Pietto et al., 2016 for details on performance). Taken together
these data suggest that both groups were in very similar stages
of multiple-domain amnesic MCI (maMCI) (Albert et al., 2011).

Ethics Committee Approval
All participants provided written informed consent in agreement
with the Helsinki declaration and the studies were approved
by the Ethics Committees of the University of Antioquia
and INECO.

Visual Short-Term Memory Tasks
The binding function of visual short-term memory (VSTM) is
singled out by contrasting tasks for the recognition of colored
shapes, which requires binding of shape and color in memory
retention (binding), and the recognition of single shapes which
only requires the retention of constituent features. In the change
detection task assessment of VSTM for shape alone, the arrays
consist of three different black shapes and in the binding task the
arrays consist of three different shapes each with a different color.
Each task trial consists of an encoding period (500ms), during
which a study array is displayed on screen, followed by an unfilled
short delay (900ms) and test period with a test array. During the
test period, participants are prompted to respond whether or not
the objects in the two arrays are identical. The positions of the
objects are randomized between arrays to avoid use of location as
a memory cue. Both shapes and colors are chosen randomly for
each trial from a set of eight shapes and a set of eight colors. A
randomly chosen fifty percent of the trials have the same objects

in both arrays. In the other 50 percent, two shapes seen during the
encoding periods are replaced with two new shapes selected from
the set, whereas in the binding task two colored shapes of the test
display swap the colors they had during the encoding period. All
participants start with a brief practice session before undergoing
one hundred trials per task. Binding and shape tasks are delivered
in a counterbalanced order across participants. Figure 1 shows an
example trial for the two conditions of the VSTM binding task.

Both groups showed similar level of performance across
task conditions i.e., Shape Only vs. Shape-Color Binding (MCI
Z = 1.54 and their Controls Z = 1.42; MCI-FAD Z = 1.63
and their controls Z = 1.17; see Pietto et al., 2016). While
MCI patients showed poorer performance than controls on
both conditions of the STM binding test, MCI-FAD patients
showed poorer performance than controls only on the Shape-
Color binding condition. The source of such a discrepancy has
been recently addressed (Parra et al., 2019). Assessing older
samples (i.e., MCI) with large set sizes (3 items) might reduce
the discrepancy classically reported between the two conditions
of the STM binding test. The authors argued that this does not
undermine the specificity of the Shape-Color binding condition
for AD but reflects the influence that memory load exerts
on patients with more advanced cognitive impairments (i.e.,
maMCI) (Petersen, 2004)—see also Parra et al. (2010a,b). This
is reinforced by the observation that the two groups presented
with a very similar profile of Shape-Color Binding impairment
(Mann–Whitney U: 63, Z =−0.09, p= 0.93, d = 0.02; see Pietto
et al., 2016).

Functional Connectivity Networks
The Phase-Lag Index (PLI) was computed to assess the phase-
dependent functional connectivity of the EEG channels (Stam
et al., 2007b). This measures the strength and consistency
of pairwise lead/lag relationships of electrode activity of the
brain’s electromagnetic pulses. Such phase-based measures are
particularly useful for assessing interregional dependencies from
EEG due to their immunity to the volume conduction effect.
Alpha and Beta have been frequently found to show deviations
in connectivity of subjects with dementia (Tijms et al., 2013).
Thus, the PLI is computed for each trial and for each signal
pair after being band-passed in Alpha (8–13Hz) and lower
Beta (13–20Hz), using an order 70 FIR filter. Note, only
lower Beta could be compared across datasets due to the
previously mentioned different low-pass filters implemented.
These connectivity computations are then averaged over trials
for each task and for each subject to remove inter-trial variability
and so better bring out the specific task function. The resulting
averages constitute adjacency matrices of weighted networks, one
for each subject-task-frequency band triple.

Before studying the network hierarchies, the weighted PLI
connectivity networks are binarised using the Cluster-Span
Threshold (CST). This threshold is based on the clustering
coefficient, fixing the network at the balance point of integrative
and segregative properties (Smith et al., 2015). It coincides with
where hierarchical information is dense, providing a sensitive
and powerful binarisation of EEG PLI connectivity (Smith et al.,
2017a). The hierarchy of a network is defined based on the node
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TABLE 1 | Results of neuropsychiatric tests presented to both groups for patients and controls (mean ± standard deviation).

Test Familial MCI Sporadic MCI Familial control Sporadic control

MMSE 25.20 ± 4.50 26.46 ± 2.47 29.10 ± 1.10 29.50 ±0.52

IADL 7.2 ± 1.00 6.38 ± 1.06

Rey figure-copy 21.89 ± 5.03 30.42 ± 4.58 26.38 ± 4.99 32.16 ± 5.80

Rey figure-recall 7.33 ± 4.89 11.04 ± 6.36 14.32 ± 5.18 16.49 ± 6.55

TMT-A 87.75 ± 38.30 59.23 ± 24.37 73.67 ± 26.44 42.63 ± 25.87

MMSE, Mini-mental state examination; IADL, Instrumental activities of daily living scale; TMT-A, Trail-making test (part A).

FIGURE 1 | An example trial for the shape only (top) and shape-color binding (bottom) condition of the VSTM binding test. The test was synchronized with

EEG recordings.

degrees, i.e., number of edges adjacent to each node. Nodes with
more adjacent edges are higher in the node hierarchy, being more
central to the network topology.

We study two indices of network hierarchies described in
Smith and Escudero (2017). An illustration of what thesemeasure
in a network is shown in Figure 2. The degree variance, V,
measures the spread of the hierarchy and thus is indicative of the
large range of the general strength of network nodes (Smith and
Escudero, 2020) and is an important indicator of the dominance
of hub nodes. Here we use the recently proposed normalized
version (Mones et al., 2012):

v (G) =
n− 1

nm
(

1− d
)var(k) (1)

Where k is the variable denoting the degrees of the network,
n is the number of nodes, m the number of links, and d the
link density.

Physiologically, this measure could then inform about the
expansion and/or strengthening of network structures and
hierarchies. Complexity on the other hand, arises from the
structure of the interactions between units (i.e., modules, nodes,
or networks themselves) (Smith et al., 2019). The hierarchical
complexity, R, is based on the diversity of connectivity patterns
throughout the degree hierarchy. It is measured by the variability
of neighborhood degree sequences for nodes of identical

centrality (BioSemi Headcaps, 2017; Smith and Escudero,
2017). Thus, hierarchical complexity (R) could be understood
physiologically as the level of network operational organization.

Statistical Tests
Differences of network index values for binding and shape are
computed. These differences are contrasted between patients
and controls using Wilcoxon rank sum tests with statistical
significance noted at the standard α = 0.05 level. The false
discovery rate procedure is implemented over reported p-values
with q = 0.05. Effect sizes using Cohen’s d are reported for
significant differences. Wilcoxon signed rank tests were also
implemented between datasets for the healthy controls and the
MCI subjects for both shape and binding tests in order to assess
whether any task activity could be discerned to be different due
to aging.

RESULTS

Hierarchical Characteristics of VSTMB in
MCI
We computed V and R for all subjects in both tasks in Alpha and
lower Beta (Beta1) in both datasets. Differences were computed
between binding and shape values for patients and controls
separately. These values were then compared between patients
and controls using Wilcoxon rank sum tests. Table 2 shows
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FIGURE 2 | Illustration of degree variance and hierarchical complexity of a network. Increased degree variance indicates a more hub dominated network, while

increased hierarchical complexity indicates a greater diversity in connectivity patterns.

TABLE 2 | Results for hierarchical characteristics of PLI networks in MCI vs.

healthy control calculated from values obtained from the binding task minus that

of the shape task.

Degree variance Hierarchical complexity

Test Band p-value Cohen’s d p-value Cohen’s d

Familial MCI Alpha 0.7337 −0.2390 0.7337 0.2739

Beta1 0.0140* 1.1627 0.1859 0.6299

Sporadic MCI Alpha 0.2827 0.3936 0.0051* 1.0124

Beta1 0.2658 0.1073 0.5142 0.0492

Joint MCI Alpha 0.6451 0.1597 0.0089* 0.7939

Beta1 0.0094* 0.5599 0.1507 0.2266

The p-values are for Wilcoxon rank sum tests. Values with an asterisk (* ) pass the false

detection rate procedure and are deemed statistically significant.

the results for each data set separately and also when healthy
controls andMCI subjects in datasets are combined. A significant
difference is noted in V in Beta1 for the familial MCI data. In 9
of the 10 patients, the degree variance of the binding condition is
larger than in the shape condition, Figure 3, bottom left. Indeed,
the difference in binding and shape conditions is generally greater
than the difference found in healthy controls with an effect size
of 1.1627. Although the trend appeared similar in the sporadic
case, this was not found to be statistically significant. However,
a significant difference between sporadic MCI and control was
noted in R in Alpha with an effect size of 1.0124, which was not
replicated in familial MCI and control. In 12 of the 13 patients,
the hierarchical complexity of the binding condition was larger
than in the shape condition, Figure 3, top right. The controls
are roughly balanced between higher shape and higher binding
values but larger values tended toward higher shape.

Both the greater degree variance in MCI in Beta1 and
greater hierarchical complexity in MCI in Alpha held as effects

when combining the datasets. The p-values were roughly of the
same magnitudes as in the individual dataset differences found,
although the effect sizes were comparatively reduced.

Effects Due to Aging
The network indices V and R are based on variances of degrees
which can be expected to be higher for larger network sizes.
Thus, to assess healthy aging of VSTM binding we downsampled
the sporadic 128-channel dataset to the same size (sixty) as
the familial dataset. These datasets use different layout systems
for electrodes, but approximate mapping between these layouts
is known (Parra et al., 2014). Following this, we reprocessed
the sporadic dataset according to the 60-channel format and
proceeded with comparisons. For V and R, task contrast values
for each participant were attained by taking the difference
of binding and shape only values. Wilcoxon rank sum tests
were then conducted for older versus middle-aged adults. The
results are shown in Table 3. As hypothesized, we report no
significant differences in hierarchical characteristics of phase-
based functional connectivity due to aging.

DISCUSSION

Research into the electrophysiological correlates of VSTM
binding in healthy young and older adults and in patients
at high risk of AD has revealed neurocognitive properties
of this memory function that have helped explain behavioral
observations drawn from these samples. Relying on novel brain
network methods applied to EEG data, Smith et al. (2017b)
showed that processing differences between feature bindings and
shape only in healthy young individuals is driven by the effects of
occipital (100–140ms) and frontal (140–180ms) modules over
the left hemisphere. This evidence is consistent with the earlier
report by Pietto et al. (2016) who, using ERP, also found that
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FIGURE 3 | Plots showing differences between binding and shape task PLI network hierarchies in Alpha and Beta1. Red crosses indicate median values while black

triangles indicate 25th and 75th percentiles. MCI and CTR indicate mild cognitive impairment and controls, respectively, while the preceding “s” and “f” indicate the

sporadic and familial data.

TABLE 3 | The p-values for Wilcoxon rank sum tests for hierarchical characteristics of PLI networks in healthy aging and familial vs. sporadic Alzheimer’s disease.

Test Band (sporadic/familial) Effect V (shape/binding) R (shape/binding)

Elderly vs. Adult Alpha Healthy aging 0.6300/0.1484 0.4490/0.6300

Beta Healthy aging 0.9087/0.6629 0.9451/0.5977

Alpha Familial vs. sporadic 0.8768/0.5558 0.7330/0.6418

Beta Familial vs. sporadic 0.9259/0.1629 0.3364/0.3364

Left and right values are for shape and binding separately. No statistically significant differences were found.

impaired function of the fronto-parieto-occipital sites accounted
for binding deficits in both familial and sporadic cases ofMCI due
to AD. These recent studies expanded the evidence provided by
previous fMRI studies (Huggins et al., 2021) which had reported
a posterior parietal hub responsible for feature binding in VSTM.
The advantage of the high temporal resolution of the EEG may
have unveiled a wider network which functions under temporal

dynamics beyond the fMRI scope. In fact, Parra et al. (2017)
recently showed that focusing on such network dynamics drawn
from EEG data, familial cases of MCI can be classified with
accuracy levels of 90%, similar to the classification power we
found here for both samples of MCI. Based on this literature,
investigation of whether changes in topological hierarchies could
be an additional mechanism driving the well-known VSTM
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binding deficits found in AD along its continuum is warranted.
This is particularly relevant if we consider that it has been
by means of the EEG, and not by fMRI, that an extended
network subserving this function has been identified. This work
complements recent classification based studies of EEG signals
for AD and MCI with a greater focus on the classification of
AD and MCI using machine learning methods (Yu et al., 2019;
Núñez et al., 2020; Huggins et al., 2021; Miltiadous et al., 2021;
Tzimourta et al., 2021).

Hierarchical Topology in Familial and
Sporadic Cases of MCI
Our results indicate that cases of MCI due to familial AD present
with greater hierarchical spread (V) seemingly accounting
for VSTM binding deficits. These results fit well the current
understanding of network reorganization in carriers of AD
mutation (e.g., E280A-PSEN1) prior to the dementia onset.
For example, using a measure of information sharing (i.e.,
symbolic mutual information), Parra et al. (2017) recently
reported that increased brain connectivity characterizes cases in
the early stages of familial MCI while decreased connectivity
was a feature of more advanced stages. Patients in the
early stages not only showed increased connectivity but over-
recruitment, and such changes correctly characterized 90% of
the sample. The literature reporting increased connectivity and
over-recruitment of task-related networks and DMN as an early
feature of AD is growing rapidly (Parra et al., 2013; Gardini
et al., 2015; Quiroz et al., 2015; Serra et al., 2016). This
functional reorganization appears to be an early manifestation
of brains undergoing neurodegeneration. This is particularly
relevant in this sample of middle-age mutation carriers as
they do not present with the comorbidities and risk factors
that are normally associated to age. Hence, this evidence more
genuinely indicates the presence of AD pathology and its
neurobiological consequences.

Interestingly, AD-related network changes at older ages are
characterized by greater hierarchical complexity (R). Hierarchical
complexity is a new paradigm for brain networks which has
previously been explored in EEG signals and structural MRI
from healthy participants (Smith et al., 2017a, 2019) as well
as on networks across broad scientific domains (Smith, 2019).
It has also shown clinical relevance in structural MRI with
implications for neonatal development (Blesa et al., 2021; Valdes
Hernandez et al., 2021). This is the first study to apply this
approach to AD. We found that such hierarchical changes
were apparent in a lower frequency band (Alpha). We interpret
this as the additive effects of age and AD related network
changes. These findings can have some implications. Firstly,
they suggest that hierarchical complexity may be an index of
compensatory network coupling whereby networks operating
in a particular frequency regime that becomes less efficient
with aging might be compensated by networks operating at
different (i.e., slower) frequencies. It is well-known that such
compensation occurs at a neuroanatomical level (Heuninckx
et al., 2008; Ho et al., 2012; Song et al., 2014). Based on this
earlier evidence and the results presented here we feel compelled

to suggest that the greater hierarchical complexity observed at
a slower frequency band in age-related MCI may be informing
on cross-frequency compensatory coupling. Networks operating
at slower frequency bands, which remain functional in old
age, may inherit the functions of decaying faster networks.
Second, this evidence adds to the Scaffolding Theory of Aging
and Cognition (Reuter-Lorenz and Park, 2014) as it suggests a
different level of functional reorganization (see Sala-Llonch et al.,
2015) characterized by cross-frequency network compensation.
Finally, future research will have to investigate the extent to which
these compensatory changes revealed via increased network
complexity are reflecting adaptive mechanisms to cope with the
effects of age, the influence of cognitive reserves, or underlying
subthreshold pathology.

Can Hierarchical Topology Help
Disentangle Age and AD Related Network
Changes?
Early and genetically driven AD pathology operating in younger
brains alters the topology of a task-related network supporting
VSTM binding by increasing its hierarchical spread (strength
and recruitment) while in older brains experiencing MCI
with unknown genetic factors, it hampers their hierarchical
complexity. We can speculate that the latter indicates the
additive effect of aging on AD pathology. Homeostatically,
younger brains are better equipped to cope with pathology
and to reorganize functional networks. AD impacting on older
brains may encountered a less favorable biological scenario.
Such a scenario has already witnessed compensatory changes
(Deary et al., 2009; Reuter-Lorenz and Park, 2014; van Geldorp
et al., 2014; Bastin, 2017) which are normally characterized
by a loss of functional and structural network efficiency and
organization. Interestingly, we found that such changes did
account for VSTM binding deficits in MCI in old age, but
not for a decline of VSTM binding functions due to age per
se (i.e., we reported no significant differences in hierarchical
characteristics of phase-based functional connectivity due to
aging). ERP data involving patients at risk of AD due to different
disease variants and with very different ages indicated that
neither of these factors modified the effect that AD exerted on
VSTMB, thus suggesting that its decline can be more reliably
linked to the AD pathology (Pietto et al., 2016). Nevertheless,
it remains of a paramount importance to develop and refine
methodologies that can tease apart the contribution of AD and
that of normal aging.

This is the first report of network related activity associated
to the well-known insensitivity of VSTM binding (i.e., in
its conjunctive form) to normal aging (Grady, 2008; Deary
et al., 2009; Logie and Maylor, 2009; Reuter-Lorenz and Park,
2014; Wakefield et al., 2014; Sala-Llonch et al., 2015; Spaan,
2016). It is also the first to study network heterogeneity and
hierarchical complexity of EEG networks in a clinical setting.
The evidence presented here indicates that the behavioral
specificity of VSTM to AD relative to normal aging also holds
at the biological level when age-related compensatory changes
in brain activity are considered. We can therefore hypothesize
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that the analysis of hierarchical topology of EEG connectivity
during VSTM binding performance can be considered a
potential diagnostic biomarker for AD. Nonetheless, more
studies particularly with larger sample sizes are necessary to
confirm these findings.

CONCLUSION

We studied the functional connectivity computed from EEG
during the VSTMB task in MCI stage familial AD patients and
elderly MCI patients at high risk of sporadic AD as well as
respective populations of age- and education-matched healthy
controls. While no network differences in VSTM tasks were
found due to healthy aging nor between elderly and middle-
age onset MCI, clear differences in hierarchical characteristics
of functional network degrees between binding and shape tasks
were found inMCI but not healthy control in both datasets. It was
revealed that the difference in degree variance of EEG networks
in the familial AD dataset in lower Beta was significantly larger
in patients with no difference found in hierarchical complexity.
In conjunction, the difference of hierarchical complexity of EEG
networks in the sporadic AD dataset in Alpha was significantly
larger in patients with no difference found in degree variance.
Combining datasets supported both increase in degree variance
in lower Beta and increase in hierarchical complexity in Alpha as
general characteristics of AD functional connectivity in binding.
The increased complexity in elderly patients in the binding task
suggests cross-frequency compensatory coupling mechanisms in
an attempt to overcome the pathological damage of this disease,
illuminating the possibility of a double-sided compensatory effect
targeted at joint age-related and pathological decline in the brain.
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