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Over the past 30 years, brain function has primarily been evaluated non-invasively

using functional magnetic resonance imaging (fMRI) with gradient-echo (GE) sequences

to measure blood-oxygen-level-dependent (BOLD) signals. Despite the multiple

advantages of GE sequences, e.g., higher signal-to-noise ratio, faster acquisitions, etc.,

their relatively inferior spatial localization compromises the routine use of GE-BOLD

in laminar applications. Here, in an attempt to rescue the benefits of GE sequences,

we evaluated the effect of existing pre-processing methods on the spatial localization

of signals obtained with EPIK, a GE sequence that affords voxel volumes of 0.25

mm3 with near whole-brain coverage. The methods assessed here apply to both task

and resting-state fMRI data assuming the availability of reconstructed magnitude and

phase images.

Keywords: noise, brain imaging, spatial specificity, gradient-echo functional MRI, data cleanup

INTRODUCTION

The recent increase in the availability of ultra-high-field (≥7 Tesla) magnetic resonance imaging
(MRI) scanners has led to a growing collection of functional studies employing high-resolution
methods to investigate brain function with unprecedented detail (Huber et al., 2017, 2020a,b;
Kashyap et al., 2018b; Marquardt et al., 2018; Lawrence et al., 2019; Mishra et al., 2019; Moerel
et al., 2019; Poplawsky et al., 2019; Self et al., 2019; Sharoh et al., 2019; Chai et al., 2020;
Persichetti et al., 2020; Fukuda et al., 2021). In recent years, gradient-echo (GE) sequences have
been regarded as the gold standard method to study brain activity with functional MRI (fMRI); and
the blood-oxygen-level-dependent (BOLD) signal, highly sensitive to neuronal activation, remains
the most employed contrast in the fMRI field (Ogawa et al., 1990, 1993; Turner et al., 1993). With
an appropriate study design, GE-BOLD can detect neuronal responses with relatively good spatial
specificity, as demonstrated in ocular dominance studies (Menon et al., 1997; Polimeni et al., 2010;
Zaretskaya et al., 2020). However, GE sequences are not ideal for applications requiring accurate
source localization, e.g., laminar fMRI. This owes to the complexity of the measured GE-BOLD
signal (Zhang et al., 2018; Havlicek and Uludag, 2020). Neuronal activation is coupled to increased
blood flow, leading to a relative decrease in deoxyhemoglobin, which compensates for the enhanced
oxygen consumption in the activated area; this results in a higher MRI signal in T2/T2∗-weighted
images. The active neuronal site is surrounded by a capillary network, initially responsible
for the observed vascular (BOLD) response, which spreads to downstream venules where field
inhomogeneities derived from deoxygenated blood are strong. As a consequence, remote voxels
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that are adjacent to the macro-vasculature, especially near vessels
with ‘ordered’ trajectories, e.g., ascending veins (perpendicular
to the cortex) or pial veins (tangential to the cortex), also
exhibit signal changes related to the initial neuronal activation.
The interpretation of the BOLD signal in laminar GE-fMRI
applications is especially vulnerable to source mislocalisation due
to the heterogeneous distribution of the venous blood across
the cortical thickness. If no particular corrections are applied to
the T2∗-weighted images, laminar fMRI often renders activation
profiles that are biased toward the surface of the cortex. Non-
BOLD contrasts offer a less adulterate signal. For instance,
the changes in cerebral-blood volume (CBV) (Belliveau et al.,
1991) are specifically related to arterioles, which dilate locally
in response to the firing of neighboring neuronal populations,
and measurements of the cerebral-blood flow (CBF) mainly
reflect the change in flow that occurs in arterioles and venules
surrounding the active area (Ogawa et al., 1992; Williams et al.,
1992). In contrast, upstream from the active neuronal site, the
hemodynamic changes resulting from arteriole dilation and from
the increased blood flow in the surrounding vessels, together with
the specific cerebral metabolic rate of oxygen, all contribute to the
measured BOLD signal (Ogawa et al., 1992; Shen et al., 2008).

At ultra-high field, spin-echo (SE) and GE sequences
measuring BOLD-contrast are mostly sensitive to the effects
from vessels in the neighboring parenchyma (extra-vascular
effects) and not to the hemodynamic changes occurring directly
in the venous blood (intra-vascular effect); this is due to the
short T2 relaxation rate of blood at high magnetic fields.
While SE sequences are sensitive to the extra-vascular effects
produced by the micro-vasculature, i.e., capillaries supplying
blood to local neurons (ideal scenario), GE sequences detect
both micro and macro-vascular effects, which are relevant to
local neuronal activation but also to downstream effects, yielding
poorer signal localization. SE-based methods largely avoid large-
vein contributions to the recorded BOLD signal by refocusing the
effects of field inhomogeneities in the large veins using a 180◦

pulse (i.e., diffusion-dependent T2 contrast). A similar approach
can be applied post-hoc to images acquired with GE-BOLD
contrast (during pre-processing), which consists of regressing out
the phase signal changes relevant to magnetic field distortions
produced by large veins but not to the small and randomly
oriented capillaries in the parenchyma (Menon, 2002; Curtis
et al., 2014).

In contrast to other high-resolution methods, GE is a very
efficient sequence that produces images with high signal-to-
noise ratio, allowing the minimum voxel size to be reduced, fast
acquisitions and the potential to cover the whole-brain with an
extraordinary spatial resolution. Given its multiple advantages,
the optimization of the GE pre-processing pipeline to improve
signal localization will likely have a critical impact on the usability
of high-resolution/sub-millimeter GE sequences in precision-
sensitive applications such as laminar fMRI.

The usual fMRI pre-processing includes realignment followed
by a number of filters and regression steps to correct for partial
volume effects, penalize head displacement or reduce spectral
features not compatible with neuronal oscillations (Caballero-
Gaudes and Reynolds, 2017; Esteban et al., 2019; Drew

et al., 2020); smoothing is generally avoided in high-resolution
applications tominimize spatial mislocalization (Kay et al., 2019).
High-resolution GE-BOLD fMRI could benefit from additional
phase-based correction methods (Curtis et al., 2014). In order to
assess the effect of currently available pre-processing methods on
the performance of high-resolution GE-BOLD, this work applied
twelve different pre-processing approaches to the fMRI signals
acquired during resting-state or during the performance of a
motor task in a group of healthy volunteers. The performance
of each pre-processing approach was evaluated in terms of
amplitude, signal heterogeneity across the cortical thickness, gray
matter activation profiles, and network connectivity mapping.
This workmay serve as a reference to pre-process high-resolution
images with existing methods that exploit the advantages of
GE-sequences in the field of laminar research.

METHODS

Subjects
Data from thirteen healthy adult volunteers (eleven males and
two females; age, 29.5 ± 6 years) are included in this study. The
experimental methods were approved by the local institutional
review board (EK 346/17, RWTH Aachen University, Germany).
All subjects underwent MR-safety screening and signed an
informed written consent document before fMRI acquisition. A
pneumatic belt was positioned around the subject’s chest, and a
pulse oximeter was placed on the 2nd, 3rd, or 4th finger of the left
hand to record physiological signals during the fMRI acquisition.

Experimental Design
Two scans were obtained from each volunteer, a resting-state
fMRI (rs-fMRI) scan and a task-fMRI scan. The rs-fMRI scan
lasted ∼10min; subjects were instructed to remain awake with
their eyes closed and without thinking about anything in
particular. The task-fMRI scan lasted ∼8min and 38 s, during
which subjects performed a finger-tapping task following the
protocol: (21 s index finger movement, 21 s rest) × 12. One of
the volunteers was additionally scanned in a different session
and performed two different tasks: “right index movement”,
and “right index movement with thumb touch”, following the
protocol: (21 s task, 21 s rest)× 8.

fMRI Data Acquisition
MRI data were collected on a Siemens Magnetom Terra 7T
(Siemens Healthineers, Erlangen, Germany) scanner with a
circular polarized transmit head coil integrating 32 receive
elements (Nova Medical, Inc., Wilmington, USA). Functional
MRI data were obtained using GE EPI with keyhole (EPIK)
combined with a TR-external EPI phase correction scheme; the
sequence performance has been described elsewhere (Zaitsev
et al., 2001, 2005; Shah and Zilles, 2003, 2004; Yun et al.,
2013, 2019, 2020; Yun and Shah, 2017, 2020; Caldeira et al.,
2019; Shah et al., 2019); briefly, EPIK enables a higher temporal
and spatial resolution through the use of a sophisticated data
sharing scheme that employs a sliding window to minimize
autocorrelations in the fMRI time series data. By virtue of its
higher bandwidth in the phase-encode direction, EPIK is also
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somewhat immune to geometrical distortions. The parameters
employed for EPIKwere: TR/TE= 3,500/22ms, FA= 85◦, partial
Fourier = 5/8, 3-fold in-plane/3-fold inter-plane (multi-band)
acceleration, matrix = 336 × 336 × 123 slices, voxel size = 0.63
× 0.63× 0.63mm3. B0 shimming was performed with a standard
routine provided by the manufacturer.

Pre-processing Pipelines
Each of the following pre-processing pipelines was applied to
every functional scan from all volunteers (see Figure 1):

#1. Realignment
#2. Realignment+ Bandpass (BP)-filtering
#3. Realignment+ BP-filtering+Motion regression
#4. Realignment + BP-filtering + Motion regression +

Physiological regression
#5. Realignment + BP-filtering + Motion regression +

Physiological regression+ CSF, WM regression
#6. Realignment+ BP-filtering+ Phase correction
#7. Realignment + BP-filtering + Motion regression +

Phase correction
#8. Realignment + BP-filtering + Motion regression +

Physiological regression+ Phase correction
#9. Realignment + BP-filtering + Motion regression
+ Physiological regression + CSF,WM regression +

Phase correction
#10. Realignment + BP-filtering + Motion regression +

Physiological regression+ Phase correction+ smoothing
#11. Realignment + BP-filtering + Motion regression + CSF,
WM regression
#12. Realignment + BP-filtering + Motion regression + CSF,
WM regression+ Phase correction

Before realignment, volumes were corrected for differences
in slice acquisition times using SPM12 (Statistical Parametric
Mapping Software, UCL, London, UK). A brain mask was
generated from the first fMRI acquisition volume using bet
(FSL, FMRIB Software Library, Oxford, UK). After realignment,
a masked average fMRI image was obtained. This image was
then subjected to tissue segmentation using fast (FSL), and a
99% threshold was applied to the resulting images—CSF, WM,
GM maps—to create tissue-specific masks, i.e., voxels with a
proportion of a certain tissue type above 99% were included
in the corresponding tissue mask. The physiological signals
were pre-processed using a Matlab (Matlab, Mathworks, Natick,
MA, USA) implementation of RETROICOR (Glover et al.,
2000); briefly, the cardiac and respiratory cycles were detected
in the recorded signals, the specific cycle phase at any given TR
was calculated, and a combination of sine and cosine Fourier
series up to the 5th order were fit to the data to generate thirty-
six physiological regressors (https://github.com/tesswallace/
retroicor/blob/master/mod_retroicor.m). Additionally, the time
course of the raw respiratory and cardiac traces down-sampled
to 1/TR (i.e., aliased) were included in the correlation analysis for
inspection. The first four acquisition volumes were removed to
ensure signal stabilization. Most of the pre-processing steps were
performed using AFNI (Analysis of Functional NeuroImages,
NIH, Bethesda, MD) as described below.

Realignment. The function 3dVolreg was used to align all
volumes in the magnitude image to the first volume using
six motion parameters (three rotations and three translations);
then, the registration matrix was applied to the phase images
using 3dAllineate.

Filtering. A bandpass filter was created with 1dBport between
0.005 and 0.12Hz and applied to the data using 3deconvolve with
polynomials of degree 5.

Partial volume correction. To remove signal contamination
from the CSF and WM, the time courses of voxels within
the corresponding tissue mask were averaged in the realigned
magnitude image, and the mean CSF andWM time courses were
used as regressors of no interest.

Regression of the motion parameters, physiological signals
and brain tissue was performed using 3dDeconvolve, and, when
applicable, several regressions were applied in a single step, to
minimize blurring.

Smoothing consisted of applying a 1mm full-width-half-
maximum Gaussian blur to the pre-processed volumes,
using 3dmerge. One millimeter was chosen as a rather
conservative blur which could still be appropriate in some
high resolution applications.

Phase-based correction. The de-veining procedure was carried
out followingMenon’s previous work (Menon, 2002; Curtis et al.,
2014); briefly, it consisted of:

1. Applying the same pre-processing conducted in the
magnitude image to the phase image (in the case of
realignment, the motion parameters were calculated from
the magnitude image and applied to both, magnitude and
phase images). Our phase images did not show any visible
wrap, i.e., no difference was found when comparing the
reconstructed phase images to the result of applying a
two-dimensional unwrapping function. Therefore, additional
phase unwrapping was not performed.

2. Applying a linear Fit to the phase image, using 3dTfitter
(AFNI), so thatM= Fitφ + residuals, where M= time course
of the signal in the magnitude image, and= time course of the
signal in the phase image. Fitφ may be interpreted as the part
of the magnitude image that can be explained by changes in
the phase image, presumably related to field inhomogeneities
around large vessels.

3. Subtracting Fitφ from the magnitude image using 3dcalc.

Data Analysis
The different sets of data, each processed with a different pre-
processing pipeline, were compared in terms of the power
spectrum and signal separation in voxels along lines crossing the
cerebral cortex, hereafter referred to as cross-cortex lines, which
was selected on the mean EPIK image (i.e., blindly to the location
of meaningful fMRI responses) as described below. Evoked data
were further analyzed to compare GM vs. CSF activation and by
measuring the activation profiles along a cross-cortex line.

The masks for the cross-cortex lines for analysis of rs-fMRI
data were generated in three cortical regions (frontal, parietal and
occipital cortex) using a combination of LayNii (Huber et al.,
2021) (https://doi.org/10.5281/zenodo.3514297) and AFNI. For
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FIGURE 1 | Methodology. (A) Experimental setup and potential sources of signal contamination. Subjects undergoing fMRI were monitored with a pulse oximeter and

a pneumatic belt. Spurious signals in the high-resolution fMRI data can be derived from head movements, breathing, heart beating, partial volume effects and venous

influence on the parenchymal cortical GM, typically observed as a signal decay between the cortical surface and deeper territories. (B) Pre-processing pipelines.

Pre-proc. #N, with N = 1…5 refers to a pipeline that includes all the previous steps up to N. Pre-proc. #6 to #9 add phase-based vein correction to the previous

pipelines. Pre-proc. #10 adds smoothing to the corrected data #9 for comparison. Pre-proc #11 and #12 add partial volume correction and phase-based correction,

respectively, to Pre-proc #3. (C) Diagram showing the summarized workflow of the present study.

each selected region, a number between 4 and 20 lines were
produced (depending on the size of the ROI for each participant),
yielding a total of 280 lines in the 13 subjects. The cross-cortex
lines contained a maximum of ten voxels, starting in the CSF,
crossing the cortical GM and reaching the WM.

The relationship between the different regressors and the
magnitude and phase images was assessed by computing the
correlation coefficient between pairs of time courses in Matlab.
The correlationmatrix in Supplementary Figures 1, 2B includes,
in order, the following 65 components: three head rotations, three
head translations, one aliased (sampled with TR) pulse trace,
one aliased respiration, ten pulse-retroicor cosine terms, ten
respiration-retroicor cosine terms, sixteen multiplicative pulse-
respiration terms, the average CSF, GM and WM time course,
the magnitude time course from ten voxels (arranged from CSF
to WM) and the phase signal from ten voxels (from CSF to
WM). The correlationmatrices from all subjects were averaged to
obtain a mean correlation matrix. Similarly, a correlation matrix
that included the time course of ten voxels along the cross-
cortex lines from each pre-processing pipeline was computed
to evaluate the remaining dependence of the data on each
regressor. The mean correlation with noise was computed for

each pipeline, i.e., averaging across regressors and across voxels,
to compare the amounts of residual noise in the data. Paired t-
tests were computed to identify statistically significant differences
across pipelines.

Power spectra were computed by applying a Fourier transform
to the data using Matlab. To evaluate frequency specific
fluctuations of the signal power, spectra from the mean time
course in the CSF, GM, and WM were calculated (Figure 2)
and normalized by dividing each value of the spectrum by the
maximum, for each subject. Spectral traces were then averaged
among the thirteen subjects, and the result was normalized
to a maximum of one for plotting. Power-spectrum plots are
thus not intended to show the absolute power of different
tissues, but rather compare the relative power of signals pre-
processed with different pipelines at different frequencies. To
facilitate comparison, a graph was created with the average
power profile of the GM signal for all of the pre-processing
pipelines. For comparison between the GM and CSF tissue,
the relative power within the 0.015–0.04Hz range (typical
of neuronal fluctuations) with respect to the full spectrum
was calculated in both compartments, rendering a measure
of the fractional amplitude of very-low-frequency fluctuations
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FIGURE 2 | Spectral characteristics of CSF, GM and WM upon different pre-processing. (A) The graphs show the frequency-power decomposition of the in CSF

(blue), GM (red) and WM (green) that results from applying different pre-processing steps to the data. Minimized spectra in the upper right corner of each graph

represent the full spectrum (0.001–0.14Hz). (B) The graph shows the normalized power of the fMRI signal in the GM after the twelve different pre-processing

approaches. Note that the normalized signal in Pre-proc. #1 (black line) is near zero due to its maximum value being below 0.01Hz. (C) Average power of the

frequency range 0.015–0.04Hz with respect to the whole spectrum for CSF and GM, normalized to the CSF value, upon different pre-processing. Note the higher

GM/CSF ratio obtained after adding phase-regression (dashed lines vs. solid lines, for each color). (D) Example of the tissue-specific masks generated automatically

from the mean functional image in one volunteer. N = 13 healthy volunteers [for (A–C)].

(fAvLFF), and the GM/CSF ratio was computed. The average
power spectrum covering frequencies between 0.01 and 0.1Hz
at each position within the cross-cortex line is shown in
Figure 3A. The ratio of the power within the 0.015–0.04Hz
range (AvLFF) calculated in the GM and the CSF voxels and

was used as an indicator of the level of signal localization in
the GM.

To assess signal singularity/independence, the temporal
correlation and the spectral coherence were averaged to give
a measure of homogeneity for every pair of voxels along the
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FIGURE 3 | Cross-cortex evaluation of the resting-state fMRI signal. (A) Whole spectrum along ten voxels crossing the cortical ribbon, from CSF to WM (jet

color-coded underlay) and ratio of the power of the 0.015–0.04Hz frequency band for GM with respect to CSF (bar plot overlay) quantified from fMRI data

pre-processed with twelve different pre-processing pipelines. The matrix on the right shows, in white, significant differences relevant to the bar plot (p < 0.05). White

circles identify pairs of pipelines that differ on the presence/absence of the phase-based correction step. (B,C) Analysis of signal homogeneity within the cross-cortex

lines. Homogeneity was calculated as the mean of the correlation and coherence between each pair of voxels [(B) shows the corresponding matrix for each pipeline,

averaged through all samples], which was later averaged to report a single homogeneity value per pre-processing pipeline (C). In the bar plot in (C), the gray color

helps to identify pipelines that included phase-based correction. The matrix above the bars identifies, in white, pairs of pipelines with significantly different homogeneity

levels. White circles identify pairs of pipelines that differ on the presence/absence of the phase-based correction step. (D) Example of the regions subjected to

cross-cortex line analysis for one volunteer. Different intensities in the heat color-map represent different cross-cortical lines, which extended from the CSF and up to

the WM. In total, 280 lines were extracted from 13 subjects. Error bars represent the standard error of the mean.

cross-cortex line; this resulted in a 10 × 10 homogeneity
matrix (Figure 3B). The level of homogeneity per pipeline was
calculated as the average homogeneity across all voxels in the
cross-cortex lines (Figure 3C), which constitutes an inverse
measure of signal independence, i.e., lower homogeneity is
equivalent to more independence or variability among the voxels.

Network probability maps were generated in FSL by
performing independent component analysis using melodic. For
visual inspection of the spatial specificity of the data, the
component putatively assigned to the visual network, i.e., one
of the strongest components, was selected. The mean functional
image was used as the underlay, and the probability map was

thresholded and presented as the overlay. The percentage of
voxels surviving a 0.9 probability threshold was calculated and
reported for each pre-processing pipeline.

To generate activation line profiles, a General Linear Model
was applied to the evoked data to obtain beta and t-statistic
activation maps using 3dDeconvolve (AFNI). For group analysis,
two regions of interest (ROI) were selected per task-fMRI scan,
one covering the GM in the left pre-central gyrus, and the
other covering the CSF adjacent to it. The degree of signal
localization for each pipeline was assessed by thresholding the
beta maps based on the t-statistic map (p-value = 0.001, t-
value ≈ 4), averaging the beta values in the GM and CSF
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ROIs, and comparing the mean activation in the GM to that
of the CSF. Paired t-tests were computed to obtain statistically
significant differences across pipelines. To further assess the
spatial localization of evoked responses in the cortical thickness,
line profiles were computed from the activation maps related to
a finger motor task and a finger motor + sensory task, which
were acquired from one of the volunteers in the same fMRI
session. Briefly, twenty lines, each consisting of thirty sampling
points, were drawn over a portion of the left pre-central gyrus
to detect the cortical activity evoked by movement/touch of
the contralateral limb, and the average intensity profile of each
activation map (beta map) along the lines was computed using a
customized Matlab script.

RESULTS

As presented in Figure 1, the aim of the study was to evaluate
signal specificity upon pre-processing of high-resolution GE-
fMRI data with several existing methods. In the following, the
results of an assessment at multiple levels are described.

Contribution of Brain Tissue Types to the
fMRI Spectrum Depending on
Pre-processing
In order to characterize the specificity of the fMRI signal to the
GM following the different pre-processing methods, the average
signal from CSF, GM and WM—extracted from segmentation
of the mean functional images—was subjected to spectral
decomposition analysis. The graphs in Figure 2A show the
average fMRI signal power distribution at different frequencies
between 0.01 and 0.1Hz, normalized to the maximum value of
the spectrum for the 12 different pre-processing pipelines. The
insets in the upper right corner of each sub-panel show the
whole spectrum (from 0.001 to 0.14Hz), and a gray rectangle
has been positioned over the part of the spectrum that is
magnified in the main graphs. Before pre-processing, the fMRI
signal of all brain tissues was biased toward low frequencies,
presumably due to hardware noise (pre-proc #1, see left peak in
the minimized spectrum plot). This sub-0.01Hz predominance
was canceled by applying a band-pass filter (0.005–0.12Hz),
which shifted the maximum power to frequencies between 0.01
and 0.04Hz, i.e., the typical range associated with resting-state
activity (Zuo et al., 2010; Bajaj et al., 2014; Xue et al., 2014;
Yuen et al., 2019). The capability of the pre-processing methods
to strengthen the signal relevant to neuronal somata (0.015–
0.04Hz in GM) was assessed based on the distribution of the
spectral power in the GM (Figure 2B) and by computing the
mean power within this frequency range relative to the whole
spectrum, i.e., the fractional amplitude of very-low-frequency
fluctuations (fAvLFF) in the GM and in the CSF region, for
comparison (Figures 2C,D). In the un-pre-processed data, the
signals in the GM tissue exhibited a maximum power well below
0.01Hz (only realigned, i.e., pipeline #1). With pipelines only
involving temporal filtering (#2 and #6) the maximum power
was ∼0.01Hz; when motion parameter regression was added or
when CSF/WM regression was performed (#3, #7, #11, and #12)

it was∼0.02Hz; and in data subjected to physiological regression
and partial volume regression, with or without phase-based
correction (#4, #5, #8, #9, and #10) it was∼0.02–0.04Hz. Of note,
the power within the ∼0.015–0.04Hz range was considerably
enhanced when phase-based correction was added to pipeline #2
(pipeline #6) (pale blue dashed line vs. solid line in Figure 2B).
When comparing the relative power within the 0.015–0.04Hz
frequency range in GM and in CSF, it was observed that pipelines
including physiological regression, especially following phase-
based correction (pipeline #8) rendered the best results, with
GM fAvLFF > CSF fAvLFF (Figures 2C,D). An exception was
the realigned-only data (pipeline #1), which exhibited a much
higher GM/CSF fAvLFF ratio, presumably due to the large
CSF signal fluctuation at frequencies below 0.01Hz in non-pre-
processed data. Figure 2C shows that the phase-based correction
step enhanced the activity in the GM relative to CSF when
added to any of the implemented pipelines (dashed lines vs.
solid lines); however, this increase was not statistically significant
(Figure 2D).

The spectral analysis of fMRI data acquired during task
performance is shown in Supplementary Figure 3. In
comparison to the resting-state data, there was a stronger
fMRI component fluctuating at ∼0.05Hz in evoked-fMRI
scans, which corresponds to the frequency of the task paradigm
(1/21 s).

Signal Independence During Rest
To further investigate the potential benefits of the different pre-
processing pipelines in laminar studies, for the scan of each
participant, multiple ten-voxel lines were sampled crossing the
cortical ribbon in areas of the frontal, parietal and occipital lobes
(Figure 3D). A power-decomposition analysis was performed
for each voxel within the cross-cortex line after pre-processing
with the twelve different approaches (Figure 3A). CSF voxels
exhibited the highest power across all frequencies (upper part
of Figure 3A). However, this was less accentuated in the pre-
processing pipelines that included physiological regression and
partial volume corrections (#4, #5, #8, #9, and #10) (Dukart and
Bertolino, 2014). The matrix on the right of Figure 3A shows
the significant differences between pipelines in terms of ratio
of AvLFF in the GM with respect to the CSF. Importantly, the
phase-based venous correction method significantly improved
the localization of 0.015–0.04Hz signals within the GM (pairs of
equivalent pipelines with and without phase-based correction are
marked with a white circle in the significance matrix; note that
all presented a p-value < 0.05). Smoothing (#10) resulted in a
decreased power over all frequencies, presumably as a result of
averaging among neighboring voxels.

The degree of signal dependence along the cross-cortex line
was evaluated by measuring the correlation and coherence
between pairs of voxels in the cross-cortex lines. These two
metrics were averaged to generate one homogeneity matrix
(Figure 3B), and the mean homogeneity across all pairs of
voxels rendered a single homogeneity value per pre-processing
approach (Figure 3C). The highest level of heterogeneity
between the voxels across the cross-cortex line, indicating a
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FIGURE 4 | Resting-state network identification. Probability map of the visual network detected by independent component analysis focused on the visual cortex

(cuneus) in a representative subject. The percentage of voxels surviving a 0.9 probability threshold (image overlay) is indicated in the upper left corner for each

pre-processing pipeline. Green and purple frames surrounding some maps highlight pipelines with or without phase-based correction, respectively.

better signal separation across the cortical thickness (lowest
homogeneity), was obtained with pre-processing pipeline #9,
where the phase-based correction method was applied to
data after regression of motion parameters, pulse, breathing
and average CSF and WM signals. The significant differences
between pre-processing pipelines in terms of signal homogeneity
are presented in a significance matrix in Figure 3C, where
white cells represent significant differences between pairs.
As expected, smoothing with 1mm Gaussian filter kernel
rendered the most homogeneous signals across the cortex,
followed by the pipeline including only realignment. Phase-
based correction significantly decreased the homogeneity
levels in all pipelines, demonstrating the advantage of
adding this step in high-resolution applications. Pipelines
differing only in the presence or absence of phase-based
regression are connected with a light gray line in the bar
plot (Figure 3C) and shaded with a different intensity to
facilitate comparison.

For visual inspection of the spatial localization, a resting-
state network probability map of a portion of the visual
cortex of one volunteer is presented in Figure 4. The improved
signal specificity achieved with more complete pre-processing—
excluding smoothing—can be clearly observed as a reduction in
the percentage of voxels surviving a 90% probability threshold in
pipelines #5 and #9, which corresponds to the finer delineation
of the resting-state network. Here, it can also be observed that
phase-based correction improves the spatial specificity of signals
in all the assessed pipelines (compare the probability maps #2,
#3, #4, #5, and #11 to their corresponding phase-based corrected
versions, #6, #7, #8, #9, and #12, respectively).

Evoked Activation
To assess the spatial specificity of evoked fMRI, here a motor
task performed with the right index finger, the activation maps
of the thirteen subjects were studied in two ROIs covering
either a portion of the GM or the CSF in the left pre-
central gyrus (M1 contralateral to the active limb) (Figure 5A).
The beta maps were first thresholded (voxels with p-value <

0.001 were removed), and the surviving voxels were averaged

within the GM or within the CSF ROI. The ratio of the
GM and CSF beta-values is shown in Figure 5B and, with
the exception of pipeline #1 and #10, in Table 1. Figure 5C
shows the mean ± standard deviation of the distribution
of the t-statistic in GM and CSF for each pre-processing
pipeline across the thirteen volunteers. The fMRI data achieved

higher significant beta values in the GM with respect to CSF

when physiological signal regression was added to the pre-

processing pipeline (this increase was significant compared
to most other ROIs) (Figure 5B). Although not statistically

significant, an increased GM/CSF ratio could be observed

following the addition of phase-based correction to most pre-

processing pipelines. Table 1 shows the activation ratio obtained

from pipelines #2, #3, #4, #5, and #11, i.e., before phase-based

correction, and in #6, #7, #8, #9, and #12, i.e., after phase-based
correction, and provide the percentage ratio between both sets
of pipelines.

In order to assess the influence of pre-processing on
the delineation of evoked cortical activation profiles, data
obtained during two neurophysiologically-different tasks were
analyzed in the same cortical segment in one volunteer
who first performed movement of one finger, i.e., a motor
task (“M”), and, later, movement that involved touching (“M
+ T”), i.e., adding somatosensory information processing.
Upon movement, analysis of the evoked activity in the pre-
central gyrus demonstrated a profile with strong activation
in the cortical surface and a second peak occupying deep
layers of the cortex, consistent with the involvement of
motor efferents (Figure 5D). In contrast, the addition of
sensory processing attenuated the activation of the deep
layers and enhanced the signal in the intermediate layers
of the cortex (Figure 5E). The activation profiles of both
tasks are shown overlaid in the graphs shown in Figure 5F.
Although the activation peaks corresponding to somato-
motion and somato-sensation were observed in most pipelines,
a better identification was achieved by adding phase-based
correction, which also shifted the mean activation peak away
from the CSF territory (dashed lines vs. solid lines in
Figures 5D,E).
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FIGURE 5 | Evoked activation. (A) Axial slice showing the delineation of CSF and GM ROIs in the pre-central gyrus of a representative participant, used for group

analysis. (B) Ratio of the mean beta-value across active voxels (t-statistic > 4) in GM with respect to CSF. Different intensities are employed to facilitate identification of

(Continued)
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FIGURE 5 | pairs that differ only in the absence or presence of phase-based correction. Error bars represent standard error of the mean. Horizontal lines signal

significantly different pairs, with p-value < 0.05. N = 13 volunteers. (C) Histograms showing the distribution of t-statistic across voxels within the CSF and GM ROIs.

Shaded areas represent the standard deviation of the mean across participants (N = 13). (D,E) Activation profiles observed in the left pre-central gyrus of a subject

performing a motor task [“M”, (D)] and a motor task involving touch [“M+T”, (E)]. Vertical arrows point to a salient peak observed in deep layers during the motor-only

task and intermediate layers in a motor + sensory task. Horizontal arrows highlight the shift of the first activation peak, near the CSF, toward the GM upon

phase-based correction. (F) Activation profiles of both tasks (motor, in black, and motor + touch, in blue) overlaid on the same graph for each pre-processing pipeline.

Background dashed lines indicate the intensity profile of the background image for each scan (averaged T2*-weighted), useful to assess alignment between the

sampling lines used in both scans.

TABLE 1 | GM/CSF activation ratio in terms of mean beta coefficient across significant voxels.

Previous

pre-processing

Beta GM/beta CSF

before phase-correction

Beta GM/beta CSF

after phase-correction

% change

+ filtering (#2–6) 0.76 ± 0.25 0.77 ± 0.19 + 0.96%

+ motion r (#3–7) 0.80 ± 0.27 0.82 ± 0.24 + 2.77%

+ physio r (#4–8) 0.90 ± 0.24 0.91 ± 0.24 + 0.38%

+ CSF/WM r (#5–9) 0.98 ± 0.19 1.02 ± 0.25 + 3.82%

(#11–12) 0.80 ± 0.25 0.82 ± 0.22 + 1.59%

DISCUSSION AND CONCLUSIONS

Given the recent interest in investigating laminar functional
dynamics, new fMRI sequences have been developed that exploit
diverse contrasts to study brain function with high spatial
resolution (Feinberg et al., 2018; Huber et al., 2018, 2020a;
Kashyap et al., 2018b; Berman et al., 2020; Chai et al., 2020;
Yun et al., 2020). Of those, sequences based on GE BOLD entail
notable advantages due to their lower specific absorption rate,
higher signal-to-noise ratio and faster acquisitions (Gati et al.,
1997; Fukuda et al., 2021; Weldon and Olman, 2021), resulting
in robust functional images with unprecedented coverage and
resolution (e.g., Yun et al., 2020). However, these sequences are
generally more biased to field inhomogeneities, such as those
emerging from the venous vasculature; hence, pre-processing to
substantially diminish signal contamination constitutes a critical
step if the resulting images are to be analyzed in a laminar
context. In this work, the performance of high-resolution GE
BOLD fMRI pre-processed with twelve different pipelines was
evaluated, principally in terms of signal localization, both in
resting-state and task conditions. We did not provide a novel
method to pre-process fMRI, instead, we offered a series of
evaluations to understand how the existing approaches benefit
or not GE-data for high-resolution applications. Pre-processing
pipelines included elemental steps that are part of every fMRI
analysis as well as more specific methods that are especially
beneficial for high-resolution data, which had an important
impact on signal localization, based on our results. Global
signal regression was not performed in any of the pipelines
because the meaning of what constitutes an average brain signal
remains an open discussion in the field and has been the
focus of multiple publications (Falahpour et al., 2013; Amemiya
et al., 2016; Mayhew et al., 2016; Thompson et al., 2016;
Hung and Liu, 2017; Liu et al., 2017; Murphy and Fox, 2017;
Belloy et al., 2018; Spreng et al., 2019; Aquino et al., 2020;
Umeh et al., 2020). As expected, the noise related to known

sources (e.g., head motion, respiration or heart beating) was
substantially reduced by applying routine fMRI pre-processing
steps (the results can be found in Supplementary Figure 2;
Supplementary Note 1). Similar to the reduction of noise and
to some extent also expected, the signal localization on the
GM with respect to CSF, as well as the signal independence
along the cortical depth was improved with more complete pre-
processing. Importantly, the addition of phase-based correction
produced a consistent enhancement of signal localization in
every measure assessed (e.g., yielding a better localization of
resting-state and evoked data in GMand decreasing homogeneity
among neighboring voxels). This indicates an advantage with
respect to non-phase-corrected approaches which should be
taken into consideration in high-resolution studies based on
GE-fMRI. The efficiency of the phase-regression step was, to
a certain extent, anticipated, as the phase signal is especially
sensitive to magnetic field inhomogeneities derived from any
source of motion and from the deoxyhemoglobin in large
venous vessels (Lai et al., 1996; Menon, 2002, 2012). The
phase-based correction method applied in some of the pre-
processing pipelines subtracts the amount of magnitude signal
that can be explained by its corresponding phase from the
magnitude data. After pre-processing, voxels covering the
vasculature should reflect the activity changes of neighboring
neurons. While changes in both magnitude and phase images
in large vessels can be detected upon neuronal activation,
the magnitude signals predominate in the microvasculature,
and hence, removal of the phase contributions after pre-
processing can help optimize signal localization, specifically
in the gray matter, where the microvasculature prevails. By
removing the phase-related signals, a partial reduction of
the contamination that emerges from motion and respiration
has also been previously reported (Barry et al., 2010). Other
methods have been proposed to eliminate the contribution
of veins to the data; one example is the automatic exclusion
of venous voxels (Barth and Norris, 2007; Koopmans et al.,
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2010). Although this segmentation eliminates the surface-vein
bias in cortical areas where vessels can be detected (e.g., as
intravoxel dephasing in sequences sensitive to veins or as
low intensity in common T2/T2∗ images), voxels covering
veins that are not easily identified (e.g., if using only T2/T2∗

contrast) will remain in the analysis. Importantly, even assuming
complete eradication of venous voxels, the blooming effect, i.e.,
the field inhomogeneities that extend to neighbor voxels, will
persist in the intact gray matter. Additionally, the presence of
ascending veins, collecting the blood from venules in deeper
territories toward downstream vessels, would still lead to a
predominance of BOLD signals near the surface. Simulations
with 0.75mm voxels have estimated that up to 40% of the
cortical depth (measured from the surface) is contaminated
by the effect of pial veins (Kashyap et al., 2018b), and the
point-spread function of BOLD signals measured along the
cortical depth was estimated as 20% of the cortical thickness
(Havlicek and Uludag, 2020). For a review on the dependence
of the BOLD signal on the vasculature and the associated effects
in laminar fMRI, see references (Uludag and Blinder, 2018;
Fukuda et al., 2021). Due to the complexity of BOLD, both
in terms of its nature and the vascular arrangement in the
cortex, voxel-wise correction methods offer a good alternative
to clean up the fMRI signal when the vascularity of the cerebral
cortex cannot be sufficiently mapped (e.g., in human whole-
brain laminar applications). Besides the phase-based correction
method introduced byMenon (2002), spurious signals influenced
by cerebral veins can be detected as delayed responses of higher
phase amplitude and removed at a voxel level from the fMRI
data (Lee et al., 1995; Kay et al., 2020). However, this method
is not applicable to resting-state paradigms as these are not
subjected to predicted responses. Additionally, several models
have been developed that can be used to de-noise task-fMRI
data from vascular signals (Heinzle et al., 2016; Markuerkiaga
et al., 2016; Fracasso et al., 2018; Kashyap et al., 2018a), but
these cannot be applied to, for instance, connectivity analysis or
resting-state data, due to the same reason as above (not subjected
to predicted responses). Importantly, the organization of the
intra-cortical vasculature is not homogeneous, i.e., it does not
follow the alignment of the neurons at the different cortical
layers but rather responds to metabolic demands (Borowsky
and Collins, 1989; Weber et al., 2008; Blinder et al., 2013),
thus introducing additional bias to general models. Hence,
the phase-correction method constitutes a good alternative to
correct high-resolution resting-state data in a model-free voxel-
wise manner.

The effect of smoothing at high field, both directly and as a
consequence of steps like motion correction, has been previously
investigated in the context of functional activation of small deep
brain nuclei (Murphy et al., 2020). Although smoothing can help
to reduce noise while preserving true BOLD signals, it has a
detrimental effect on the signal spatial specificity, e.g., it increases
the partial volume effect. Hence, applications like laminar fMRI,
where the voxel size is typically bigger than the desired target
resolution, do not benefit from common smoothing procedures.
However, smoothing restricted to individual cortical surfaces and
other advanced smoothing methods are promising strategies to

enhance signal cleaning while maintaining a level of specificity
within the cortical ribbon that is convenient for the given
application (Hagler et al., 2006; Blazejewska et al., 2019; Brodoehl
et al., 2020).

Co-registration of functional images to an anatomical scan
introduces a certain blurring into the functional images, since
the anatomical scan is typically acquired with a different imaging
sequence (e.g., MPRAGE/MP2RAGE). For this reason, laminar
fMRI tends to either project the anatomical image to the
functional data or substitute the MPRAGE-based anatomical
scan with the functional sequence-based scan reconfigured
to yield T1 contrast (i.e., with good GM/CSF/WM contrast)
(Kashyap et al., 2018a). The results shown here were all collected
from functional data only, i.e., no co-registration was applied to
the data and tissue segmentation was directly performed on the
mean functional image computed after realignment.

The acquisition of line activation profiles evoked by two
different tasks in one volunteer served to demonstrate the
ability of the GE-sequence to differentiate somato-sensation from
somato-motion based on depth-dependent responses. Here, the
most complex pipelines with added phase-regression clearly
identified the contribution of the deep layers of the motor cortex
to the processing of the motor task. This presumably represents
inputs from premotor and supplementary motor areas and
coincides with the efferent motor fibers toward ponto-medullary
nuclei and motor thalamus. When the task included sensory
processing, additional involvement of the intermediate layers
was detected, possibly indicating cross-talk between primary
motor and primary sensory areas of the cortex and reflecting
the modulation by afferent sensory thalamic fibers that alter
motor behavior (Weiler et al., 2008; Mao et al., 2011; Hooks
et al., 2013; Huber et al., 2017). In both tasks, activation of
the superficial layers may respond to inputs from the motor
thalamic nuclei, although a spurious contribution from the
vasculature is likely to have remained despite high-level pre-
processing. Interestingly, phase-based correction shifted this
superficial peak toward deeper locations, indicating an effective
de-veining effect.

The dataset employed here to evaluate the effect of pre-
processing in high-resolution applications used voxels of size
0.63 × 0.63 × 0.63mm, i.e., 0.25 mm3. This is in line with
the voxel size employed by the community in evoked laminar
fMRI and well below the resolution achieved by most whole-
brain fMRI studies; hence, our results could be transposed to
most GE sequences intended to perform laminar assessment of
brain function. However, it is worth noting that the sequence
employed here (EPIK) is characterized by a robust behavior
against distortions (Yun et al., 2013) and data obtained with
common EPI are expected to have larger geometric distortions
caused by susceptibility differences. The temporal resolution of
the presented data (TR = 3.5 s) is in the range to investigate
resting-state activity or responses corresponding to block-
paradigms. Data acquired at higher rates could benefit from
further pre-processing, i.e., by using statistical models that
allow detection and regression of sources of physiological
contamination (Agrawal et al., 2020). Other methods that have
proven valuable to reduce fMRI noise in the literature [e.g.,
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more advanced motion-correction procedures (Power et al.,
2018)] are expected to further benefit high-resolution data,
as signal specificity is usually enhanced upon reduction of
fMRI noise. Our analysis demonstrates that GE data acquired
with sub-millimeter spatial resolution is particularly sensitive
to the applied pre-processing and that smoothing-free routine
fMRI cleaning methods with combined phase regression (to
reduce vein bias) significantly improve the definition of depth-
dependent activation patterns.
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