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In the fields of longitudinal cortical segmentation and surface-based cortical thickness

(CT) measurement, difficulty in assessing accuracy remains a substantial limitation due

to the inability of experimental validation against ground truth. Although methods have

been developed to create synthetic datasets for these purposes, none provide a robust

mechanism for measuring exact thickness changes with surface-based approaches.

This work presents a registration-based technique for inducing synthetic cortical atrophy

to create a longitudinal ground truth dataset specifically designed to address this gap

in surface-based accuracy validation techniques. Across the entire brain, our method

can induce up to between 0.8 and 2.5 mm of localized cortical atrophy in a given

gyrus depending on the region’s original thickness. By calculating the image deformation

to induce this atrophy at 400% of the original resolution in each direction, we can

induce a sub-voxel resolution amount of atrophy while minimizing partial volume effects.

We also show that cortical segmentations of synthetically atrophied images exhibit

similar segmentation error to those obtained from images of naturally atrophied brains.

Importantly, our method relies exclusively on publicly available software and datasets.

Keywords: synthetic atrophy, cortical thickness, cortical segmentation, accuracy validation, registration

1. INTRODUCTION

Cortical thickness (CT) is an important image-based marker for measuring patterns in both
healthy aging and neurodegenerative pathologies. Methods to quantify CT are categorized as either
volumetric, where thickness is measured directly from a structural brain MRI, or surface-based,
where thickness is measured as the distance between surface reconstructions of the segmented gray
matter (GM) and white matter (WM) layers. Surface-based methods, while less computationally
efficient than their volumetric counterparts (Jones et al., 2000; Das et al., 2009; Lee et al., 2011;
Tustison et al., 2013), generally yield more accurate results due to reduced errors from partial
volume effects and lower susceptibility to noise and topological defects (Clarkson et al., 2011).
Although advancements have been made in developing robust surface-based methods for cortical
segmentation and quantifying CT (Dale et al., 1999; Fischl and Dale, 2000; Han et al., 2004; Oguz
and Sonka, 2014a,b; Oguz et al., 2015), determining the accuracy of observed measurements still
remains challenging due to the difficulty of obtaining ground truth for experimental validation.
This becomes an even greater setback for validation of longitudinal studies where exact spatial
correspondences across timepoints are desirable yet elusive.

Validation of CT measurements from MRI scans was initially achieved
by comparing thickness values to those obtained via histology (Meyer et al.,
1996; Fischl and Dale, 2000); this is problematic due to differences between
in vivo vs. postmortem tissue, MR vs. histology imaging differences, and 2D
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vs. 3D measurements. More recently, both longitudinal
and cross-sectional studies often achieve validation of CT
measurements by comparing thicknesses observed by a new
pipeline to those from previously existing algorithms (Oguz
and Sonka, 2014a; Tustison et al., 2014, 2017). However, this
makes it difficult to show whether the proposed method offers
any improvement in accuracy over the current state of the art in
reference to ground truth. Another approach for evaluating CT
methods is through test-retest validation (Fischl and Dale, 2000;
Hutton et al., 2008; Tustison et al., 2014), which is a measure
of reproducibility rather than accuracy, or by assessing the
correctness of surface topology rather than anatomical accuracy
(Dale et al., 1999; Reuter et al., 2012). Finally, another method is
to compare surface placement in cortical segmentation results
to manual landmarks (Han et al., 2004; Oguz and Sonka, 2014b)
placed along the boundaries of the cortical ribbon within the
image, such as those of the publicly available Johns Hopkins
University (JHU) cortical validation dataset (Shiee et al., 2014).1

Unfortunately, these landmark datasets are generally limited
to cross-sectional analyses; even if landmarks were manually
placed in a longitudinal dataset, there would not exist exact
correspondence between landmarks across timepoints. A better
approach is to employ a synthetic dataset with known, ground
truth changes in thickness and surface location at each point on
the cortical surfaces.

Several methods for inducing synthetic deformations in brain
images have been developed to validate techniques designed
to measure volumetric cortical changes (Freeborough and
Fox, 1997; Davatzikos et al., 2001; Karaçali and Davatzikos,
2006; Khanal et al., 2017; Xia et al., 2019; Bernal et al.,
2021). For example, Freeborough and Fox implemented an
image magnification technique to validate their boundary
shift integral method for detecting volumetric loss. Davatzikos
et al. synthetically induced cortical atrophy by simulating
biomechanical deformations in a localized region to validate a
voxel-based morphometry approach to atrophy detection. One
of the most popular methods for inducing cortical atrophy is
that of Karaçali et al., where a topology preserving deformation
is used to induce a predetermined amount of volumetric change
at each voxel in the image. More recent approaches include Xia
et al. and Bernal et al., which both employ deep learning to
simulate atrophy in structural MRI, and Khanal et al., which
uses a biophysical model to generate cortical changes that are
then induced with deformable registration. While these methods
are all capable of generating longitudinal data with synthetically
induced changes in CT, none of them also provide a robust
mechanism for measuring exact thickness changes for surface-
based approaches. Additionally, these volumetric approaches
aside from that proposed by Karaçali et al. are likely to cause
topological defects in the cortex.

In this paper, we present a method based on mathematical
morphology and deformable registration to create a longitudinal
ground truth dataset specifically designed for accuracy validation
of surface-based CT measurements. Moreover, we demonstrate
how we quantify the ground truth thickness changes using a

1http://iacl.ece.jhu.edu/index.php?title=Cortical_data/

method unbiased by previously existing thickness measurement
techniques. We also show the applicability of our method
to assess the accuracy of cortical segmentation and surface-
based reconstructions. Firstly, we introduce the datasets used
to develop and validate our methods. Next, we provide a
detailed description of each step of the proposed synthetic
atrophy pipeline, and demonstrate how we use cortical surface
reconstructions to quantify the ground truth changes in
CT. We then describe the experiments used to determine
the degree and localization of cortical atrophy induced in
different regions across the brain, and the extent to which
accurate cortical segmentations can be produced from our
synthetically atrophied data. Finally, we present the results
of these experiments and discuss their implications for
our methods.

2. MATERIALS

We employ two publicly available datasets to develop and validate
the methods presented in this paper. The first, which we use
to develop our synthetic atrophy pipeline and validate it in
the context of CT measurement, is the NITRC Kirby test-retest
dataset (n = 21) of healthy adult data (Landman et al., 2011). For
each subject in this dataset, there exists two separate sessions of 15
different image sequences; the two sessions are acquired within
several hours of each other. Since minimal anatomical difference
is expected between these two sessions, our analysis uses only
the first sessions of the MPRAGE T1w and FLAIR images as
the initial timepoint in our experiments and induces synthetic
atrophy on these to create a second timepoint. The T1w images
in this dataset were acquired with a resolution of 1.0×1.0×1.2
mm3 over an FOV of 240×204×256 mm3, and the FLAIR with
1.1×1.1×1.1 mm3 over an FOV of 242×180×200 mm3.

For the application of our methods to measuring cortical
segmentation accuracy, we use the JHU cortical validation dataset
(n = 10) (Shiee et al., 2014). This dataset contains five healthy
controls (HC) and five multiple sclerosis (MS) subjects, with an
MPRAGE T1w, FLAIR, T2w, and proton density image for each.
Again, we use only the T1w and FLAIR modalities, which have
the same resolution and FOV as the Kirby dataset. In addition
to these images, each subject is associated with sets of fiducial
landmarks denoting the cortical GM andWM surface placement.
Three clusters of ten landmarks are placed by two different
experts (referred to in this paper as experts A and B) within seven
different brain regions: the calcarine fissure, cingulate gyrus,
central sulcus, parieto-occipital sulcus, superior frontal gyrus,
superior temporal gyrus, and Sylvian fissure. Each cluster of 10
landmarks is constrained to a single axial slice, but the three
clusters within a region each lie in a separate slice. These clusters
are provided in pairs for both GM and WM surfaces, such that a
pair of clusters denotes the GM or WM borders of a given region
within the same axial slice. Each hemisphere contains 7 of these
pairs, which totals to 28 sets (7 regions × 2 hemispheres × 2
surfaces) of 30 landmarks (3 clusters× 10 landmarks) per subject
per expert. Example pairs of GM/WM landmark clusters can be
observed in Figures 3A,C, which displays one of the three left
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superior temporal (LST) pairs, or Figures 7A,C, which displays
both the LST cluster and another cluster in the right calcarine
(RCALC) fissure.

All subjects from both the Kirby and JHU datasets are
processed using the FreeSurfer program (Dale et al., 1999)
(version 6) with the “-FLAIRpial” option to produce a cortical
parcellation (aparc+aseg.mgz) defined by the Desikan-Killiany
Atlas (Desikan et al., 2006). We use this parcellation to produce
a WM mask, a cortical GM ribbon mask, and a full brain
mask. This full brain mask includes voxels corresponding to GM,
WM, subcortical structures, and the ventricles, but excludes the
cerebellum and brain stem. We use the WM defined in this
atlas for our WM mask rather than FreeSurfer’s volumetric WM
segmentation so that the boundaries between the WM and GM
labels are consistent. We also create a skull-strip mask from a
thresholded skull-stripped brain image (brainmask.mgz), which
differs from the “full brain mask” because it also contains voxels
corresponding to CSF in addition to brain tissue. These resulting
masks are all required for several steps of our synthetic atrophy
pipeline. Lastly, prior to running our pipeline, we resample all
images to an isotropic resolution that is determined such that no
data is lost along the highest resolution axis; in our experiments
this corresponds to 1×1×1 mm3 resolution.

3. METHODS

3.1. Synthetic Atrophy Induction
The overall goal of our synthetic atrophy pipeline is to apply a
localized deformation to a T1w image that will push the outer
boundary of a GM region in toward theWM to simulate localized
atrophy. We achieve this by first creating a local atrophy “target”
using a series of binary morphology operations on an ROI within
the cortical ribbon. We then compute a restricted, deformable
registration from the original ROI to the atrophied target to
create a smooth deformation field. This allows us to obtain
a transformation with point-to-point correspondences between
timepoints along with the final atrophied image.

The process begins by generating a cortical parcellation from
the target image and selecting a specific gyrus within this label
map to serve as the region of interest (ROI) for atrophy. Although
in our experiments we use FreeSurfer (Dale et al., 1999) to
produce the parcellation defined by the Desikan-Killiany Atlas
(Desikan et al., 2006), our methods are generalizable to any
parcellation. We create a binary mask of the selected ROI, which
we upsample by 400% in each direction to avoid introducing
partial volume artifacts. We then perform a set of binary
mathematical morphology operations on the high-resolution
mask using the publicly available Insight Toolkit (ITK)2 library.
This series of operations simulates localized atrophy by first
removing a 1-voxel border around the entire ROI and then
reinserting voxels adjacent to WM, thus effectively “sloughing
off” the outermost layer of voxels along only the GM/CSF
interface without altering the GM/WM interface. Figure 1

displays this entire series of binary operations, which can be
repeated as many times as needed to produce the desired amount

2https://itk.org/

FIGURE 1 | Binary mathematical morphology operations used to induce

1-voxel amount of atrophy in the left superior temporal gyrus (LSTG). (A) Mask

of original LSTG. (B) Binary erosion of original LSTG mask (A) with a kernel

radius of 1 voxel. Note this represent atrophy on both the inner and outer parts

of the GM region, which will create undesirable holes between the WM and

GM. (C) Mask of original WM. (D) Binary dilation of original WM mask (C) with

a kernel radius of 1 voxel. (E) Original LSTG mask minus eroded LSTG mask

(A−B). (F) Dilated WM mask times the difference between original and eroded

LSTG masks (D×E). This represents the holes between the WM and GM

created by the erosion operation. (G) Final mask of atrophied ROI, with the

holes filled (B+F).

of total atrophy. Specifically, for each iteration, we perform the
following steps:

1. Apply a binary erosion filter with a kernel of radius 1×1×1
voxels to the GM ROI (Figure 1A→Figure 1B).

2. Apply a binary dilation filter with the same kernel to
the WM mask. This preserves the GM/WM interface
(Figure 1C→Figure 1D).

3. Subtract the eroded GM mask from the original
to obtain a mask of the removed voxels
(Figure 1A−Figure 1B=Figure 1E).

4. Select from the mask obtained in step 3 only voxels within the
dilated WM mask to extract all voxels lying on the GM/WM
border (Figure 1D×Figure 1E=Figure 1F).

5. Add back the border voxels extracted in step 3 to the eroded
mask from step 1 (Figure 1B+Figure 1F=Figure 1G).

Once complete, these binary morphology operations yield a GM
ROI with an unchanged WM boundary and a outer border
eroded by one voxel, which in practice, also expands the CSF
by one voxel. Each subsequent iteration erodes another single
layer of GM voxels; this can proceed until the entire GM ribbon
is removed from the ROI. Note that because we must dilate the
WM to meet the eroded GM in order to preserve the boundary
between the two tissues (step 2), this limits each iteration to
eroding up to one half of the thickness of the original ROI. This
limitation would persist even with a larger erosion kernel, and the
morphology operations would fail if we used a kernel sized larger
than half the tissue thickness. However, by only eroding one voxel
per iteration, we bypass this issue and can atrophy deeper into
the ROI. We refer to the number of iterations as the “effective
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erosion kernel size” because k number of iterations removes an
equal number of voxels to a single erosion operation that uses a
kernel of size k×k×k voxels. The end product of this series of
iterations is the local atrophy target.

Once we thus obtain a binary mask for the local atrophy
target, we next calculate a transformation to deform the T1w
image accordingly, as well as any additional associated data such
as T2w or FLAIR images. To achieve this, we first create high-
resolution, full brain masks for both the original and atrophied
timepoints. The original brain mask is obtained by thresholding
a 400% upsampled cortical parcellation from which the ROI
was selected (Figures 2A–C), and the atrophied brain mask is
obtained by substituting the eroded ROI mask for the original
in the thresholded parcellation (Figures 2G,H). We deformably
register the original, full brain mask to the atrophied using the
publicly available Greedy software (Yushkevich et al., 2016),
resulting in a deformation field from the original to atrophied
timepoint (Figure 2I). This registration is performed at four
scales (100/100/50/100 iterations per scale, respectively) and
using the mean squared difference as the similarity metric.

Next, we mask the resulting deformation with the original
ROI and blur it outwards into the CSF within a custom blur
mask. Creating this mask requires two inputs: a preliminary
label map (Figure 2C) and the signed distance transform (SDT)
(Figure 2D) of the full brain mask (Figure 2B). This preliminary
label map parcellates the full brain mask into voxels inside the
ROI (green), the rest of the GM ribbon (blue), the WM (yellow)
as defined in the original DK atlas, and CSF (pink) defined using
the skull-strip mask. Using these two images (Figures 2C,D), we
define the blur mask (teal region in Figure 2F) as the region
bound by the GM/CSF border of the ROI, the outer edge of the
CSF, and the medial lines between neighboring gyri calculated
using the monotonic increase of the SDT (Figure 2E).

Inside this blur mask, we assign values to voxels such that
we create a smooth transition from the deformation field values
inside the GM ROI to zero-valued voxels at the edge of the skull-

strip mask or medial lines (Figures 2L,M). Let Ef (pi,0) be the value
of the deformation field at a point pi,0 that lies on the interface
between the ROI and the blurmask. Let l(pi,0) be the line oriented
normal to the GM/CSF interface at pi,0 and that extends from pi,0
to another point pi,m on the opposite edge of the blur mask (i.e.,
either at the edge of the skull-strip mask or on a medial line).
Along l(pi,0), we sample equally spaced points pi,1, . . . , pi,m−1.
Each of them+1 points on l(pi,0) is then associated with a vector
Ef ′(pi,j) such that

Ef ′(pi,j) = m−j
m

Ef (pi,0) (0 ≤ j ≤ m) (1)

This yields a series of vectors that decrease linearly from
Ef ′(pi,0) = Ef (pi,0) to Ef ′(pi,m) = E0, which we calculate for
each line across the entire interface between the ROI and the
blur mask (Figure 2L). Using vectors from these series, we can

interpolate field values Ef (xBM) at each voxel xBM inside the blur
mask (Figure 2M). If we define p1i,j . . . p

n
i,j as the n closest points

to the center of xBM, and Ef ′(p1i,j) . . . Ef ′(pni,j) as their corresponding
vectors, then we can express the interpolated value Ef (xBM) as

Ef (xBM) = 1
n

n∑

k=1

d(xBM, pki,j) · Ef ′(pki,j) (2)

Here, d(xBM, pki,j) denotes the distance between the center of xBM

and the point pki,j. We require that each pki,j lie on a unique l(pi,0);

even if the center of xBM is closest to multiple points on the same

line, Ef (xBM) will still be calculated using one point from n distinct
l(pi,0). In our experiments, we use n = 4. This entire process
of obtaining the deformation field by registering the original full
brain mask to its atrophied counterpart, followed by masking
and smoothing the field with a custom blur mask, is detailed in
Figure 2.

Masking and smoothing the field in this way offers several
advantages over other techniques, such as a simple Gaussian blur.
Firstly, we create a smooth transition between the deformed and
original image regions; this ensures that the boundary of the
GM is still deformed even if the edge of the ROI does not quite
extend to the edge of the GM in the input T1w image (e.g., due
to inaccuracies in input FreeSurfer parcellation). Constraining
the blur prevents the transformation from extending into and
deforming neighboring regions, which would result in the GM
expanding within those areas. Finally, leaving the deformation
field inside the ROI unchanged ensures that the deformation
performs as expected.

After calculating the final deformation field with this custom
blur operation, we apply it to the original T1w image to artificially
induce localized cortical atrophy. This yields a set of two
timepoints with known changes at each location in the images.
Any other images, such as FLAIR or T2w, can be co-registered to
the T1w image and undergo the same deformation to induce the
same synthetic atrophy in these modalities.

3.2. Cortical Surface Thickness Change
After creating our set of images, where one timepoint is the
original data and the other synthetically atrophied, our next step
is to quantify the true change induced in CT. By construction,
our method induces surface erosion perpendicular to the surface,
whereas the direction of thickness measurement might be at a
slight angle based on the local cortical geometry. Because of
this discrepancy, we expect that the true change in thickness
will be less than the effective size of the erosion kernel. Thus,
to determine the localized, ground truth changes in CT, we
create surface representations for each timepoint and measure
the corresponding difference in thickness in the deformed region.
We obtain these surfaces by performing the 3D Slicer (Fedorov
et al., 2012) implementation of the marching cubes algorithm3

(Lorensen and Cline, 1987) on the WM and whole brain GM
masks (rather than just the ROI) of the original image. We use a
smoothing factor of 10 and 0% decimation for input parameters,
and then remove any topological defects in the surface such as

3https://www.slicer.org/wiki/Documentation/4.3/Modules/ModelMaker
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FIGURE 2 | Schematic of pipeline to produce the masked and blurred deformation field for synthetic atrophy in the left superior temporal gyrus (LSTG) with 4

iterations of the binary mathematical morphology operations shown in Figure 1. (A) Original LSTG. (B) Original LSTG (A) with surrounding GM/WM, also referred to

as the full brain mask of the original timepoint. (C) Full brain mask of original timepoint parcellated with 4 labels: the original ROI (green), WM (yellow), surrounding GM

tissue (blue), and CSF (pink). (D) Signed distance transform (SDT) of original full brain mask. (E) Example of traveling along lines (black) normal to the GM/CSF

boundary that extend to either the outer boundary of the CSF (pink), or the medial lines between neighboring gyri defined by the monotonic increase of the SDT (D)

The full approximated boundary is denoted by the dotted white line. (F) Label map shown in (C) with added blur region (teal). (G) Atrophied LSTG (local atrophy

target). (H) Atrophied LSTG (B) with surrounding GM/WM. (I) Deformation field obtained by registering the original LSTG + surrounding tissue mask (B) to the

atrophied LSTG + surrounding tissue mask (H). (J) Deformation field (I) with label mask (F) as overlay. (K) Deformation field masked to the original ROI (A), with label

mask (F) as overlay. (L) Example of defining m number of equally spaced points along a line l(pi,0) oriented normal to the GM/CSF boundary and extending from pi,0 to

pi,m. (M) Example of interpolating the field value at a voxel xBM within the blur mask using the n closest points to the center of that voxel. These points are constrained

to lie on unique lines. In this 2D example, only 2 lines are used, but in 3D, the value is interpolated using the 4 closest lines. (N) Final deformation field after masking

and outward smoothing, overlaid with label map from (F). The field inside the blur mask (teal) is a smooth transition from the original, unchanged field inside the ROI to

the edge of the CSF or medial boundaries between gyri. (O) Final deformation field after masking and outward smoothing with no overlay.

holes or handles (Jaume et al., 2005). This resulting surfaces
are warped with the same deformation field used to transform
the image to yield corresponding surfaces for the atrophied
timepoint. Although the marching cubes algorithm does not
necessarily produce a topologically accuratemesh representation,
we employ this technique rather than a specific cortical surface
reconstruction pipeline (such as FreeSurfer) so that our results
are not biased toward any specific reconstruction method.

Finally, we define the ground truth change in CT as the
average between the difference between the distances between
the original and atrophied surfaces. For each vertex on each
original surface (either GM or WM), we calculate the shortest,

signed distance from that vertex to a point on the corresponding
atrophied surface. Note that this point can lie anywhere on the
atrophied surface and is not necessarily coincident with one of
its vertices. Next, we average these distances across the entire
ROI to yield a mean surface displacement value, and take the
difference between the mean GM displacement and the mean
WM surface. We then repeat these calculations starting at each
point on the atrophied surfaces and finding the shortest, signed
distances to their original counterparts. The true change in
thickness is thus defined as the average between the difference
in surface displacements traveling from the original to atrophied
surfaces, and the different in displacements traveling from the
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FIGURE 3 | Schematic of pipeline to produce a label map specific to the left superior temporal (LST) fiducial landmarks. This data belongs to a subject from the HC

cohort of the JHU cortical validation dataset. (A) T1w image with manual fiducial landmarks (pink). (B) T1w image overlayed with a mask of the left cortical GM ribbon

(blue). (C) Close up of landmarks in T1w image overlayed with GM ribbon mask outline. (D) Initial ROI (green) for image and landmark deformation, obtained by filling

in voxels between corresponding pairs of WM and GM landmarks. (E) ROI dilated with 1×1×1 voxel kernel (first iteration). (F) ROI masked with cortical GM ribbon

(first iteration). (G) Dilated ROI (second iteration). (H) Masked ROI (second iteration). (I) Dilated ROI (third iteration). (J) Masked ROI (third iteration). (K) Final ROI after

manual cleanup of adjacent gyri.

atrophied to the original.We call this definition theMean Surface
Displacement Difference (MSDD). In this analysis, all mesh
warping, topological corrections, cortical surface parcellations,
and thickness measurements are obtained using the Visualization
Toolkit (VTK)4 libraries.

3.3. Longitudinal Cortical Segmentation
Accuracy
Recall that we develop our methods with two intended
applications: validation of surface-based CT measurement and
of cortical segmentation. Thus, after establishing a method for
measuring the exact induced thickness change, we want to
demonstrate how data from our methods can be employed
to quantify segmentation accuracy as well in the presence of
cortical atrophy. We also want to determine whether cortical
segmentation pipelines can segment our synthetic images well
or whether they encounter issues such as local blurring of
boundaries due to interpolation. We accomplish this by inducing
synthetic atrophy in the JHU dataset; we deform both the
images and the landmarks themselves to match the new cortical
boundaries. We use the original and deformed landmarks

4https://vtk.org/

sets to measure the accuracy of FreeSurfer cortical surface
reconstructions of the respective timepoints.

Because we are only interested in measuring cortical accuracy
at the fiducial landmarks, we create a unique cortical parcellation
for each subject based on the locations of its landmark clusters.
This label map contains ROIs that are each centered around a
single cluster of GM/WM landmarks (recall there are 3 such
clusters per region in the JHU dataset, where each cluster consists
of 10 landmarks per surface and is constrained to a single
axial slice). Figure 3 illustrates the process of creating a single
ROI for one cluster of the left superior temporal (LST) region
(Figure 3C). The ROI is defined by first filling in the voxels
within the image that lie between pairs of corresponding GM and
WM landmarks (Figure 3D). Because each cluster of landmarks
lies within a single axial slice, this step yields a 1-voxel-thick
mask with no extra voxels surrounding the landmarks. Next, we
want to pad this initial ROI so that the deformation moving the
landmarks is not affected by boundary effects. To accomplish
this, we iterate between (1) dilating this initial mask outward
with a 1×1×1 voxel kernel and (2) applying a cortical ribbon
mask to constrain the ROI to within the GM (Figures 3E–J). In
other words, we use voxels between corresponding GM andWM
landmarks as a starting seed, and flood the ROI outwards within
the cortical ribbon. This adds a buffer region on either side of the

Frontiers in Neuroimaging | www.frontiersin.org 6 June 2022 | Volume 1 | Article 861687

https://vtk.org/
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroimaging#articles


Larson and Oguz Synthetic Atrophy for Cortical Analyses

FIGURE 4 | Example results of the synthetic atrophy pipeline using the NITRC Kirby dataset and four iterations of binary morphology operations to induce atrophy. (A)

Skull-stripped original T1w image. (B) Skull-stripped T1w image with synthetically induced atrophy. (C) Skull-stripped original FLAIR image. (D) Skull-stripped FLAIR

image with synthetically induced atrophy. (E–H) Close-up of ROI (LSTG) in the images of the first row. (I) Difference image between the original and atrophied T1w

timepoints (E,F) overlayed on the original T1w image. (J) Difference image between the original and atrophied FLAIR timepoints (G,H) overlayed on the original FLAIR

image. For both difference images, all zero-valued voxels are rendered transparent. (K) Close up of ROI (blue) overlayed onto original T1w image.

landmark cluster, and of 3 axial slices on both sides of the initial
slice; this also removes any holes existing within the original ROI.
We note that this iterative dilation and masking procedure can
result in the ROI expanding into adjacent tissue. To alleviate
this, each ROI is manually edited using 3D Slicer5 to remove
any voxels residing in adjacent gyri, and to ensure smoothness
between axial slices (Figures 3J,K). Using this procedure, we
generate a total of 42 ROIs (21 per hemisphere), as each of
the seven regions contain landmark clusters in three different
axial slices.

Aftermanual editing, we induce synthetic atrophy in each ROI
with 2 iterations of the binary morphology operations shown in
Figure 1. We use 2 iterations to induce consistent amounts of
change in each region, and to make sure that at no location in any
ROI the GM is fully eroded, as this would not occur during actual
neurodegeneration. With the eroded atrophy target, we perform

5https://slicer.readthedocs.io/en/latest/user_guide/modules/segmenteditor.html

the registration step using the Greedy software with the same
parameters as before (four levels, 100/100/50/100 iterations per
level, and mean squared difference as the similarity metric). We
calculate these individual deformation fields for all 42 ROIs, and
combine them into a single deformation field. Let Tj(1 ≤ j ≤ 42)
denote these individual transformations, and let C denote the
composite field. Let Evx,j be the value of the deformation field Tj at
voxel x. There are three possible scenarios for the corresponding
Evx,C in C:

1. If Evx,j = E0,∀j, then Evx,C = E0.
2. If there exists a unique i such that Evx,i 6= E0 and ∀j[(j 6=

i) → (Evx,j = E0)], which happens when x is within a single
non-overlapping ROI, then Evx,C = Evx,i.

3. If there exist multiple non-zero valued Evx,j, which can
happen because the blurred regions are not necessarily non-
overlapping, then, Evx,C is calculated as the average of all
non-zero valued Evx,j at voxel x.
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FIGURE 5 | Thickness change averaged across subjects between the original and synthetic atrophied timepoints as a function of isotropic erosion kernel size in the 3

regions studied for the left superior temporal gyrus (LSTG) ROI. Data shown in pink corresponds to voxels inside the ROI is shown in pink, in yellow to the 4× 4× 4

voxel dilation neighborhood, and in green to the rest of the cortex. (A) Mean thickness change measured using the mean surface displacement difference (MSDD). (B)

Mean thickness measured using the symmetric closest point distance (SCPD). (C) Mean change in thickness measured with SCPD. These values closely match the

MSDD changes measured with shown in panel A. (D) Example label map of a single subject in the Kirby dataset showing the vertices inside the ROI, surrounding the

ROI, and outside the ROI. These labels are projected onto a cortical surface generated using the marching cubes algorithm on the full brain mask corresponding to

that subject.

These operations are all computed using ITK.
Finally, the composite field C is applied to the T1w and FLAIR

images and to the associated fiducial landmarks. Here, the images
are deformed using the Greedy software and the landmarks
with VTK. This creates a set of images accompanied by cortical
landmarks with exact correspondence between timepoints, which
can be used to evaluate the accuracy of cortical surface
reconstruction methods in a longitudinal setting.

3.4. Validation Experiments
3.4.1. Localization of Cortical Atrophy
The goal of our first experiment is to determine if the
transformation is indeed constrained as desired, or if it bleeds
into the surrounding voxels and deforms the GM outside the
ROI. To investigate this, after calculating thickness at each
vertex, we compute a mean thickness value for 3 different
cortical regions: inside the atrophied ROI, within a 4×4×4 voxel
neighborhood surrounding the ROI, and everywhere else on
the surface. Any significant change in thickness detected within

the neighborhood surrounding the ROI would indicate that our
transformation is not constrained to the target ROI as intended.
We separate this surrounding neighborhood because otherwise
any measured changes would be smoothed away if averaged
together with the entire brain outside the target ROI. Figure 6C
displays an example of this label map projected onto a cortical
surface. Finally, changes in thickness were computed as the
difference in mean thickness within each of the three regions. By
taking the difference of the average thickness within each region
instead of the average of the difference across pairs of vertices, we
allow for the application of this method to CT pipelines that may
not guarantee vertex-vise correspondence between timepoints.

3.4.2. Extent of Induced Localized Cortical Atrophy
Although we can fully erode the GM ROI using the series
of binary morphology operations described in Figure 1,
the regularization terms used in the subsequent deformable
registration step will likely not allow for the total collapse of
the GM ribbon. Thus, our next experiment aims to determine
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FIGURE 6 | Synthetic atrophy results averaged across subjects mapped onto an example cortical GM surface obtained from the original timepoint using the marching

cubes algorithm. (A) Mean original thickness for each region measuring using the symmetric closest point distance (SCPD) formula. (B) Thickness change measured

with using the mean surface displacement distances (MSDD) after k = 2 iterations of erosion. (C) MSDD thickness change after k = 4 iterations of erosion. (D) MSDD

thickness change after k = 12 iterations of erosion, showing the maximum amount we can atrophy in each region. (E) DK atlas (Desikan et al., 2006).

the extent to which we can induce localized atrophy in ROIs
throughout the entire cortex in practice. We tested our pipeline
in each of the 62 cortical regions (33 per hemisphere) in the
Desikan-Killiany (DK) atlas by varying the amount of target
(intended) atrophy induced in each ROI from 1 to 12 voxels in
the upsampled mask images. Because these upsampled masks

have a resolution of 0.3 × 0.25 × 0.25mm3, each iteration
induces approximately

√
0.32 + 0.252 + 0.252 = 0.46mm of

thickness change, resulting in a total change of about 5.5mm
over 12 iterations. Note that this is intended to result in complete
atrophy within the cortical region (which would not be expected
to occur in a realistic dataset, except possibly in surgical removal
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FIGURE 7 | Example results from the accuracy validation for longitudinal cortical segmentation using the JHU Cortical Validation dataset and two iterations of binary

morphology operations to induce atrophy. (A) Skull-stripped original T1w image, overlaid with original GM and WM landmarks (green). Two clusters of landmark pairs

are visible in this slice: the right calcarine fissue (RCALC cluster) and the left superior temporal gyrus (LST cluster). (B) Skull-stripped T1w image with synthetically

induced atrophy, overlaid with deformed GM and WM landmarks (blue). Again, the same RCALC and LST landmark clusters are visible in this slice. (C) Close-up of

LST ROI selected for deformation and its landmark cluster. (D) Close-up of deformed LST ROI and landmark cluster. (E) Multi-color label map overlayed onto original

T1w image, with the LST ROI in pink. (F) Difference image thresholded to display only non-zero voxels, as well as the original and deformed landmarks, overlaid on the

original image. Note that other deformed ROIs can also be observed in this panel that are associated with additional clusters of landmarks, but that those sets are not

visible in this slice.

scenarios) to test the limits of the atrophy pipeline. For each
iteration of atrophy, we measure the mean change in CT using
our MSDD definition of thickness change within each cortical
ROI; this allows us to assess how the CT changes in individual
ROIs with each iteration and the maximum extent to which we
can synthetically induce localized atrophy. We also measure
these changes with the symmetric closest point distance (SCPD),
which defines CT at each vertex as the average of the distances
between (1) the initial GM vertex and the closest point on the
WM surface, and (2) that point on theWM surface and its closest
point on the GM surface. Note that similar to the MSDD other
than the initial vertex, these points are not constrained to vertices
and can fall anywhere on the GM orWM surfaces. By comparing
changes in CT measured with the MSDD and SCPD definitions,
we can determine how our findings match those obtained with
an established and widely used technique.

3.4.3. Effect on Longitudinal Cortical Segmentation

Accuracy
In this experiment, we aim to determine the usability of
our methods in the context of validating the accuracy of the
cortical segmentation methods. We explore this by inducing
synthetic atrophy in the JHU cortical validation dataset using
the custom cortical parcellations generated from the landmarks

associated with each subject (Section 3.3). We use both the cross-
sectional and longitudinal workflows of the FreeSurfer program
to generate cortical surface representations of the original and
atrophied timepoints, and measure the segmentation error of
the resulting surfaces with respect to landmark placement. In
the cross-sectional pipeline (Dale et al., 1999), each timepoint
is segmented independently; in the longitudinal pipeline (Reuter
et al., 2012), FreeSurfer first combines all timepoints to create
a subject-specific template and then separately segments each
timepoint using this template for initialization. We hypothesize
that if our synthetic atrophy methods are significantly corrupting
the data, e.g., with blurring artifacts, this would result in more
error in the jointly initialized longitudinal pipeline compared to
the cross-sectional pipeline.

After creating the synthetic dataset and surface
reconstructions, we calculate the unsigned and signed
segmentation errors for each landmark cluster. These errors
are obtained by measuring the average distance from each of
the 30 landmarks on each surface within the cluster to the
corresponding cortical surface. We determine the sign of the
distance by generating high resolution, binary masks for each
surface: the distance is positive if the landmark resides inside
the mask, and negative if outside. We expect that FreeSurfer will
perform worse in atrophied data than in healthy data, regardless
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of whether the atrophy is synthetic or naturally occurring. To test
this, we compare segmentation error between the healthy and
MS cohorts within the dataset; the MS subjects present varying
degrees of (natural) cortical atrophy. If there is no significant
difference in FreeSurfer error between synthetically atrophied
healthy data and the original MS data, then we can conclude
that our method does not induce significant artifacts or error in
the images or landmark placements. We use a one-way ANOVA
(α = 0.05) to test for significant differences between errors for
the original and synthetic timepoints for the HC and MS data (4
cohorts per test). These tests are conducted separately for each
region (7 regions× 2 hemispheres× 2 surfaces, for a total of 28),
expert (A or B), processing type (cross-sectional or longitudinal),
and error type (unsigned or signed). We conduct a similar set
of ANOVA tests for these data to identify significant differences
between the two processing types, and between the two sets of
experts (4 sets total). These tests are conducted separately for
each region (28 total), data type (original of synthetic), subject
type (HC or MS), and error type (unsigned or signed).

4. RESULTS

4.1. Qualitative Evaluation of Atrophied
Images
Figure 4 displays the axial view of an example set of T1w and
FLAIR images. The original images are from the NITRC Kirby
dataset (Figures 4A,C, and atrophy was synthetically induced
(Figures 4B,D) in the left superior temporal gyrus (LSTG)
(Figure 4K). In this example, we used an effective erosion kernel
of k = 4 (4×4×4 voxels), corresponding to 4 iterations of
binary morphology operations, to compute the synthetic atrophy
deformation field. We observe a noticeable decrease in CT
between the two timepoints (see Figures 4E–H for close-ups),
with no significant changes in the GM surrounding LSTG, or
at the GM/WM interface. This visually apparent localization is
further supported by the difference image between the original
and atrophied timepoints for each modality (Figures 4I,J). In
these images, any zero-valued voxel is displayed as transparent.
Thus, we see that the deformation is only affecting the ROI
and the mask used during the blurring process (Figure 2F). We
also see that the atrophied FLAIR image corresponds well to its
T1w counterpart, indicating that we can apply the deformation
obtained from a T1w image to atrophy additional modalities
associated with the subject, as expected.

4.2. Localization and Extent of Cortical
Atrophy
Figure 5 shows the relationship between the induced thickness
changes within the LSTG of our marching cubes generated
surfaces and the number of atrophy iterations. The colors of
the data in Figures 5A–C correspond to the labels overlaid as
a cortical parcellation onto an example marching cubes surface
in Figure 5D: inside the LSTG (pink), within the surrounding
4×4×4 voxel dilation neighborhood (yellow), and across the rest
of the cortex (green). Figures 5A,B show the average thickness
change across all subjects measured using the MSDD and SCPD

formulas, respectively, while Figure 5C shows the actual SCPD
thickness. The MSDD yields a higher change in thickness inside
the ROI (pink) than the SCPD, but a lower change in the
surrounding region (yellow). This is likely because the SCPD
maps a vertex on the GM surface to a vertex on the WM, and
then maps that vertex to a second GM vertex. If the second GM
vertex corresponds to the surrounding region while first vertex
corresponds to the desired ROI, then reported thickness change
will be less than if all three vertices were constrained to the ROI.
Likewise, if the second corresponds to the ROI while the first
corresponds to the surrounding area, the reported change will
be higher. This discrepancy between measurements inside the
ROI (pink) also agrees with a finding in a previous CT study that
the SCPD may underestimate thickness compared to alternate
surface-based methods (Oguz and Sonka, 2014a). The MSDD
and SCPD both found that thickness within the surrounding
(yellow) region remains relatively stable as erosion kernel size
increases, the MSDD more so than the SCP; this indicates that
the atrophy induced by our methods is highly localized and
constrained to the desired region. These thickness changes seem
unaffected by the underestimation tendencies of the SCPD, most
likely because they are much less pronounced than inside the
ROI (pink). Finally, as expected, both methods report no change
in thickness across the rest of the cortex (green). These curves
shown in Figure 5 serve as a representative example for the
atrophy trends across the entire cortex.

Figure 6 displays the atrophy amount in each ROI within
the DK atlas projected onto the cortical surface (Figure 6E)
for several different kernel sizes. Specifically, Figure 6A displays
the mean original thickness values for each region, while
Figures 6B–D show the mean change in CT for k = 2 (used
to produce the data in Figure 7), k = 4 (used to produce
the data in Figure 4), and k = 12, respectively. These kernel
sizes correspond to approximately 0.9 mm, 1.8 mm, and 5.5
mm of intended thickness change. We observe that for k = 2
(Figure 6B), there exists roughly a 0.6 mm change in thickness
across the entire cortex with little variation between regions. As k
increases, more disparities in the atrophy amount occur between
ROIs consistent with their original thickness. In other words, the
higher the original thickness, the more iterations we can keep
applying synthetic atrophy before we reach the limit. This data is
also displayed numerically in Supplementary Table 1, along with
the SCPD thicknesses of each ROI in the original and maximally
atrophied (k = 12) timepoints.

4.3. Qualitative Evaluation of Cortical
Validation Data
Figure 7 illustrates, in addition to the conclusions stated in
Section 4.1, that the deformation field can be used to translate
the landmarks from their original position to the new GM/CSF
interface after synthetic atrophy. In this example, we used an
effective erosion kernel of k = 2 (2×2×2 voxels), corresponding
to 2 iterations of binary morphology operations, to compute the
synthetic atrophy deformation field. The original and deformed
sets of left superior temporal (LST) landmarks are visible within
the difference image in Figure 7F. We note that the number of
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FIGURE 8 | Mean unsigned segmentation errors of longitudinal FreeSurfer cortical surface reconstructions for each set of landmarks placed by expert A. Subplot

rows correspond to surface and hemisphere while the subplot columns correspond to the landmarks’ anatomical placements. Within each subplot, mean

segmentation errors from the original images of healthy subjects are shown in blue, synthetic images of healthy subjects in green, original images of MS subjects in

red, and synthetic images from MS subjects in yellow. A panel outlined in bold indicates that the statistical analysis of the associated data yielded at least one

significant difference between the four groups.

visible landmarks decreases between Figures 7A–D because the
deformation field displaces the fiducials in all 3 dimensions, thus
moving some landmarks to a different axial slice.

4.4. Effect on Longitudinal Cortical
Segmentation Accuracy
Figures 8, 9 display the mean unsigned and signed errors,
respectively, for the FreeSurfer cortical surface reconstructions
of the JHU cortical validation dataset. Each figure contains 28
subplots (7 ROIs × 2 hemispheres × 2 surfaces) comparing four
measurements: the error for unaltered images from HC subjects
(original HC), synthetically atrophied images from HC subjects
(synthetic HC), unaltered images fromMS subjects (originalMS),
and synthetically atrophied images from MS subjects (synthetic
MS). Each column corresponds to the landmarks’ anatomical
placements and each row to the surface (GM vs. WM) and
hemisphere. For brevity, only the data using the landmarks from
expert A and the longitudinal processing pipeline are shown. The
entire sets of unsigned and signed errors (from both raters and
both the cross-sectional and longitudinal pipelines) are shown in
Supplementary Tables 2, 3.

The bolded panels in Figures 8, 9 indicate the one-way
ANOVA tests that yielded p < 0.05 after applying a Bonferroni
correction of n = 56 (28 sets of landmarks × 2 types of

errors). This analysis was also conducted on the entire dataset:
first with no correction factor and then with a correction factor
of n = 224 (2 processes (cross-sectional vs. longitudinal) × 2

experts × 28 sets of landmarks × 2 types of errors). Table 1

details the percent of significant tests for each comparison prior
to Bonferroni correction. After correction, less than 1% of all

relevant tests results are significant. In this context, we define

“relevant” tests as those between the original HC and synthetic
HC cohorts, the synthetic HC and original MS cohorts, and the

original MS and synthetic MS cohorts. By default, the multiple

comparisons analyses also compared the original HC and original
MS cohorts, and the synthetic HC and synthetic MS cohorts.
However, these are deemed irrelevant to our study because we are
not investigating the HC-MS group differences, and therefore we
omitted these from the data in Table 1. In summary, there were a
total of 672 statistical tests (2 processes × 2 experts × 28 sets of
landmarks× 3 relevant comparisons× 2 types of errors).

Lastly, Figures 10, 11 compare mean unsigned and signed
errors corresponding to each expert and process type (cross-
sectional vs. longitudinal FreeSurfer workflows). The row and
column structures of these figures match those of Figures 8,
9. For brevity, we show only the results for the synthetic HC
data. Note that the light green data bars in Figures 10, 11 show
the same data as the darker green bars in Figures 8, 9. As
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FIGURE 9 | Mean signed segmentation errors of longitudinal FreeSurfer cortical surface reconstructions for each set of landmarks placed by expert A. Subplot rows

correspond to surface and hemisphere while the subplot columns correspond to the landmarks’ anatomical placements. Within each subplot, mean segmentation

errors from the original images of healthy subjects are shown in blue, synthetic images of healthy subjects in green, original images of MS subjects in red, and

synthetic images from MS subjects in yellow. A panel outlined in bold indicates that the statistical analysis of the associated data yielded at least one significant

difference between the four groups.

TABLE 1 | Percent of tests resulting in significant differences for unsigned and

signed errors of FreeSurfer segmentation results before applying Bonferroni

correction for multiple comparisons.

HC (O) vs.

HC (S)

HV (S) vs.

MS (O)

MS (O) vs. MS (S) Total

Unsigned 16.96 %

(19/112)

6.25 %

(7/112)

2.79 % (2/112) 8.33 % (28/336)

Signed 8.93 %

(10/112)

18.75 %

(21/112)

8.93 % (10/112) 12.20 % (41/336)

Total 12.95 %

(29/224)

12.5 %

(28/672)

5.35 % (12/672) 10.27 % (69/672)

In parenthesis are the raw number of tests with p < 0.05. A total of 336 statistical tests

using a one-way ANOVA with multiple comparisons were performed for each type of error

(2 processes × 2 experts × 28 landmarks × 3 columns below). In the column titles, (O)

denotes the original timepoint, and (S) the synthetic.

before, we conducted similar one-way ANOVA tests for this
data, also with a Bonferroni correction of n = 56. We found
that no significant differences exist between segmentation errors
produced by different processes or experts within the same set
of images.

We note that trends identified in the data displayed
in Figures 8–11 represent those present in the full dataset.
However, because each figure includes only one out of four

total configurations, we include the entire set of results
in the Supplementary Materials (Supplementary Figures 1–4).
Clustering the data in these two alternative formats (Figures 8, 9
and Supplementary Figures 1, 2 vs. that of Figures 10, 11 and
Supplementary Figures 3, 4) allows the reader to more easily
observe trends across different methods and data types. Again,
this data is also shown in Supplementary Tables 2, 3.

5. DISCUSSION

5.1. Qualitative Evaluation of Atrophied
Images and Cortical Validation Data
The synthetic images resulting from our synthetic atrophy
pipeline, shown in Figures 4, 7, appear visually plausible
compared to the original anatomical data. The FLAIR images
and fiducial landmarks both deform in a way that matches
their corresponding T1w images, as expected. These results also
indicate that the presented methods can induce atrophy within a
desired region without affecting the surrounding tissue. The T1w
difference images in Figures 4J, 7F show that the two timepoints
are identical outside the ROI, as intended.

Although Figures 4, 7 indicate our pipeline performs as
intended, it is worth noting that they do not necessarily depict
cortical atrophy as it would appear naturally. Healthy aging and
most neurodegenerative pathologies are often associated with
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FIGURE 10 | Mean unsigned segmentation errors of FreeSurfer cortical surface reconstructions of the synthetic healthy control cohort. Subplot rows correspond to

surface and hemisphere while the subplot columns correspond to the landmarks’ anatomical placements. Within each subplot, mean errors from the cross-sectional

pipeline and measured with landmarks from expert A are in purple, the longitudinal pipeline with expert A in teal, cross-sectional with expert B in green, and

longitudinal with expert B in pink. A panel outlined in bold indicates that the statistical analysis of the associated data yielded at least one significant difference

between the four groups (and no bolded panels indicates no significant differences detected).

changes in tissue appearance in addition to purely geometrical
changes, and often a degree of both GM and WM atrophy are
observed together rather than GM atrophy in isolation. We
acknowledge that, because our methods induce changes only to
the GM, we are generating only an approximation of cortical
atrophy. However, our goal in this work is not to create a
realistic representation of naturally occurring cortical changes,
but to develop a tool used specifically for accuracy validation
of cortical segmentation and thickness measurement. We
specifically designed our morphology-based atrophy induction
to preserve the GM/WM interface so that only the GM/CSF
boundary would deform. Geometrically, theWM surface is much
less complex than the GM and its segmentation is therefore an
easier task. Moreover, ensuring that we alter only one of the
two boundaries required for measuring CT changes simplifies
the problem compared to if both boundaries were significantly
deformed between timepoints.

When testing our method in various ROIs within the DK
atlas, we found that our method performs best when operating
upon a cortical ROI adjacent to CSF clearly visible within the
image, such as that within a wide sulcus or the sub-arachnoid
space. Because of this, the LSTG proved a perfect example. When
inducing atrophy on a single side of a tight sulcus, we found
that our pipeline yielded less desirable results. This is because

the deformation simultaneously compresses the GM layer and
expands the neighboring CSF; however, if there exists no visible
CSF in voxels bordering the GM of the ROI, then it simply
expands the GM on the other bank of the sulcus. An example of
this is shown in Figure 12, which displays the synthetic atrophy
results in the left fusiform gyrus with four iterations of binary
operations to induce atrophy (the same amount as in Figure 4).
The sulci surrounding this ROI are too narrow and are prone
to partial volume effects; because of this, the algorithm cannot
expand the CSF within this region but rather fuses the GM from
opposing banks of the sulcus. We thus see an artificial increase in
CT in parts of the ROI, rather than the intended decrease. Future
work to address this issue may involve synthetically inserting
CSF voxels to improve the quality of the deformation within
such regions.

5.2. Localization and Extent of Cortical
Atrophy
Figure 5 confirms that, as expected, increasing the effective
erosion kernel size with more iterations of binary morphology
operations yields a larger change in CT. Because we use high
resolution ROIs to produce the deformation, we are able to
induce atrophy on a sub-voxel scale; the change in cortical
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FIGURE 11 | Mean signed segmentation errors of FreeSurfer cortical surface reconstructions of the synthetic healthy control cohort. Subplot rows correspond to

surface and hemisphere while the subplot columns correspond to the landmarks’ anatomical placements. Within each subplot, mean errors from the cross-sectional

pipeline and measured with landmarks from expert A are in purple, the longitudinal pipeline with expert A in teal, cross-sectional with expert B in green, and

longitudinal with expert B in pink. A panel outlined in bold indicates that the statistical analysis of the associated data yielded at least one significant difference

between the four groups (and no bolded panels indicates no significant differences detected).

thickness can thus be less than the resolution of the original
images. Further, the thicknesses at vertices outside the ROI
boundary remain stable. This supports what we qualitatively
observed in the difference images within Figures 4F, 7F: the
tissue outside the ROI remains unchanged.

In Figure 6B, we observe that the limit of atrophy varies
between regions but is consistent within corresponding ROIs
across hemispheres. That is because this limit is determined by
the original thickness of each ROI, as well as the regularization
term in the deformable registration, which may not allow for
a total collapse of the GM ribbon. This threshold amount—
the upper extent of the atrophy we were able to induce within
each region—is displayed in Figure 6D. For reference, a map of
the regions studied in the analysis (Figure 6E) and the SCPD
thickness in each region of the original timepoint (Figure 6A) are
also included. We observe that we can induce cortical thinning
up to between 0.8 and 2.5 mm, which translates to approximately
between 40% and 80% of a region’s original thickness (as
measured with the SCPD formula).

The most challenging aspect of establishing ground truth
is avoiding bias induced by the methods employed for its
measurement. For this reason, we elected to use the marching-
cubes algorithm to obtain surface representations rather than
a more thoroughly validated pipeline such as FreeSurfer or

CRUISE (Han et al., 2004). When applying these methods for the
quantification of a new method for CT measurement, one could
create the synthetic atrophy dataset with our morphology-based
methods, generate surface representations of each timepoint
using an established segmentation pipeline, and then return back
to our method to assess true change using those surfaces rather
than ones obtained with marching cubes. In this case, the ground
truth measurements would indeed be biased by the selected
cortical segmentation method, but would use surfaces that better
represent the complex geometry of cortical GM. That being
said, the advantage to using marching cubes surfaces is that the
resulting surface placement corresponds exactly with GM/WM
and GM/CSF boundaries of the ROIs selected for deformation.
The use of an established cortical segmentation pipeline may
introduce additional discrepancies between the ground truth and
measured thickness changes.

We also acknowledge that our definition of the true change
in thickness differs from the traditional definition of CT. In
longitudinal studies of CT, thickness change is defined as
the difference between thickness measured at each timepoint.
However, we define this change as the difference in surface
placement. Had we elected to define thickness change in
the traditional way, our results would have been biased by
whatever method we employed to measure CT. We circumvent
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FIGURE 12 | Example of less desirable results from our synthetic atrophy

pipeline, where the GM surrounding the ROI is expanded in the absence of

visible CSF. (A) Skull-stripped original T1w image. (B) Skull-stripped T1w

image with synthetically induced atrophy. (C) Close-up of ROI selected for

deformation. (D) Close-up of atrophied ROI. Arrows point to places in the

image where the GM from surrounding gyri is deformed instead of CSF. (E)

Skull-stripped original T1w image with ROI (left fusiform gyrus) overlayed in

green.

this problem by removing the actual thickness calculation
from the pipeline, and simply find the amount by which the
GM and WM surfaces have been displaced by the synthetic
atrophy deformation.

Finally, although the methods discussed for inducing and
assessing localized cortical atrophy are presented in this paper as
a single pipeline, they are not dependent upon each other. For
example, one could apply the methods presented here to obtain a
synthetic longitudinal dataset with a transformation encoding the
amount to which each image has been atrophied, andmeasure CT
volumetrically rather than with cortical surfaces. Alternatively,
one could employ a different technique to synthetically induce
atrophy, such as that proposed by Karaçali and Davatzikos
(2006), obtain cortical surfaces corresponding to the original
and synthetic timepoints, and then apply our method to
assess the true change in CT. Further, our methods are not
restricted to using FreeSurfer to obtain a cortical parcellation

and skull-strip mask; any parcellation that contains separate
labels for GM, WM, and CSF will suffice, as well as any
skull-strip mask.

5.3. Effect on Longitudinal Cortical
Segmentation Accuracy
Figures 8, 9 illustrate the unsigned and signed errors between
timepoints (original vs. atrophy). HC and MS subjects were
analyzed separately rather than as a single cohort to illustrate
that FreeSurfer yields surfaces with higher errors for both natural
and synthetic atrophy, rather than exclusively for the synthetic
atrophy induced by our methods. We observe that in general,
for HC subjects, FreeSurfer has lower errors for the original
timepoints than the synthetic. This may lead one to prematurely
conclude that the FreeSurfer produces erroneous segmentations
when processing images created by the proposed methods,
perhaps due to slight blurring that results from interpolation.
However, when compared to the original timepoint for the MS
subjects, there exist no significant differences between the HC-
synthetic (synthetic atrophy) and MS-original (natural atrophy)
cohorts based on our corrected multiple comparisons analysis.
Thus, it follows that these errors likely arise from the presence
of any atrophy at all, rather than whether or not the image is
synthetic. This is not an unexpected finding about FreeSurfer,
as many algorithms have a decrease in performance as the data
deviates from healthy controls. We note that the exception to
this is within the right WM central sulcus cluster; the absolute
signed errors are similar, but they have opposite signs, which
indicates that in this location, FreeSurfer is overestimating
surface placement in the HC images while underestimating
the MS.

Figures 10, 11 show that within the healthy synthetic
cohort, there exist only slight differences in segmentation
errors between experts, none of them statistically significant.
We observe even smaller differences between images processed
cross-sectionally vs. longitudinally. These results further support
our previous conclusion that the data shown in Figures 8, 9
are indeed suitable representations of the entire set. Further,
the lack of discrepancy between results from the cross-
sectional and longitudinal processing methods show that the
inclusion of synthetic data in FreeSurfer’s joint initialization
steps (Reuter et al., 2012) does not corrupt the final longitudinal
segmentation results.

Table 1 shows that within the entire dataset (not simply those
shown in Figures 8–11), there exists a much larger number of
statistically significant mean signed segmentation errors than
unsigned. This implies that FreeSurfer is overestimating surface
placement in some places while underestimating in others. After
applying a Bonferroni correction of n = 224, we found only
14 out of all 1,344 tests yielded significant differences, and only
3 out of the 672 deemed “relevant”. These errors are almost
entirely limited to within the central sulcus (shown in the three
bolded panels within Figure 9, and may be due to its higher than
average thickness compared to the rest of the brain. Further, these
instances, the significant differences exist between the HC and
MS groups as a whole, rather than simply between the synthetic
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HC and original MS cohorts, which suggests the segmentation
errors may arise from the original landmark placement or image
quality rather than due to errors induced by our methods.
Overall, these results support our observation that FreeSurfer
performs somewhat worse in all cases of atrophy, regardless of
whether it is synthetic or natural.

Lastly, we found that the success of our methods in this
context is also dependent on fiducial landmark placement. For
example, the central sulcus landmark set for one subject in
the HC dataset contained two clusters in adjacent slices where
one cluster existed directly on top of the other in an adjacent
slice. This means that, rather then both ROIs having 3 slices
of padding on either side of the landmark cluster, each ROI
had 3 slices of padding on one side and none on the other.
Further, in order to induce atrophy in both ROIs, the image
was warped in slightly different directions in adjacent slices, so
deformations at the cluster locations could have been affected by
boundary effects due to the lack of padding. All this could have
potentially induced image artifacts that hindered FreeSurfer’s
ability to yield accurate segmentations. This could be addressed
by fine tuning the landmark locations such that each ROI would
include an adequate buffer around the fiducials. Alternatively,
instead of deforming each individual cluster separately, certain
landmark clusters could be combined into a single, larger
cluster and deformed as a single ROI, which would remove
the issue of adjacent slices being deformed by discontinuous
transformations. Our method proved to perform best when
operating on isolated landmark sets rather than those placed
close together.

6. CONCLUSION

In summary, we presented a registration-based method for
inducing synthetic, localized cortical atrophy in MRI scans. The
quantitative evaluations illustrate that this technique can be
used for accuracy validation of CT measurements, specifically
those obtained using surface-based methods, by comparing
experimentally measured values to the ground truth produced
by our algorithm. Further, we showed that our work is
also applicable to accuracy validation of cortical segmentation
pipelines; the methods can be used to produce a set of
longitudinal cortical landmarks with exact correspondences

between the original and atrophied timepoints. Importantly,
our method relies exclusively on publicly available software
and datasets.
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