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Fiber tractography enables the in vivo reconstruction of white matter fibers in 3

dimensions using data collected by diffusion tensor imaging, thereby helping to

understand functional neuroanatomy. In a pre-operative context, it provides essential

information on the trajectory of fiber bundles of medical interest, such as cranial nerves.

However, the optimization of tractography parameters is a time-consuming process and

requires expert neuroanatomical knowledge, making the use of tractography difficult in

clinical routine. Tractogram filtering is a method used to isolate the most relevant fibers.

In this work, we propose to use filtering as a post-processing of tractography to avoid

the manual optimization of tracking parameters and therefore making a step forward

automation of tractography. To question the feasibility of automated tractography of

cranial nerves, we perform an analysis of main cranial nerves on a series of patients with

skull base tumors. A quantitative evaluation of the filtering performance of two state-

of-the-art and a new entropy-based methods is carried out on the basis of reference

tractograms produced by experts. Our approach proves to be more stable in the

selection of the optimal filtering threshold and turns out to be interesting in terms of

computational time complexity.

Keywords: diffusion MR imaging, tractography, filtering accuracy, entropy, cranial nerve

1. INTRODUCTION

Diffusion magnetic resonance imaging (MRI) allows to study the tissue microstructure in vivo non-
invasively by detecting themovement of watermolecules to generate specific contrast (Le Bihan and
Johansen-Berg, 2012). This method has been widely used in the white matter of the brain, where the
organization of axons is known to be consistent at the millimeter scale. Using diffusion MR images
in a number of directions and suitable statistical models, the orientations of axonal bundles can be
estimated (Tournier et al., 2011). These properties are then used to infer the structure of human
brain tissue in vivo. From the tissue local orientations, it is possible to reconstruct a neural bundle
by iteratively tracing these orientations until a termination criterion is reached. This process named
“tractography” can be repeated from different starting points in a region of interest to produce an
estimate of the structural connections of this region—referred to as a “tractogram” (Jeurissen et al.,
2019). The biological precision of these reconstructions is however limited by the reconstruction
mechanisms itself. The choice of the tractography algorithm, its settings and the tracing of local
diffusion orientations can introduce biases in the tractograms which move them away from the
underlying biological reality (Rheault et al., 2020).
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Surgery of skull base tumors remains a challenge because it
requires surgical approaches sparing the nervous tissue while
allowing access to deep tumors in a complex anatomical
environment made up of numerous nerves and cranial vessels
(Samii and Gerganov, 2011). While cerebrovascular supply can
be adequately assessed by MRI or angiography, the trajectory of
the cranial nerves from the brainstem through the skull base and
around tumors is not still achievable in routine clinical practice.
Classic high-resolution T1 or T2 MRI sequences only allow
visualization of the cisternal segment of the largest cranial nerves
under normal conditions (Yousry et al., 2000). In this context,
diffusion MRI and reconstruction by tractography of the path of
cranial nerves displaced by tumors could be helpful for surgical
planning, as attested by recent studies examining the trajectory
of facial nerves in vestibular schwannomas surgery (Borkar et al.,
2016; Song et al., 2016; Jacquesson et al., 2018a). Nonetheless,
tractography involves a complex multi-step processing pipeline
and is still difficult to apply to small-scale structures such as
cranial nerves (Jacquesson et al., 2018b).

In order to extract the bundle of nerve fibers of interest,
regions of interest (ROI) have to be manually delineated to
initialize the tractography process. However, the design of
ROI is time consuming and requires expert neuroanatomical
knowledge. Besides, tractography parameters such as the
minimum length of fibers, maximum angle, or fractional
anisotropy (FA) threshold—used as a criterion for stopping
the tractography process—also require a manual adjustment
to perform an accurate reconstruction of the bundle. In this
context, the automation of cranial nerve tractography arises
from a growing need to save time and reduce its dependence
on the user so that it can be applied systematically in clinical
practice. A few studies compared fully automated tractography
to user-driven tractography. The approaches chosen to automate
the process mainly focus on ROI placement. In those studies,
the imaging volumes were registered so that a standardized
set of ROIs can be applied (Zhang et al., 2008, 2010). In
their work, Nucifora et al. (2012) combined the use of an
atlas-based set of ROI with post-processing treatment to filter
the implausible “false” fibers. The results of this study suggest
that filtering can help compensate for non-optimal ROIs and
tracking parameters. In the case of cranial nerves, we believe
that limitations related to the small size of the nerve fiber
bundle and pathological displacement could be overcome by
using filtering to discriminate nerve fibers from other structures
selected involuntarily.

A number of tractogram filtering methods were proposed in
the literature (Jörgens et al., 2021). The majority of approaches
involve selecting the most relevant fibers based on a quality
measure. This quality metric can be defined by the mean values
of a diffusion metric along the fiber path (Yeh et al., 2021).
This diffusion metric can be obtained from the diffusion tensor
model (e.g., FA, axial, and radial diffusivities) (Everts et al.,
2009), or from more sophisticated models such as constrained
spherical deconvolution (CSD) (Smith et al., 2013, 2015) or other
methods combining multiple approaches (Jörgens et al., 2021).
Once the quality measure is defined, one way to filter tractograms
consists of applying thresholds on the qualitymeasure to filter out
weak connections.

In this article, we propose to compare the performances of
different filtering methods and evaluate their contribution in
the context of the automation of cranial nerves tractography.
To this end, a set of non-optimal tractograms is generated
for five cranial nerves on a series of patients, by applying
different transformations to the optimal ROI designed by the
neurosurgeon, and varying the most sensitive parameters for the
reconstruction of the tractograms. The non-optimal tractograms
are filtered by two state-of-the-art approaches (Everts et al.,
2009; Smith et al., 2013) and a new entropy-based method we
propose. The non-optimal tractograms are compared to the
ground truth tractograms produced by a neurosurgeon, before
and after filtering. A quality metric based on Sørensen-Dice
coefficient allows for a quantitative evaluation of the ability of
the different filtering algorithms to isolate the cranial nerves in
unfavorable cases.

2. MATERIAL

2.1. Cranial Nerves
Five cranial nerves or nerve groups were considered: the optic
nerve (Chiasma); the oculomotor nerve (III); the trigeminal
nerve (V); the acoustic facial bundle including nerves VII–VIII
(AFB); and the lower nerves bundle including nerves IX, X, XI
(LN). Their mean cisternal diameter was estimated (see Table 1)
according to the known anatomy (Rhoton, 1979; Joo et al., 2014;
Yoshino et al., 2016). The direction of their cisternal segment
was oblique anteriorly and laterally for the optic and oculomotor
nerves (Chiasma and III); straight anterior for the trigeminal
nerve (V); straight lateral for the AFB bundle; and oblique
laterally, anteriorly, and inferiorly for the LN bundle.

2.2. Patients
Patient data used in this work are based on the study carried
out between December 2015 and December 2017 in Jacquesson
et al. (2018a) (IRB Number 2015-A01113-46). Inclusion criteria
were as follows: skull base tumor; at least two cranial nerves
in contact with the tumor; legal capacity; consent provided
after fair information; 3T MRI data with diffusion MRI
(dMRI) acquisition. Exclusion criteria were as follows: MR
contraindications. Eight patients showing a variability in the
tumor location, size, and nerves in contact with the tumor were
selected for our study.

2.3. MRI Acquisition
MR images were obtained using a 3T MRI Ingenia machine
(Philips Medical Systems, Beth, The Netherlands) with a 32-
channel head coil. Five sequences were acquired: post-contrast
T1-weighted; high resolution and steady state T2-weighted; time
of flight (TOF); diffusion; and AP-PA sequences (pair of b =

0 images with opposed phase encoding direction, Andersson
et al., 2003). T1 post-contrast weighted sequence was used to
manually segment the tumors and T2 steady state sequence as
an anatomical reference. Diffusion images were acquired with
following settings: TR= 3,956 ms; TE= 102 ms; b-value= 1,000
s.mm−2; 32 directions; acquired voxel size = 2 mm isotropic;
field of view: 224mm; slice thickness= 2mm; no slice gap; single-
shot spin-echo sequence; 26 slices; and scan time 9 min 52 s.
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TABLE 1 | Estimated diameter of the studied nerves from the literature.

Nerve definition Optic Oculomotor Trigeminal Acoustic-facial Lower

Nerve abbreviation Chiasma III V AFN LN

Diameter (mm) 10 5 7 3 2

FIGURE 1 | General view of the pipeline used to test different filtering approaches on the basis of non-optimal tractograms with reference to a reference tractogram

produced by an expert.

The limits of the acquisition box were the optic tracts superiorly
and the foramen magnum inferiorly. Distortions were corrected
using the top-up and eddy tools of the FMRIB software library
(FSL) software (Smith et al., 2004).

2.4. Ground Truth Tractography
The tractography of the cranial nerves was carried out using
the MRtrix3 software (Tournier et al., 2019). A brain mask
was drawn to include the whole brainstem, the cisterns of
cerebrospinal fluid, the skull base, and the orbits. A spherical
constrained deconvolution (6 spherical harmonic terms) has
been used to create a map of orientation distribution function
(ODF). ROI for the initialization of the tractography were
selected by overlaying the ODF map on the T2-weighted MRI
in order to identify the cisternal trajectory of the cranial nerves
with great precision. ROIs were placed on the best identifiable
aspect of the cranial nerve in its cisternal segment in the
three dimensions: axial, sagittal, and coronal. For each cranial
nerve, a single ROI was used; ROIs were cubes and tailored to
the anatomical features of each cranial nerve before initiating
the tracking. A probabilistic tractography algorithm was used
for the tracking of cranial nerves from the ROIs with the
following optimized parameters (Jacquesson et al., 2018a): FA
cut-off = 0.2–0.3; maximal curvature angle = 45◦; minimum
fiber length = 10 mm; step size = 0.1 mm. The number
of fibers of each nerve to be reconstructed was set from
200 to 1,000 according to the estimated nerve diameter (see
Table 1). These tractography results with optimized parameters
serve as ground truth for the filtering methods detailed in
Section 3.1. In post-treatment, some tractography reconstruction
results were filtered manually by an expert in neuroanatomy
in order to remove fibers that were away from the anatomy of
the nerve.

3. METHODS

Three filtering methods are tested for their ability to remove
erroneous fibers from the tractograms when the tractography
parameters are not optimally adjusted. These filtering methods
include two state-of-the-art approaches as well as an original
approach: they are detailed and explained in section 3.1. Then in
order to evaluate the filtering results, an evaluation pipeline is set
up, where the filtering results (filtered tractograms) are compared
to the reference tractogram as produced with a set of optimal
parameters by a neuroanatomy expert. This pipeline is illustrated
in Figure 1 and its constituent steps are explained in section 3.2.

3.1. Filtering Methods
In this section, we describe the three filtering algorithms used in
this study. Before filtering, these methods require the calculation
of different parametric maps that are then used to compute—at
the scale of a fiber—an indicator of its quality and thus decide
whether or not to keep it in the final rendering.

Figure 2 illustrates filtering results by keeping different
percentages of the total number of fibers, where the fiber sorting
is performed in an order depending on the filtering method.

3.1.1. Fractional Anisotropy
FA measures the degree of anisotropy of the diffusion of water in
a voxel. Without obstacles, water molecules freely diffuse in any
direction. This pattern can however be modified by the presence
of cell membranes or macromolecules. For example, if the water
molecules are confined inside a cell, diffusion only occurs along
the main axis of the cell and the diffusion is not isotropic, but
anisotropic. The degree of anisotropy can be measured for each
voxel of the diffusion MR images from the three eigenvalues (λ1,
λ2, λ3) of the diffusion tensor, which describes the diffusion of
water using a Gaussian model:
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FIGURE 2 | Successive filtering obtained for different percentages of the total number of fibers sorted by decreasing entropy in the right trigeminal nerve (V). The

“expert” image shows the result of “ground truth” tractography (for comparison purposes). In (a), 100% of the fibers are depicted and it can be seen that the nerve,

due to inaccurate regions of interest (ROI) positioning, has merged to the right with fibers that belong to a different structure of the brain. In (b,c), 50 and 10% of the

least entropic fibers are, respectively, displayed; this filtering allows to remove the false continuations and thus to tend toward (d) the expected “expert” result.

FA =

√

1

2

√

(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2
√

λ21 + λ22 + λ23

. (1)

FA values range from 0 to 1, where 0 represents perfectly isotropic
diffusion and 1 represents extremely anisotropic diffusion
(Kingsley, 2006). FA values are unitless because they are a ratio
of diffusion coefficients. As part of this study, the FA maps were
calculated using the function tensor2metric of MRtrix3
software. The mean value of FA along the fibers is computed
by trilinear interpolation with the tcksample function of
MRtrix3. The fibers are then ranked in the descending order.

3.1.2. Fiber Orientation Distribution
The fiber orientation distribution (FOD) is a spherical probability
density function that reveals the orientations and volumes of
the underlying fiber bundles. Traditional methods include the
estimation of a response function—signal expected in a voxel
containing a single bundle of fibers all arranged in a coherent
manner—which is then deconvolved from the dMRI signal in
order to obtain the FOD (Tournier et al., 2007). The FOD is
typically represented as lobes which provide information about
the fraction of fibers in the voxel that are aligned along the
direction of a lobe. Specifically, the fiber density is correlated with
the integral of the FOD lobe and the bundle density to the sum of
the segment lengths of fibers (in the voxel) assigned to this lobe.
The goal of scale-invariant feature transform (SIFT) approach
(Smith et al., 2013) is to assign fibers to the FOD lobes they pass
through, so that all fibers contribute to the density of the bundles
of the FOD lobes to which they are assigned, depending on their
length (Smith et al., 2013) through the voxel of interest as well as
a variable contributing weight (Smith et al., 2015):

µ =
∑

s : |sl|>0

|sl|.e
F
s , (2)

where each fiber s that traverses the lobe l contributes the bundle
density according to the product of its length |sl| through the
voxel, and contributing weight eFs .

The underlying idea is to determine a vector of contributing
weights F, such that when the contribution of each fiber

is weighted accordingly in this vector, the bundle densities
match the FOD lobe integrals throughout the all image. The
FOD map is computed from the diffusion MR images using
MRtrix3 dwi2fod function. On the basis of SIFT method,
the associated F map is associated with the fibers by the
tcksift2 function of MRtrix3. The fibers are then ranked in
the ascending order.

3.1.3. Entropy
We propose a third way of filtering on fibers which is based
on entropy and is an original contribution proposed within
the framework of this work. Shannon’s entropy is used here
to measure the homogeneity of the orientation of tractography
fibers. The entropy of a vector field is defined by the entropy of
the histogram of the vector orientations as follows:

e(X) = −
∑

i=1...n

p(xi)log2(p(xi)), (3)

where xi is the bin i of the histogram of vector orientations
and p(xi) the probability for a vector to be in the bin xi. The
probability p(xi) is calculated as:

p(xi) =
C(xi)

∑

i=1...n C(xi)
, (4)

with C(xi) the number of vectors in the bin xi. Figure 3 illustrates
this process in a two-dimensional case for a case of orientation
disorder (Figure 3A: high entropy) and orientation coherence
(Figure 3B: low entropy).

To compute the local entropy of tractograms, the fibers
are first converted to a vector field encoding their 3D local
orientations. This vector field could be obtained from the main
eigenvector of the diffusion tensor estimated from the raw dMRI
data. However, this method is very sensitive to noise, particularly
because of the low resolution of the dMRI data (2 mm) compared
to the diameter of the nerves (2–10 mm: see Table 1). We
therefore propose to reconstruct a vector field from the fibers
themselves. Considering that fibers are sampled more than 10
times finer than the dMRI voxel, the resolution of the final vector
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FIGURE 3 | Orientation histogram associated with vector fields of low entropy (A) and high entropy (B). The score given in the right column corresponds to the

entropy value of the central vector calculated using a 3× 3 neighborhood and a circular orientation histogram with 10 bins. The more the vector field is scattered, the

higher the entropy value.

field can be drastically improved. The fibers are transformed into
a 3D image of local fiber density information, and a map of the
maximum intensity gradient direction of this image is calculated
using a 3 × 3 × 3 neighborhood according to the method in Xu
and Prince (1998). Since the gradient orientation is normal to the
actual fiber orientation, the vectors are reoriented according to
the average of the vector products of the central voxel and its
neighbors in the 3× 3× 3 neighborhood.

Then, each voxel of coordinates (x, y, z) in the vector
field is associated to a small cubic neighborhood n × n ×

n. Considering 3D vectors, a spherical orientation histogram
in the neighborhood of the considered voxel is computed.
This is achieved in 3D by decomposing the unit sphere into
patches of equal area (Leopardi, 2006), and using the cones
connecting the patches to the center of the sphere as bins

for the orientation histogram. The entropy is computed from
the spherical orientation histogram as in Equation (3) and the
entropy value is assigned to the corresponding voxel (x, y, z) in
the 3D entropy map E(x, y, z).

The entropy map depends on two parameters; the number of
bins n used in the histogram and the size of the neighborhood
considered to build the histogram. In our case, the parameters
are chosen by taking into account priors on the dMRI acquisition
and the anatomy of the cranial nerves. The number of bins
corresponds roughly to the number of diffusion directions used
in dMRI acquisition (n = 32) and the neighborhood size is
proportional to the diameter of the considered nerve, as given
in Table 1.

The coordinates of the fibers are re-written in the referential
of the 3D vector field used to compute the entropy. Each fiber is
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TABLE 2 | Values used for each tractography parameter in order to build the “non-optimal” database.

Parameter Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

FA threshold oFA oFA-0.03 oFA-0.06 oFA-0.1 –

ROI size oROIs oROIs+D/5 oROIs+2D/5 oROIs+3D/5 oROIs+4D/5

ROI vertical oROIl-2D/5 oROIl-D/5 oROIl oROIl+D/5 oROIl+2D/5

translation

ROI horizontal oROIl-2D/5 oROIl-D/5 oROIl oROIl+D/5 oROIl+2D/5

translation

D is the diameter of the nerve, as given in Table 1. oFA, oROIs, and oROIl stand for, respectively, optimal values of FA, regions of interest (ROI) size, and location.

weighted by a score α. This score is computed from the entropy
map E as follows:

α =
1

|X|

∑

(x,y,z)∈X

E(x, y, z), (5)

where X is the set of coordinates of the considered fiber.

3.2. Evaluation
3.2.1. Non-optimized Tractography Dataset
The performance of the proposed filtering methods is evaluated
in a context of non-optimized tractography (i.e., non-expert
operators). For this, a non-optimized database of cranial nerve
tracking was generated. The ROI location and size and the FA
threshold were identified as parameters of interest for this study
because their optimal value strongly depends on the acquisition,
pathology, and anatomical variability of the patient (Jacquesson
et al., 2018b). They are likely to have a strong impact on the
tractography results.

For each of the cranial nerves considered in this study,
the fiber tacking is performed with non-optimal tractography
parameters chosen as described in Table 2. The range of FA
threshold values was selected with regard to recent state of the art
(Jacquesson et al., 2018b) and the size and location of the ROI on
the basis of inter-operator variability observed in previous work
(Colon-Perez et al., 2016). It should be noted that FA threshold is
only decreased and ROI size only increased because a high value
of FA threshold or a very small size of ROI tend to truncate the
nerve and therefore loose information, a case in which a filtering
algorithm has little interest. The ROI size and position were
impaired by applying dilation and translations to the optimal ROI
designed by the expert. Such changes are done proportionally
to the diameter D of the studied nerve (see Table 1) to have
a comparable impact on each nerve. The influence of each
tractography parameter is independently studied so that the
other parameters are set to their default optimal values given in
section 2.4.

Because we drift away from optimal parameters, in some cases
only few or no fibers could be tracked by tractography. Filtering
being is useless in such cases, they were excluded from our
validation study.

3.2.2. Quality Metrics
The stochastic aspect of the probabilistic tractography algorithm
makes it difficult to compare two tractograms. To allow

a quantitative comparison, the performance of the filtering
methods is assessed with a metric derived from the Sørensen-
Dice score (Dice, 1945). The Sørensen-Dice score measures the
similarity of two sets of elements as the ratio between the number
of elements in their intersection and the sum of the elements
in both sets. It ranges from 0 (the ensembles are disjoint) to
1 (the ensembles are overlapped). In this work, it is used to
compare two tractograms; the ground truth tractogram X and
the non-optimized tractogram Y . Due to the stochastic and
continuous nature of tractography fibers, an original way to
define their intersection, named Z, is proposed and illustrated
in Figure 4 on the top. The ground truth tractogram is first
discretized on the basis of the original medical image voxels to
produce a segmentation of the nerve of interest. The fibers of the
non-optimized tractogram Y , which are included in the ground
truth segmentation, forms the intersection set Z. We define our
Sørensen-Dice score as :

SD =
2|Z|

|X| + |Y|
. (6)

where X is ground truth tractogram and Y is one of the non-
optimal tractograms (see Table 2), and Z is their intersection as
defined above. The cardinality operator || refers to the number of
fibers in the tractograms.

This metric is penalizing as it takes into account not only the
position of the fibers but also their density. The maximum score
can be obtained only if the number of fibers in the intersection
and the number of fibers in the ground truth tractogram are
the same. A tractogram containing only true positive fibers but
with a lower number than in the ground truth is penalized. This
is a welcomed feature in the design of our quality metric, as a
too low fiber density may impair visualization of the nerve. This
metric gives a lot of weight to false positive (i.e., spurious) fibers,
which makes it is appropriate to measure the contribution of the
filtering methods. However, it is not efficient for the detection
of false negative fibers (i.e., missing nervous fibers), which cause
incomplete or truncated nerves to obtain a high scores.

To take into account the truncature effect, we proposed
another metric, that we call reverse Sørensen-Dice score RSD.
It differs from the SD score in the way the intersection between
X and Y is computed. In RSD, the non-optimized tractogram
Y is segmented instead of X. The intersection, called RZ, is
composed of the fibers of the ground truth X which are included
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FIGURE 4 | Illustration of the quality metrics SD and RSD used to evaluate the sensibility to tractography parameters and the filtering performance.

in the segmentation of Y (see Figure 4). The RSD metric can be
written as:

RSD =
2|RZ|

|X| + |Y|
. (7)

This metric penalizes the false negative fibers; a truncated nerve
will obtain a low score. In the next paragraph, we describe the
specific metrics derived from SD and RSD in order to investigate
(1) the sensitivity of tractogram to non-optimal tractography
parameters and (2) the contribution of the filtering algorithms
to improve the quality of the tractograms.

3.3. Sensitivity to Tractography Parameters
The study of the sensitivity to tractography parameter requires to
evaluate both the unwanted fibers (false positive) and the missing
fibers (false negative). In this case, both RSD and SD scores
provide relevant information. This study does not investigate
the filtering methods; we aim at comparing the non-optimized
tractograms without any filtering, as described in section 3.2.1,
to the ground truth. For this, two metrics are used. SDinit

(respectively, RSDinit) refers to the SD score (respectively, RSD
score) between the ground truth tractogram and non-optimized
tractograms before filtering.

3.4. Filtering Performance
To evaluate the performance of the filtering methods, we will
study two metrics based on the SD score. The maximum
SD score between the ground truth tractogram and the non-
optimized tractograms after filtering is noted SDmax. The
score SDmax is the maximum of SD scores for filtering
percentages that vary between 0 and 100% with a step of 1%.
It represents the ability of the filtering algorithm to reach the
expert result.

The performance of a filtering method is assessed by
computing the difference SDdiff = SDmax − SDinit. SDdiff reflects
the gain brought to the tractogram by the filtering method. If the
initial tractogram is already of good quality, the gain will be low,
whereas if the initial tractogram is noisy or erroneous, the gain
might be more important. The most efficient filtering methods
will achieve the highest gain.
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FIGURE 5 | (A) On the left, the five nerves of interest represented for a given patient and the two hemispheres (left L and right R). On the right, the distribution of SDinit

according to the five nerves of interest for all patients and all the variations imposed around the values of optimal tractography parameters. (B) Independent

representation of each nerve. The different nerves are represented in column according to the following order: Chiasma, III, V, AFB, LN, and in line according to the left

then right hemisphere.

These two indices, SDmax and SDdiff, will be compared
between nerves, tractography parameters, and filtering methods
on the same data samples. The statistical test used is the paired
Wilcoxon signed-rank test, since non-normality was observed for
these data and samples are not independent.

4. RESULTS

In this section, we present the different results obtained. First,
we observe the sensitivity of the tractograms with regard to the
nerves and the variations applied to tractography parameters as
given in Table 2. Then, we investigate the contribution of the
filtering approaches from a general point of view and with regard
to each tractography parameter variation. Finally, we study the
optimal filtering threshold for each of the filtering methods for
the sake of automation.

4.1. Sensitivity
Before looking at the performance of the filtering, we study
the sensitivity of the tractograms to the variation of each
tractography parameter with respect to the different nerves.

This sensitivity is expressed by the SDinit index introduced in
section 3.4.

4.1.1. Sensitivity to Nerves
Figure 5A shows on the left the different nerves in a patient for
the left and right hemisphere. The disparity in the values of SDinit

for the different nerves can be observed in Figure 5A on the right:
this boxplot represents the distribution of SDinit for each of the
nerves on the basis of all the disturbances created according to
the non-optimal database detailed in section 3.2.1. Table 3 gives
the p-values associated with the Wilcoxon tests carried out two
by two for each pair of nerves.

The nerves form two groups: one made up of Chiasma and III
and another of V, LN, and AFB. The nerves Chiasma and III have
roughly the same initial quality of tractography with a median
of, respectively, SDinit = 0.898 and SDinit = 0.895 and are not
significantly different (see Table 3). The median values for AFB
(SDinit = 0.739), LN (SDinit = 0.697), and V (SDinit = 0.531) are
significantly lower to Chiasma and III. Within the group made of
AFB, LN, and V nerves, LN and AFB are not statistically different
(see Table 3); V is statistically different from LN and AFB but
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with p-values much lower than those obtained for the group of
Chiasma and III nerves.

All this tends to say that the initial quality of the tractograms is
not equal between the nerves: Chiasma and III are less sensitive

TABLE 3 | P-values from paired Wilcoxon signed-rank tests comparing two by

two each nerve based on SDinit index.

Chiasma III AFB LN

III 0.18419

AFB 6.4e-14 1.1e-12

LN < 2e-16 < 2e-16 0.17866

V < 2e-16 < 2e-16 0.00021 0.00229

to parameter variation than AFB, LN, and V. This fact can be
explained by the localization of the nerves: in fact, AFB, LN, and
V are closer to the back of the skull (as depicted in Figure 5B)
and therefore to other nervous structures which can, if the
tractography parameterization is not optimal, be reconstructed
with the nerve of interest.

4.1.2. Sensitivity to Tractography Parameters
The impact of the tractography parameters on the values of
RSDinit and SDinit can be observed in Figure 6. In order to
study the impact of each parameter variation more in detail,
each parameter was varied independently, while the others are
left at their optimal value. Figure 6 represents the effect of the
variation of each tractography parameter on the initial quality of
the tractograms for all nerves together.

FIGURE 6 | (A) Comparison of the distributions of RSDinit according to each condition for the four tractography parameters: (1) FA threshold, (2) ROI size, (3) ROI

mediolateral translation, and (4) ROI anteroposterior translation. (B) Comparison of the distributions of SDinit according to each condition for the four tractography

parameters: (1) FA threshold, (2) ROI size, (3) ROI mediolateral translation, and (4) ROI anteroposterior translation. When a condition is significantly smaller to the

optimal condition, it is marked with *.
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The RSDinit score are given in the panel A of Figure 6,
allowing to evaluate whether a change in parameters causes
truncature of the nerve (low scores) or the fibers tracked covers
the whole nerve (high scores). As it was expected, the decrease
of the FA values causes the RSDinit to increase, as more spurious
fibers are produced. The increasing of the ROI size also preserves
the shape of the nerve, although the RSDinit score becomes
significantly lower when the increase factor exceeds +3D/5.
However, the ROI translation significantly lowers the RSDinit.
Two types of displacement (mediolateral and anteroposterior
translations) were modeled with two directions of translation
with regard to the optimal one. This explains a non-monotonic
evolution for these two ROI localization parameters. This drop
was expected: as the ROI ismoved away from its optimal position,
fibers outside of the nerves are tracked, causing the nerve to
appear incomplete. In such a case, the filtering algorithm might
not be efficient as it can only remove the spurious fibers and not
add the missing ones.

The SDinit score are given in the panel B of Figure 6,
allowing to evaluate whether a change in parameters causes the
generation of spurious fibers to be removed (low scores). It
appears that for FA threshold the SDinit is already significantly
lower for the tractograms with the smallest variation (FA-
0.03). Same pattern of evolution is observed for the ROI size,
with a slightly larger drop. In both cases, a lot of extra fibers
are produced, hindering the visualization. In comparison, the
variations observed for the position of the ROI seem smaller. For
ROI with amediolateral translation, the difference between all the
tractograms is immediately significant for a lateral move (toward
the right on the boxplot), but only for the value oROIs-2D/5 for
a move in the medial direction. For ROI with an anteroposterior
translation, only the forward displacement is already significant
from the value oROIs-D/5. It should be noted that the RSDinit

and SDinit scores of the optimal parameters is not at 1 because
it includes the variability due to the probabilistic nature of the
tractography algorithm used in this study (see section 2.4). In
conclusion, lowering the FA parameter or increasing the ROI
size results in the production of a lot of erroneous fibers while
the ROI translation causes both a truncature of the nerve and
erroneous fibers.

4.2. Filtering Contribution
In this section, we evaluate the ability of the three filtering
methods described in section 3.1 to remove the erroneous
fibers and thereby improve the non-optimized tractograms. This
performance is expressed by the SDdiff index introduced in
section 3.4.

4.2.1. General Performances
Regarding the overall performance of the three filtering methods
evaluated using the SD mathrmdiff index and on the basis of all
the tractograms of all nerves and patients, the median is equal to
0.049 for entropy, 0.018 for FA, and 0.067 for FOD. It therefore
appears that the gain in filtering on the basis of the same data is
in favor of the FOD and entropy methods.

Figure 7 represents the overall performance of the three
filtering methods qualitatively for a patient and for all nerves

combined. On the basis of visual observations made from
Figure 7A, the quantitative results obtained are confirmed: the
entropy and FODmethods give results closest to the ground truth
and relatively equivalent quality, while the FA method produces
a visually different filtering result which is less in agreement with
the ground truth, in particular for the nerves identified in section
4.1 as themost variable, namely V, LN, andAFB. Figure 7B allows
to study in more detail, nerve by nerve, the effect of the filtering.
First observation, the nerves V and III are the most impacted by
the increasing of ROI size and are therefore those which benefit
the most from the filtering with the best results for the FOD and
entropy methods, which make it possible to approach the ground
truth more closely.

4.2.2. Tractography Parameters Influence
Figure 8 shows the performance of the three filtering methods
according to the different tractography parameters based on the
SDdiff index. In general, it can be observed that the further we
move away from the optimal value of the parameter, the greater
the filtering gain is, independently of the filtering method. This
can be explained by the fact that tractograms produced with
non-optimal parameters are more degraded. Their SDinit index is
lower, which leaves more room for improvement by the filtering
methods. If we compare the filtering methods according to the
four tractography parameters, we can observe that FOD provides
the best results in the ROI size increase case (significantly
different from FA with a p < 4.9e-14 and entropy with a p
< 1.7e-08) and better results but very close to entropy for
the parameters related to the location of the ROI (significantly
different from FA with a p < 1.8e-11 and entropy with a p
< 0.0478). Concerning the parameter on the FA threshold, the
entropy method is competitive or better. The FA method offers
lower gains for the four tractography parameters, as observed in
the overall performances.

Figure 9 gives a qualitative representation of the performance
of the three filtering methods according to the different
tractography parameters for different patients and nerves. The
visual results presented in Figure 9 confirm the quantitative
results obtained from the analysis of Figure 8: the FOD method
provides the best results in the case of a too large ROI (case of
line 1), concerning the localization of the ROI the entropy and
FOD methods are competitive (case of line 2), finally concerning
the FA threshold the method based on the entropy provides the
results closest to the ground truth.

To analyze more generally the contribution of filtering, we
wanted to compare Figure 6 before filtering with the results after
filtering for the three tested methods. Figure 10 shows whether
the difference between the optimal condition and the degraded
conditions ofTable 2 are still considered significant after filtering.
It turns out that for the FA threshold and ROI size parameters,
only the tractogram obtained with the parameter condition the
furthest from the optimal remain significantly different (oFA-
0.06, oFA-0.1 and oROI+3D/5, oROI+4D/5). In the case of the
displacement of the ROI, for the entropy and FOD methods,
none of the parameter variations trigger a significantly lower
tractogram quality. The FA method is less efficient in this case.
In conclusion, the filtering effectively makes it possible to move
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FIGURE 7 | (A) Optimal filtering obtained for the three different filtering methods [FA, entropy, and fiber orientation distribution (FOD), respectively] for all cranial nerves

of a specific patient in the case of a regions of interest (ROI) that is too large. (B) Independent representation of each nerve. The different nerves are represented in

column according to the following order: Chiasma, III, V, AFB, LN, and in line according to the different filtering methods. The “expert” image shows the result of the

“ground truth” tractogram and was used for the choice of the optimal threshold. The “non-optimal” image shows a noisy tractogram obtained with poor initialization of

the tractography parameters.
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FIGURE 8 | Comparison of the distributions of SDdiff according to each condition for the four tractography parameters: (A) FA threshold, (B) regions of interest (ROI)

size, (C) ROI mediolateral translation, and (D) ROI anteroposterior translation. For each parameter, SDdiff is displayed according to each condition and for all three

methods [entropy, FA, and fiber orientation distribution (FOD)].

away from the optimal parameters while guaranteeing to find by
post-processing tractograms close to those of the ground truth.

4.2.3. Optimal Filtering Threshold
Figure 11 shows, for each filtering method, the distribution of
the optimal filtering thresholds in order to reproduce the ground
truth as closely as possible (index SDmax introduced in section
3.4). These thresholds were normalized by patient with regard to
the minimum and maximum indices of entropy, FA, and FOD
maps, respectively. Figure 11, therefore, represents the variability
of the adjustment of the optimal threshold for the different
patients and the possibility of its automation. For the entropy, the
median value is equal to 0.569, for FA to 0.676, and for FOD to
0.052. The distribution of the thresholds for the entropy method
is evenly distributed around the median, while the interquartile
distribution for the FA method is more spread above the median.
The FODdistribution has a lowermedian than the othermethods
and has many values identified as outliers. These two points can
make automation difficult for the FOD method.

5. DISCUSSION

In this study, we studied the impact of variations in the
tractography parameters on the quality of the tractograms,
with regard to the ground truth produced by an expert.
The contribution of three filtering methods to correct these
perturbations, including a new algorithm, was evaluated with
several levels of observation. We have found that filtering
increases the overlap with the tractograms produced by

the expert, compensating efficiently for a poor tractography
parameter optimization. The FOD method seems to be the most
efficient filtering method, followed by the new entropy-based
method we proposed, which benefits from an optimal threshold
that is easier to select. These encouraging results pave the way for
the automation of the tractography process.

5.1. Cranial Nerves and Tractography
Cranial nerves are particularly difficult to track because of their
small sizes (2–10 mm, see Table 1) and their proximity to
other structures, especially the brainstem, which can cause false
continuations for the tracing of a specific nerve (Yoshino et al.,
2016; Jacquesson et al., 2019). According to our study on the
sensitivity of the tractograms on the basis of poorly optimized
tractography parameters, the most sensitive nerves would be V,
LN, and FN. This is in line with results from the literature, which
show that the smaller structures tend to bemore difficult to follow
in tractography (Hodaie et al., 2010; Garcia-Fidalgo and Ortiz,
2013; Jeurissen et al., 2019).

Due to their anatomical characteristics, the cranial nerves are
all the more difficult to follow when the tractography parameters
are poorly optimized. In this context, it could be observed that
it is the size of the ROI which seems the most critical, then the
threshold of FA and finally the location of the ROI. As the ROI
are drawn in the cisternal segment in the three dimensions, a
slight displacement (as achieved in our study) results in a more
limited distortion on the resulting tractogram. It should be noted
that these significant distortions correspond to parameters that
could be selected for the cranial nerves tractography—even by
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FIGURE 9 | Optimal filtering obtained for the different filtering methods (FA, entropy, and fiber orientation distribution [FOD], respectively) for specific cranial nerves and

patients. The “expert” image shows the result of the ground truth tractogram. The “non-optimal” image shows the noisy tractogram obtained with poor initialization of

the tractography parameters. First line: Illustration of the filtering on the right occulomotor nerve (III) in the case of regions of interest (ROI) that is too large. This case

is more efficiently treated by the FOD-based method. Second line: Optimal filtering obtained for the right fascial and cochleo-vestibular nerves group (LN) in the case

of poor placement of the ROI. This case is more efficiently treated by methods based on FOD and entropy. Third line: Optimal filtering obtained for the right trigeminal

nerve (V) in the case of non-optimal FA threshold. This case is more efficiently treated by entropy-based method.

experts—with regard to the state of the art (Jacquesson et al.,
2018b). More specifically, they can degrade expert tractograms
by half on the Sørensen-Dice scale, which is normalized between
0 and 1. A Dice of 0.5 commonly reached in the case of the
distortions tested in this work corresponds to an overlap of very
poor quality in view of the ground truth. It is therefore important
to note that the tractogram errors that we are trying to correct
here are significant and lead to aberrant results as evidenced by
the illustrations of the work.

A limitation of this study is the use of a unique tractography
algorithm. However, this one (probabilistic tractography
algorithm based on FOD) was chosen in accordance with
the state of the art: He et al. (2021) demonstrate, in the case
of the retinogeniculate visual pathway, that this algorithm
provides the highest overall reconstruction rate and Xie
et al. (2020) establish that a higher order model-based
tractography algorithm had better performance on identifying
true positive structures in comparison to the single-tensor
tractography algorithm in the trigeminal nerve. Finally, this
choice is confirmed by the recent study conducted on the
same dataset used here (Jacquesson et al., 2018a) where

all the cranial nerves could be tracked in the contralateral
hemisphere of the tumor and with an 87% success rate on the
displaced nerves.

5.2. Accuracy of Tractogram Filtering
The entropy and FODmethods have shown to be able to provide
better filtering compared to the ground truth than the FA-
based method. This is probably due to their more global nature.
The FA-based method integrates punctual information along the
fiber while entropy and FOD methods also integrate contextual
information. In the case of FA method, the information
is specific to each of the voxels without considering the
contextual neighborhood, whereas in the case of the entropy
and FOD methods, the information is, respectively, specific to
a neighborhood adapted to the size of the nerve and to all the
diffusion MR image. In addition, it should be noted that the
entropy method—which is a statistical measure of the disorder—
makes it possible to introduce an anatomical prior of coherence
on the tractogram while the FOD method ensures to guarantee
the fit between the fibers of the tractogram and the underlying
MR diffusion image.
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FIGURE 10 | (A) Comparison of the distributions of SDinit according to each condition for the four tractography parameters FA threshold, regions of interest (ROI) size,

ROI mediolateral translation, and ROI anteroposterior translation. (B) Comparison of the distributions of SDmax (after filtering) according to each condition for the four

(Continued)
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FIGURE 10 | tractography parameters and to the three filtering methods (entropy, FA, and FOD), each represented in a different row. It should be noted that in (B) for

optimal conditions SDinit is given instead of SDmax because the optimal tractograms are not filtered. When a condition is significantly smaller to the optimal condition, it

is marked with “*”.

FIGURE 11 | Comparison of the distributions of the optimal filtering threshold

according to each filtering method [entropy, FA, and fiber orientation

distribution (FOD)].

These differences in the information that is embedded in the
filtering approaches along the fiber is crucial. Indeed, when an
ROI is misplaced in the cisternal cavity of the nerve, other very
proximal bundles can be selected which the FOD and entropy can
get rid of thanks to the contextual information from which they
benefit.When the ROI is too large, on the other hand, the bundles
selected in addition to the nerve of interest can be of very different
nature. In this case, only very global information as produced by
the FOD makes it possible to remove these bundles. Finally, in
the context of a poor parameterization of the FA threshold, the
tracing of the cranial nerve can continue for a longer time and
in particular in the brainstem where white fibers mingle leading
to spurious fibers. In this specific case, only the entropy method
makes it possible to track a valid nerve because it encodes the
coherence sought by the expert.

However, if the FODmethod provides the best filtering results,
the new approach developed (entropy) benefits of a reasonable
complexity as it only integrates local information, adapted to
the size of the nerve. Besides, as it does not depend on the
original diffusionMR image, it can be generalized to other fibrous
structures. We compared the FOD and entropy methods from a
computational time point of view but they are not implemented
in the same computer code and the FOD method is parallelized
while ours is not yet.

5.3. Perspectives and Recommendations
To go further in the automation of the tractography in surgical

planning, we plan to build a probabilistic atlas of ROIs by
registering and merging the ROI data of the database used in
this work (Jacquesson et al., 2018a). Since our filtering approach
is able to deal with dilatation and translation of the ROIs, it

seems adequate to compensate for the future use of such an
ROI atlas and more particularly with possible patient-specific
physiological variations, which would not be encoded in the atlas.
From this study, especially the results depicted in Figures 6, 8,
we are able to identify the challenges linked to the automation of
cranial nerve tractography for presurgical planning and make the
following recommendations.

Our study demonstrates that filtering makes it possible to
correct the distortions resulting from a bad parameterization
of the tractography on the tractograms of cranial nerves. More
precisely, we deduced from the results of Figure 8 that the
tolerated error (with regard to the optimal parameter) is 0.03
for FA, and 2D/5 for the size of the ROI (where D is the size of
the nerve of interest). We make more careful recommendations
concerning the ROI translations. Unlike the variation of FA or
ROI size, ROI translations tend to truncate the nerves, as shown
in Figure 5. The filtering algorithms cannot compensate for this
lack of nervous fibers. For this reason, we recommend to limit
the translations as much as possible and to anticipate possible
misplacement by increasing the size of the ROI. This information
will be taken into account to build the ROI atlas.

5.4. Application in Neurosurgery
The patients included in this study presented tumors of the base
of the skull, which displaced cranial nerves (on average, 2 nerves
or more were affected by patient). The tractography parameters
were adapted by the expert to track those displaced nerves
(Jacquesson et al., 2018a). To know whether this displacement
impacts in the sensitivity of the tractograms to parameter
variation and the effect of the filtering, we consider independently
the group of displaced and non-displaced nerves. Figure 12

shows that the quality of the initial tractograms is not statistically
different for the nerves displaced than the others (p = 0.3) and
that the impact of filtering is similar for the two groups of
nerves (p = 0.22). Filtering appears to be an automatic method
for increasing the quality of tractograms for both intact nerves
and displaced nerves. This opens up important perspectives
for the targeted application in neurosurgery. A such filtering
method could be directly implemented in navigation systems or
tractography software to provide an accurate tractography with
less user-related steps (Jacquesson et al., 2019). Entropy or FOD
filtering could also improve the quality of selective brain fiber
tracking in brain connectivity studies.

6. CONCLUSION

We have proposed a method to assess the quality of a filtering
method applied to a cranial nerve tractogram. The filtering was
carried out by an original approach that selects the fibers of
the tractogram from a measurement of entropy applied in the
neighborhood of each voxel in order to improve the biological
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FIGURE 12 | Comparison of the distributions of SDinit (A) and SDmax (B) for displaced and non-displaced nerves. SDmax is given on average on the basis of all the

filtering methods.

precision of the tractogram. This method was compared with
two classical other approaches: a method based on FA which
integrates only local information and the more recent method
based on the FOD which integrates information on the entire
diffusion MR image. We show that by removing the fibers
considered to be detrimental to the quality of the tractogram
given the ground truth, the bias of incorrect parameterization
of the tractography is reduced in the filtered datasets and
the biological plausibility of the tractograms is improved. Our
filtering approach offers filtering performance exceeding the FA
approach and similar to the FOD except in the case of too large
ROI size. It also offers great possibilities in terms of automation
with an optimal threshold that is easier to set and a more modest
algorithmic complexity.
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