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Automatic brain tumor segmentation is particularly challenging on magnetic resonance

imaging (MRI) with marked pathologies, such as brain tumors, which usually cause

large displacement, abnormal appearance, and deformation of brain tissue. Despite

an abundance of previous literature on learning-based methodologies for MRI

segmentation, few works have focused on tackling MRI skull stripping of brain tumor

patient data. This gap in literature can be associated with the lack of publicly available

data (due to concerns about patient identification) and the labor-intensive nature of

generating ground truth labels for model training. In this retrospective study, we assessed

the performance of Dense-Vnet in skull stripping brain tumor patient MRI trained on

our large multi-institutional brain tumor patient dataset. Our data included pretreatment

MRI of 668 patients from our in-house institutional review board–approved multi-

institutional brain tumor repository. Because of the absence of ground truth, we used

imperfect automatically generated training labels using SPM12 software. We trained

the network using common MRI sequences in oncology: T1-weighted with gadolinium

contrast, T2-weighted fluid-attenuated inversion recovery, or both. We measured model

performance against 30 independent brain tumor test cases with available manual brain

masks. All images were harmonized for voxel spacing and volumetric dimensions before

model training. Model training was performed using the modularly structured deep

learning platform NiftyNet that is tailored toward simplifying medical image analysis.

Our proposed approach showed the success of a weakly supervised deep learning

approach in MRI brain extraction even in the presence of pathology. Our best model

achieved an average Dice score, sensitivity, and specificity of, respectively, 94.5, 96.4,

and 98.5% on the multi-institutional independent brain tumor test set. To further

contextualize our results within existing literature on healthy brain segmentation, we

tested the model against healthy subjects from the benchmark LBPA40 dataset. For

this dataset, the model achieved an average Dice score, sensitivity, and specificity of

96.2, 96.6, and 99.2%, which are, although comparable to other publications, slightly

lower than the performance of models trained on healthy patients. We associate this

drop in performance with the use of brain tumor data for model training and its influence

on brain appearance.
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INTRODUCTION

Magnetic resonance imaging (MRI) has a pivotal role in
noninvasive diagnosis and monitoring of many neurological
diseases (Fox and Schott, 2004; Bauer et al., 2013). The large
amount of data produced in routine patient care has prompted
the birth of many studies aiming to automate image analysis tasks
relevant to patient care including volumetric analyses (Filipek
et al., 1997; Shattuck et al., 2001), tissue classification (Hu et al.,
2015, 2017; Kickingereder et al., 2016; Ramkumar et al., 2017),
disease staging (Chaddad et al., 2018; Ranjbar et al., 2019b), and
localization of pathology (Fox and Schott, 2004; Bauer et al.,
2013). To successfully characterize both normal baseline and
pathological deviation (Kalavathi and Prasath, 2016) on MRI,
non-brain tissues such as fat, skull, eyeballs, eyes, and teeth need
to be removed from images, as well as cerebrospinal fluid (CSF)
surrounding the brain. As manual annotation of brain tissue in a
volumetricMRI is excruciatingly labor intensive, many automatic
“whole brain extraction” or “skull stripping” techniques have
been introduced in the literature to tackle this need. Separating
brain and non-brain tissue has been achieved using edge-
based (Somasundaram and Kalaiselvi, 2011; Speier et al., 2011),
intensity-based (Ashburner and Friston, 2000; Hahn and Peitgen,
2000), and deformable surface-based methods (Smith, 2002;
Jenkinson et al., 2005; Zhuang et al., 2006; Galdames et al., 2012).
Atlas-based (Leung et al., 2011) and patch-based (Eskildsen et al.,
2012; Roy et al., 2017) methods define the boundaries of the brain
by registering images to one or many atlases either on the entire
image or on nonlocal image patches. Hybrid methods (Segonne
et al., 2001; Rehm et al., 2004) that integrate several of the
above approaches have been found (Boesen et al., 2004; Iglesias
et al., 2011) superior to any individual method in accuracy at the
expense of time efficiency.

However, these methods offer fluctuating accuracies with
heterogeneous datasets with varying levels of image resolutions,
noise, and artifacts (Kalavathi and Prasath, 2016), and as they
are designed for healthy brains, they fail in the presence
of pathological conditions on images (Speier et al., 2011).
Glioblastoma (GBM), a brain tumor known for its diffuse
infiltration, creates serious challenges for most skull stripping
methods because of large regions of edema or administration
of contrast agents during the examination (Speier et al., 2011).
Moreover, GBMs are often cortically localized with abnormalities
extending to the edge of the brain and deformities in MRI known
as brain shift, which can throw off morphological skull stripping
approaches that have rigid assumptions about brain appearance.

Recent success of deep learning has made a lasting impact

in computer vision and by extension in biomedical image
analysis. Deep convolutional neural networks (CNNs) have

shown success in several neuroimaging applications such as
MR sequence classification (Ranjbar et al., 2019a), prediction of
genetic mutation usingMRI (Chang et al., 2018; Yogananda et al.,
2019), and tumor segmentation (Işin et al., 2016; Pereira et al.,
2016). Naturally, several works have explored the utility of deep
learning approaches in MRI skull stripping (Kleesiek et al., 2016;
Mohseni Salehi et al., 2017) and have reported high performance
on publicly available datasets of normal brains. Given the level

of variability that we routinely observe in brain tumor data with
respect to image quality as well as shape, size, and the location
of abnormalities, rule-based approaches might not be well-suited
for skull stripping MRI data in oncology, and there is a need
for learning-based approaches for skull stripping MRI of patients
with brain tumors. However, labeled training data are scarce
in this case as whole-brain labels require substantial time to
obtain and have no immediate clinical utility. In the absence
of fully ground truth labels, weakly supervised learning, where
imperfect and inexact labels are used for model training, offers a
more approachable alternative and has previously shown success
in segmentation of brain structures on MRI (Bontempi et al.,
2020). In this work, we assessed the performance of a weakly
supervised three-dimensional (3D) skull stripping approach to
generate brain masks for multi-institutional brain tumor data
when training data were also brain tumor data. To the best of our
knowledge, our work is the first of its kind as no previous study
has explored the use of both imperfect labels and pathological
MRIs to train a skull stripping model.

The contributions of our work are therefore (1) training
a 3D CNN for brain extraction leveraging a diverse set of
multi-institutional brain tumor data for model training, (2) use
of imperfect automatically generated labels for ground truth,
(3) comparison of results across two clinically standard MRI
sequences (T1-weighted post injection of gadolinium contrast
([T1Gd] or fluid-attenuated inversion recovery [FLAIR]) used
in oncology, and (4) assessing the performance of a skull
stripping model trained on brain tumor data on a dataset of
healthy subjects.

MATERIALS AND METHODS

Data
Brain Tumor Images
Our in-house institutional review board (IRB)–approved
repository [described in our previous work; Ranjbar et al.,
2019a), which contains more than 70,000 serial structural MR
studies of 2,500+ unique brain tumor patients acquired across
20+ institutions, was used as the source of brain tumor data.
We included paired pretreatment T1Gd and FLAIR series of
668 adult brain tumor image series. The vast majority of this
dataset consists of one imaging time point per patient with
available T1Gd and FLAIR series, with the exception of one
patient with two time points and another with three, which
were also acquired at different institutions. We used patients
with paired imaging available to compare model performance
across different input combinations without concerns about
dataset differences influencing the results. We also excluded
post-treatment images from the cohort as brain tumor treatment
typically including surgery, radiation, and chemotherapy can
have varying effects on the appearance of MRI. Because of the
retrospective nature of our database, various anatomical and
quantitative MRI sequences were available for our patients,
and the availability of a certain sequence was dependent on the
decision of the patient’s clinical team. We chose to include only
T1Gd and FLAIR sequences because of their common use in
clinical practice and their prevalence in our database. These
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FIGURE 1 | Steps for creating the SPM12-p brain masks; images reflect the MRI of a 29-year-old male brain tumor patient with a diagnosis of GBM. FLAIR refers to

fluid-attenuated inversion recovery MRI and T1Gd refers to T1-weighted MRI with gadolinium contrast enhancement. Gray matter, white matter, and CSF probability

masks were generated using the SPM12 software. Bright voxels in these masks reflect higher probability. The final brain mask was generated by combining probability

masks, using a threshold of 0.7, and minimal post-processing.

series were randomly assigned to 586 training, 52 validation, and
30 test cases. Imaging time points from the same patient were
placed in the same data split. As creating ground truth labels
for the entire brain on volumetric MRI is very cumbersome
and time-consuming, the number of test cases were limited to
only 30.

As the data were acquired between 1990 and 2016, many
factors varied among samples including field strength and
acquisition parameters.We used a number of preprocessing steps
to harmonize the data including noise reduction with nonlinear
curvature-flow noise reduction (Sethian, 1999), radiofrequency
non-uniformity correction reduced using the N4 algorithm
(Tustison et al., 2010), resizing to a common matrix size of 240
× 240 × 64 voxels and a voxel resolution of 1 × 1 × 2mm. The
SimpleElastix framework (Marstal et al., 2016) was used to rigidly
coregister the FLAIR image to the T1Gd image within each study
to enable a comparative experiment of model training on both
sequences simultaneously.

Brain Tumor Labels
Given the large size of our cohort and the time-consuming nature
of manual segmentation, we devised an automatic approach
to substitute manual delineation of brain masks for model
training. We used the Statistical Parameter Mapping (Penny
et al., 2011) software SPM12, which contains tools for processing
many neuroimagingmodalities including structural MRI. SPM12
software generated probability maps for gray matter, white
matter, and CSF from all T1Gd MRIs. For each case, the maps
were combined into a single map and binarized using 0.7
probability (empirically decided) to generate a brain mask. In
some cases, the presence of tumor necrosis resulted in occasional
missing areas inside the combined mask, which we accounted
for by performing minimal morphological operations erosion
followed by dilation to fill in the gaps. The final post-processed
result for each brain (referred to as SPM12-p) was stored as a label
for model training and validation (Figure 1). SPM12 was run in
MATLAB version 2018a, and postprocessing steps were executed

FIGURE 2 | An example of a final training label compared with ground truth;

semiautomatically generated training labels were created using SPM12

software. As highlighted with arrows, compared with ground truth delineated

manually, the training label included some undersegmentation and

oversegmentation particularly around the edges of the brain, but included the

bulk of the tumor (outlined on top left slice).

in Python 3.6.6. This process was also conducted on test cases to
allow for comparison of labels with manual ground truth.

On the test set, we manually segmented brain regions to
establish ground truth for estimating model performance. The
intracranial volume was defined as the combination of gray
matter, white matter, subarachnoid CSF, ventricles (lateral, third,
fourth), and cerebellum as suggested by a previous work in
the literature (Roy et al., 2017). Manual segmentation was
initiated by one of two trained individuals with experience in
MRI tumor segmentation using our in-house semiautomatic
software. The results were further loaded into the ITK-SNAP
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FIGURE 3 | Overview of model architecture. Detailed description of the model architecture is available in Gibson et al. (2018a). The output of the model is resized to

the original input image dimension during postprocessing. An implementation of the model is available in the NiftyNet platform (http://niftynet.io) in code repositories.

(Yushkevich et al., 2006) software version 3.8.0 and corrected
manually by a third individual as needed. Figure 2 compares the
manual mask and SPM12-p label for one of the test cases.

To further enable comparison with existing atlas-based skull
stripping methods in the literature, we generated a third set of
labels for the test cases using theMulti-cONtrast brain STRipping
method (MONSTR; Roy et al., 2017), a patch-based multiatlas
skull stripping method. Although not extensively tested on
brain tumor patient data, MONSTR is a benchmark skull
stripping approach that was advertised for having success in brain
extraction of pathological MRI including patients with traumatic
brain injuries and tumors. We refer to these brain masks as
MONSTR masks hereon. MONSTR masks were generated using
both T1Gd and FLAIR contrasts as inputs.

Healthy Subjects Data
The publicly available LONI Probabilistic Brain Atlas Project
(LBPA40) (Shattuck et al., 2009) consisting of T1-weighted
MRI of 40 healthy subjects was used for evaluation of the
model against publicly available benchmarks. The corresponding
manually delineated brain masks included in this dataset were
used as ground truth. Although training data for this work
were entirely brain tumor patients, using this dataset will
allow us to contextualize our work within the existing skull
stripping literature that have evaluated their approach on MRI
of healthy subjects.

Model Training and Convolutional Neural
Network
We used TensorFlow (version 1.12.0) and the medical imaging
deep learning platform NiftyNet (Li et al., 2017; Gibson et al.,
2018b; version 0.6.0) for implementation of all experiments.
NiftyNet is a modularly structured deep learning platform
tailored toward medical image analysis applications with

modules for preprocessing, network training, evaluation, and
inference. Minimal coding is required from the user using
this platform, and the specific settings related to preprocessing
images, training, and testing can be communicated via a
configuration file. We used the 3D fully CNN (Long et al.,
2015) architecture known as dense V-network (Dense-Vnet)
that has previously demonstrated success in establishing voxel-
to-voxel connections between input and output images in
multiorgan segmentation of abdominal computed tomography
images (Gibson et al., 2018a). The architecture of the model is
shown in Figure 3, and it only differs from the original model
in the size of input image (in our case, 240 × 240 × 64)
and the lack of priors. The encoder block of the segmentation
network generates three different sized sets of feature maps
using dense feature stacks (Huang et al., 2017). The outputs are
upsampled using the decoder block so that the smaller feature
maps match the original input size. The final output is the
concatenated version of all outputs after a single convolution
in the skip connection. It should be noted that the Dense-
Vnet architecture is designed to work with a smaller version
of the original image to constrain memory usage (i.e., the first
convolutional downsampling layer in Figure 3), and the final
output is resized to the original image size during postprocessing.
An implementation of the model and post-processing is available
in the NiftyNet platform (http://niftynet.io).

Hyperparameters included learning rate, optimizer, and
augmentation, which were selected using the validation set.
Training was conducted using He weight initialization (He
et al., 2015), whitening (scaling image intensities to 0–1), adam
(Kingma and Ba, 2014) optimizer with a batch size of 6, and
the Dice coefficient as the loss criteria (Milletari et al., 2016).
We trained the model for a maximum of 300 iterations, and
the model that performed best on the validation set was used
as the final model. It should be added that the results reported
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TABLE 1 | Comparison of model performance across input type on the test set.

Model input Dice score Sensitivity Specificity Hausdorff distance

T1Gd 93.09 (1.78) 96.14 (3.81) 97.92 (1.28) 3.69 (0.55)

FLAIR 94.54 (1.09) 96.39 (2.34) 98.48 (1.05) 3.39 (0.44)

T1Gd + FLAIR 94.47 (1.61) 94.80 (3.49) 98.84 (0.79) 3.44 (0.49)

Values indicate mean and standard deviation. Best result is highlighted in bold font.

here were generated without the use of any augmentation as data
augmentation (including rotation, scaling, and flipping images
on the x-axis) did not improve model performance on the
validation set. All experiments were conducted on an Ubuntu
17.10 system with a single Nvidia TITAN V GPU. The source
code for NiftyNet platform along with instructions on how to
call the platform via terminal is available at: https://github.com/
NifTK/NiftyNet.

Our trained models along with the complete list of parameters
utilized for model training are available at: https://github.com/
SARARANJBAR/skullstripping_niftynet.

Experiments
Using only brain tumor data, we evaluated the performance of the
network across MRI contrasts by repeating model training three
times: first using only T1Gd MRIs, second using only FLAIR
MRIs, and finally using both series as inputs. When both T1Gd
and FLAIR sequences were provided to the network as input,
the two images were simultaneously provided to the model.
Apart from input image type, all other training parameters
were identical between different runs. We evaluated model
performance using Dice similarity coefficient (Kingma and Ba,
2014), sensitivity, specificity, and Hausdorff distance (Kingma
and Ba, 2014), comparing predicted labels with manual brain
masks. Sensitivity measures the detection rate of brain tissue,
and specificity measures how much non-brain tissue is correctly
identified, whereas Dice score evaluates the trade-off between
sensitivity and specificity, measuring the overlap of predictions
and ground truths. Hausdorff distance measures the Euclidean
distance between the farthest contours of the ground truth and
predictions and is relevant to this work to assess accuracy of
predictions at the edge of the brain.

In addition to brain tumor data, we used the healthy subject
data from LBPA40 (Gibson et al., 2018b) dataset to evaluate
the performance of trained models on a publicly available
benchmark. Other deep-learning skull stripping methods in the
literature (Chang et al., 2009; Kleesiek et al., 2016; Mohseni Salehi
et al., 2017; Lucena et al., 2019) have used this data collection
to evaluate their model. Although our model was not trained on
healthy subjects, we believe addition of this experiment will help
place our work within existing literature. Average Dice score was
used as the performance measure. The Dice scores of previous
approaches were acquired from their publications.

RESULTS

Table 1 compares the performance of model training on brain
tumor data across input types on previously unseen test cases

TABLE 2 | Comparison of performance between model and non-learning

methods on the test set.

Method Dice score Sensitivity Specificity Hausdorff distance

MONSTR 91.34 (6.76) 88.22 (7.44) 98.91 (2.22) 3.67 (0.75)

SPM12-p 93.36 (3.75) 93.39 (6.59) 98.76 (1.05) 3.44 (0.80)

Our approach 94.54 (1.09) 96.39 (2.34) 98.48 (1.05) 3.39 (0.44)

Values indicate mean and standard deviation. Best result is highlighted in bold font.

with available ground truth. We found the model trained on
FLAIR to achieve the highest Dice score and sensitivity, and the
model trained on both sequences was superior to single input
models in specificity (98.84%). Our FLAIR-onlymodel achieved a
meanDice score of 94.54%, a sensitivity of 96.39%, and specificity
of 98.48% on the test set with available ground truth. The average
Dice score for the FLAIR-only model was not significantly higher
than that of the model trained on both sequences (p = 0.83,
t-test) but was significantly higher than that of the T1Gd-only
model (p = 0.00042), which was also significantly outperformed
by the model trained on both (p = 0.0027). The model trained
on both modalities achieved a slightly higher but non-significant
mean specificity than the FLAIR-only model (p = 0.14), with
the FLAIR model significantly outperforming the model trained
on both in mean sensitivity (p = 0.043). The T1Gd model was
significantly lower in mean specificity than the model trained on
both modalities (p = 0.0016) and lower than the model trained
only on FLAIR; this result was not significant (p = 0.068). The
T1Gd-only model had a slightly lower mean sensitivity than the
FLAIR-only model (p= 0.7612). The average Hausdorff distance
between the predictions of the FLAIR model and ground truth
was also superior to that of T1Gd-only (p = 0.023) and dual
input (T1Gd+ FLAIR) models (p= 0.71). Table 2 compares the
performance of our model with non-learning methodsMONSTR
and SPM12. While MONSTR did not fail to include the regions
occupied by tumors into the segmentation, its performance was
much worse in identifying the boundaries of the brain in other
regions, and oversegmentation and undersegmentation were
observed at the top and bottom slices. In comparison, SPM12-
p showed a much improved sensitivity. Our model was superior
in Dice score, Hausdorff distance, and sensitivity compared with
both non-learning approaches. An example of predicted brain
mask and comparison with MONSTR and SPM12 is presented
in Figure 4. Using the same machine for training, generating
an SPM12-p mask required an average of 2–3min compared
with 10–20min for MONSTR, and 2–3 s for the model. Longer
runtime is expected for MONSTR as atlas-based methods tend to
take longer than other approaches.

Figure 5 shows two examples of a model prediction (red),
ground truth (blue), and overlap (purple) (left). This prediction
achieved a relatively low Dice score of 92.4%, with areas of both
underprediction and overprediction. In this case, themodel more
commonly underpredicted the anterior and posterior regions
of the brain, while overpredicting the superior and inferior
regions. This prediction achieved a relatively high Dice score
of 96.6%, primarily underpredicting the superior region and
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FIGURE 4 | Masks overlaid on brain tumor MRIs; images on the left show the brain masks created using MONSTR, SPM12-p, and our model in different anatomical

views. Areas highlighted in yellow show errors in results. The right image shows the ground truth manual segmentation. Our approach performed very well and much

better than the other two methods. The Dice coefficient, sensitivity, and specificity, calculated based on the ground truth for this case, are shown to the left of each

image.

FIGURE 5 | Visual examples of a less successful case (A) and a more

successful case (B). Prediction is shown in red, ground truth in blue, and

overlap in purple.

overpredicting the inferior regions. Importantly, there is no
evidence that the net suffered from the presence of tumor
abnormalities in either case.

Table 3 presents the performance of our model on healthy
subjects. On average, our model achieved a Dice score of 96.2%,

TABLE 3 | Comparison of performance with previous literature on healthy brains

from the LBPA40 dataset.

Method Dice score Sensitivity Specificity

CONSNet (Milletari et al.,

2016)

97.35 (0.003) 97.26 (0.007) 99.54 (0.001)

Auto-U-Net (Mohseni Salehi

et al., 2017)

97.73 (0.003) 98.31 (0.006) 99.48 (0.001)

U-Net (Mohseni Salehi et al.,

2017)

96.79 (0.004) 97.22 (0.016) 99.34 (0.002)

3D CNN (Kleesiek et al.,

2016)

96.96 (0.010) 97.46 (0.010) 99.41 (0.003)

Our approach 96.17 (0.220) 96.60 (0.080) 99.22 (0.090)

Performance measures of others’ works are extracted from their publication. Values in

bold font indicate the best result.

sensitivity of 96.6%, and specificity of 99.2% on the LBPA40
dataset. Overall, our results were within the range of those
reported by others in similar applications. However, our Dice
score and sensitivity were on the lower end of scores. We believe
this is expected given that, unlike others, we trained our model
using brain-tumor patient data that divert from the normal brain
due to imaging patterns resulting from pathology.

DISCUSSION

Despite the large body of existing literature on automatic skull
striping methods on MRI, few have reported robustness in
the presence of a pathology (Thakur et al., 2019). The closest
work to ours is the modality-agnostic 3D CNN created by
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Thakur et al., Lucena et al. (2019), which was tested on brain
tumor data from three different institutions compared with
ours with 20+ institutions. Authors trained their network with
pretreatment images of glioma patients using T1-weighted,
T1Gd, T2-weighted, and FLAIR sequences. Their model achieved
an average Dice coefficient of 97.8% on images from the training
institution and 95.6, 91.6, and 96.9% on datasets of other
institutions. Another learning-based skull stripping approach is
the work of Kleesiek et al. (2016), in which authors created a
modality-agnostic fully convolutional CNN model with similar
input channels as Thakur et al. and achieved an average Dice of
95.2% and a sensitivity of 96.25% on a cohort of 53 brain tumor
patients from training institution. Our work differs from these
works (Kleesiek et al., 2016; Thakur et al., 2019) in a number
of ways. First, our approach is considered weakly supervised,
as the network was trained using automatically generated labels
with known imperfections (Malone et al., 2015) compared with
accurate ground truth delineated by neuroradiologists. The data
used in this work were collected at 20+ institutions from 1990 to
2016 using a variety of imaging devices that has been shown to
impact the outcome of skull stripping (Rex et al., 2004; Fennema-
Notestine et al., 2006). However, we argue that an advantage
of this type of data heterogeneity is that it better approximates
the data found in clinical practice and therefore can serve as a
realistic benchmark for estimating model performance in clinical
practice. The fact that our result is within the range of reported
performance in Thakur et al. (Lucena et al., 2019) on data from
other institutions is a good indicator for this argument. Given
that the CSF is dark on both FLAIR and T1Gd images, and
brain tissue is brighter than CSF on both images, the major
visual difference between the two images is the high intensity
of skull on T1Gd and its low intensity the FLAIR image. This
can result in a sharper edge at the boundary of the brain
on the FLAIR images, which we associate with the improved
performance of the FLAIR model. That said, given the small
size of our test set and similarly promising results of our other
models, we urge the reader not to discount models trained only
on T1Gd or a combination of images. One limitation of our
work is that we did not train a sequence-agnostic model. In our
results, the FLAIR model yielded the highest Dice and sensitivity,
and the addition of T1Gd slightly improved specificity. Given
the heterogeneity of data types across institutions, a sequence-
agnostic approach is beneficial for ensuring utility across data
found in clinical practice, and we intend to adopt a similar
approach in future work.

Because of the size of our cohort and the labor-intensive
nature of manual segmentation, we needed an automatic method
to create brain masks for training. We selected SPM12 because
of its reported comparable performance with manual delineation
in segmenting total intracranial volume on MRI even in the
presence of neurodegenerative pathology (Malone et al., 2015).
Compared with ground truth, the SPM12-p labels achieved a
Dice of 93.34% on the test set. Visualization of model output
against ground truth showed the net was not hindered by the
presence of tumor abnormalities; rather, the differences in Dice
score were related to the overall brain shape. Despite the reported
high performance of MONSTR in skull stripping brain tumor

data, we found its performance worse than SPM12, demonstrated
by comparing the Dice score of generated masks with ground
truth (Table 2). As a result of this finding, we decided to proceed
with model training with SPM12. However, no single automatic
method for generating labels can outperform consensus methods
that combine different skull-stripping methods through a meta-
algorithm and allow for combining the strength of different
approaches. In the work of Lucena et al. (Milletari et al., 2016),
the authors generated silver standard labels for training using
the STAPLE (Warfield et al., 2004) method combining eight
different segmentation approaches into a probabilistic consensus
mask, and achieved a Dice score of 97.3% and sensitivity of
97.2% on healthy subjects. In comparison, our approach could
be considered a “bronze standard” given that our labels were
acquired using one segmentationmethod. In future work, we aim
to repeat our analysis using a silver standard.

Among the non–learning-based skull stripping approaches in
the literature, the MONSTR algorithm (Roy et al., 2017) was
reported to outperform other methods on a small cohort of five
brain tumor cases with an average Dice agreement of 96.95%
with ground truth. MONSTR achieved a moderate Dice score of
91.34% on the test set. In comparison, SPM12-p outperformed
MONSTR, particularly with respect to sensitivity (93.39 vs.
88.22%), as well as average runtime for creating masks (2–3 vs.
10–20min on the machine used for model training). Discrepancy
between the results here and the reported performance in the
original paper could also be related to our use of T1Gd and
FLAIR inputs for creating MONSTR masks, as opposed to T1Gd
and T2W images that were used in the original results (Roy
et al., 2017). The worse performance by MONSTR could also be
associated with the atlas-based nature of the algorithm, which can
result in inaccuracies when images deviate from healthy brain
MRIs. The performance of our model on healthy subjects was
decidedly on the lower end of reported results for deep learning–
based skull stripping models in the literature. Mohseni Salehi
et al. (2017) compared the performance of a voxel-wise approach
using three convolutional pathways for each anatomical plane
and a fully convolutional U-Net (Ronneberger et al., 2015)
architecture and achieved Dice coefficients of 97.7 and 96.8% on
two publicly available datasets of normal brains. Although the
authors used the U-Net architecture, which might be considered
dated in today’s deep learning context, their approach achieved
a higher performance than ours because of their use of different
convolutional pathways for each anatomical plane. Kleesiek et al.
(2016) used a 3D input-agnostic fully convolutional network and
compared its performance to six other skull stripping methods
on publicly available datasets. Whereas, Kleesiek et al. (2016)
reported the performance of their model on merged public
datasets, others (Lucena et al., 2019) reported their performance
on the LBPA40 dataset alone to be an average Dice score of 97.0%
and sensitivity of 97.4%. Lucena et al. (Milletari et al., 2016)
adopted a brain extraction model consisting of three parallel,
fully convolutional networks using the U-Net architecture and
achieved a Dice score of 97.3% and sensitivity of 97.2%. Here
again, the authors utilized parallel pathways to achieve high
performance. Our approach did not yield the same level of Dice
score on the LBPA40 dataset. We believe this is expected given
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that unlike others we trained our network using only brain-
tumor MRI and did not use manually delineate or consensus
methods for training labels. In future work, we intend to adopt
a consensus method for creating training labels. To maximize
generalizability and utility of this tool, we will supplement brain
tumor data with healthy subjects to improve model performance
on healthy subjects as well as to stay relevant for utility in clinical
settings. In addition to using pathologicalMRI for model training
with suboptimal labels, we adopted a straightforward volumetric
training approach with no pathway parallelization for different
anatomical planes. This could also explain the drop in our model
performance compared with others.

In summary, we assessed the performance of a deep learning
model in MRI brain extraction of a diverse multi-institutional
brain tumor patient dataset using weak labels. On previously
unseen brain tumor cases, our approach reached comparable
performance to previous literature. The model underperformed
compared with state-of-the-art models in the literature on
healthy subjects, which can be attributed to the absence of healthy
patients in our training set and our rather simplistic model
training approach. The shortcomings can be addressed by fine
tuning the model on healthy subjects, leveraging a consensus
approach to generating training labels, and allocating training
pathways within the model for different anatomical planes.
Despite the shortcomings, we believe that our approach can be
a practical choice for skull stripping MRI data in repositories of
brain tumor patients given its turnaround time and simplicity.
In future work, we intend to extend this work to perform skull
striping on post-treatment MRIs.
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