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Introduction: Alzheimer’s disease (AD) is a degenerative disease characterized by

pathological accumulation of amyloid and phosphorylated tau. Typically, the early stage

of AD, also called mild cognitive impairment (MCI), shows amyloid pathology. A small

but significant number of individuals with MCI do not exhibit amyloid pathology but

have elevated phosphorylated tau levels (A-T+ MCI). We used CSF amyloid and

phosphorylated tau to identify the individuals with A+T+ and A-T+ MCI as well as

cognitively normal (A-T-) controls. To increase the sample size, we leveraged the Global

Alzheimer’s Association Interactive Network and identified 137 MCI+ and 61 A-T+ MCI

participants. We compared baseline and longitudinal, hippocampal, and cortical atrophy

between groups.

Methods: We applied ComBat harmonization to minimize site-related variability and

used FreeSurfer for all measurements.

Results: Harmonization reduced unwanted variability in cortical thickness by 3.4% and

in hippocampal volume measurement by 10.3%. Cross-sectionally, widespread cortical

thinning with age was seen in the A+T+ and A-T+MCI groups (p< 0.0005). A decrease

in the hippocampal volume with age was faster in both groups (p < 0.05) than in the

controls. Longitudinally also, hippocampal atrophy rates were significant (p< 0.05) when

compared with the controls. No longitudinal cortical thinning was observed in A-T+

MCI group.

Discussion: A-T+MCI participants showed similar baseline cortical thickness patterns

with aging and longitudinal hippocampal atrophy rates as participants with A+T+ MCI,

but did not show longitudinal cortical atrophy signature.
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INTRODUCTION

Amyloid negative individuals with mild cognitive impairment
(MCI) constitute 7–35% of older adults at the risk of Alzheimer’s
disease (AD) (Wisse et al., 2015). With the new A/T/N
framework, such MCI individuals can show low amyloid
accumulation, i.e., A-T-N+, A-T+N+, and A-T+N-. This is
in contrast with the A+T+ individuals with MCI due to AD
pathology who have a high amyloid burden (Jack et al., 2016b,
2018; Dani et al., 2017). Previous studies used hippocampal
atrophy as the marker for neurodegeneration, (Caroli et al.,
2015; Wisse et al., 2015) and some amyloid-negative MCI cases
(also called suspected non-amyloid pathology or SNAP) were
likely cases of hippocampal sclerosis (Botha et al., 2018; Jicha
and Nelson, 2019), Lewy-body disease, cerebrovascular disease,
primary age-related tauopathy (PART), or other degenerative
diseases (Abner et al., 2017). Thus, the amyloid negative MCI
cohort is heterogeneous and not clearly defined.

Besides amyloid, tau accumulation, especially phosphorylated
tau (p-tau), is an essential contributor to AD pathology
and cognitive symptoms. Abnormally hyperphosphorylated
tau occurs in AD and related degenerative diseases such
as frontotemporal dementia, corticobasal degeneration, and
progressive supranuclear palsy, as well as in vascular dementia
and Lewy Body disease (Hampel et al., 2010). However, the tau
variants are different in different disorders. Levels of p-tau181
distinguish AD from other degenerative diseases (Mollenhauer
et al., 2006). A combination of CSF levels of amyloid and p-tau181,
therefore improves our specificity to AD (Parnetti et al., 2001;
Blennow, 2017). Now, amyloid and p-tau are both considered
equally critical with an amyloid-first or a p-tau-first emergence
of AD pathology (Small and Duff, 2008; Paul de Paula et al., 2009;
Chételat, 2013). Therefore, in this work, we use CSF levels of
amyloid and p-tau181 (henceforth referred to as p-tau) to identify
A-T+ MCI groups with p-tau positivity. The A-T+ MCI group
has never been studied before.

The low to modest prevalence of the A-T+ MCI participants
makes it difficult to cross-sectionally compare most imaging
biomarkers, including cortical thickness (Dani et al., 2017).
Therefore, we leverage the Global Alzheimer’s Association
Interactive Network (GAAIN, http://www.gaain.org/) platform
to assemble anatomical imaging data from multiple repositories
across the world (Toga et al., 2016). We leverage data
harmonization approaches to minimize site-related differences
and compare cortical thickness differences and longitudinal rates
of atrophy in A-T+ participants, typical participants with MCI
due to AD pathology with amyloid positivity (A+T+ MCI) and
cognitively normal A-T- controls, i.e., those free of amyloid and
p-tau pathology (Fortin et al., 2017).

METHODS

Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). As such, the investigators within
the ADNI contributed to the design and implementation of
ADNI and/or provided data but did not participate in the

analysis or writing of this report. A complete listing of ADNI
investigators can be found at: http://adni.loni.usc.edu/wp-
content/uploads/how_to_apply/ADNI_Acknowledgement_List.
pdf. Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Repository Without Borders
(ARWiBo – www.arwibo.it). ARWiBo is publicly accessible via
neuGRID platform (http://www.neugrid2.eu). A complete listing
of ARWiBo researchers can be found at: www.arwibo.it/pdf/
ACKNOWLEDGEMENT.pdf. The EDSD and PharmaCOG
(alias E-ADNI) data used in the preparation of this article were
obtained from neuGRID platform as well.

Subject Selection
Using the GAAIN platform, we queried Alzheimer’s Disease
Neuroimaging Initiative (ADNI) (Jack et al., 2008), European
Diffusion Tensor Imaging Study onDementia (EDSD) (Brueggen
et al., 2016), Alzheimer’s Disease Repository Without Borders
(ARWiBo) (Frisoni et al., 2009), and Prediction of cognitive
properties of new drug candidates for neurodegenerative diseases
in early clinical development (PharmaCog) (Galluzzi et al., 2016).
CSF analyses were included only from a single run to minimize
batch effects. This also limits the number of participants available
for analysis. Only A-T- controls (NC) and participants with
A+T+ MCI and A-T+ MCI were selected from each repository
based on CSF amyloid and p-tau. For ADNI, the CSF cut-offs
for amyloid, i.e., Aβ42 and p-tau were 192 pg/ml and 22 pg/ml,
respectively (Shaw et al., 2009). For ARWiBo, the corresponding
cut-offs were 687 pg/ml and 61 pg/ml, respectively. EDSD and
PharmaCog provided binarized variables for amyloid and p-tau
positivity. In the A+T+ MCI group 57% were N+ and 55% of
A-T MCI groups were N+. N+ status was based on a cut-off
of 93 pg/ml in ADNI and 492 pg/ml in ARWiBo. EDSD and
PharmaCog provided binarized variables for tau positivity. Thus,
the distribution of N+ and N- in our MCI groups was very
similar and would not bias the observed atrophy patterns in one
group over the other. We did not consider the status of N, since
the N marker is not specific to AD.

We identified a total of 20 A-T- controls (NC), 172
A+T+ MCI, and 92 A-T+ MCI participants for the baseline
comparisons and 18 A-T- controls (NC), 137 A+T+ MCI, and
61 A-T+ MCI participants for the longitudinal comparisons
(Supplementary Table 1). ADNI only included NC participants
who had imaging and CSF samples. Furthermore, of the 115
total NC participants identified in ADNI with imaging and
CSF at baseline, only 22 NC participants included in this study
were identified as A-T-, 35 were A-T+, and the rest were A+.
Longitudinal data was only available in ADNI and PharmaCog.
Their average Mini-Mental State Examination (MMSE) scores
were 29±1 (Folstein et al., 1983). The NC participants were 75.3
± 6.5 years old and included 9 males. The 172 A+T+ MCI
participants were 73.5 ± 7.5 years old and included 88 males.
Average MMSE scores for A+T+ MCI participants were 26±
2. The 92 A-T+ MCI participants were 71.5 ± 7.3 years old
and included 47 males. Average MMSE scores were 27 ± 2. The
MMSE scores in A+T+ MCI groups were significantly lower
(p < 0.001) from the A-T+ MCI group and the control group.
Although, numerically lower MMSE scores were observed in the
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A-T+MCI group compared to the control group, the differences
were not significant. All participants were scanned on 3T MRI
scanners at different sites with 41 different scanners using
standard 3D T1-weighted MRI sequences. Imaging parameters
were as outlined in Jack et al. (2008), Frisoni et al. (2009), Teipel
et al. (2012), Brueggen et al. (2016), and Galluzzi et al. (2016).

Baseline Cortical Thickness and
Hippocampal Measurements
We applied the standard FreeSurfer (v6.0) pipeline
comprising intensity normalization, skull tissue removal,
tissue segmentation, resampling to a 1 × 1 × 1mm (Jack et al.,
2016a) resolution, and registration with the standard FreeSurfer
brain (fsaverage) (Fischl, 2012). Briefly, this pipeline removes
non-brain tissue, performs automated Talairach transformation,
segments subcortical white matter and deep gray matter
volumetric structures, performs intensity normalization and
tessellation of the gray/white matter boundary, and detects the
gray/white and gray/cerebrospinal fluid borders. No manual
editing was performed. We randomly sampled 10% of the data
and visually inspected them to ensure accurate segmentation.

Next, we performed a generalized linear model (GLM)
analysis to evaluate group differences between NC, A+T+MCI,
and A-T+ MCI participants. Since the sample size for NC is
sub-optimal, we did not expect significant differences between
amyloid positive MCI and NC and between A-T+ MCI and NC
groups. All comparisons were adjusted for age and gender. We
also evaluated the relationship between cortical thickness and age
within each group and whether this relationship was different
between groups. This comparison was adjusted for gender.
Analysis was performed using standard FreeSurfer pipeline on a
vertex-by-vertex basis in surface space, followed by cluster-wise
correction for multiple comparison using 5,000 permutations.
All data were registered to the standard “fsaverage” space in
FreeSurfer. Significance at the vertex level was considered at
p = 0.0001 using a two-sided t-test. The cluster-wise p-value
was 0.05, i.e., the probability of seeing that cluster during the
5,000 simulations. Details of this approach are outlined in
(Hagler et al., 2006).

Harmonization of Multi-Site Baseline Data
Using the ComBat approach with parametric adjustments,
we harmonized baseline cortical thickness measurements to
minimize site effects (Fortin et al., 2017). ComBat uses an
empirical Bayes approach to estimate additive and multiplicative
effects of scanner-related systematic variations in the cortical
thickness values. Biological variability is preserved by providing
relevant parameters such as cognitive status, age, and gender.
ComBat has been used effectively in many neuroimaging studies
to harmonize data across sites (Fortin et al., 2017, 2018). The
aforementioned analyses were repeated after harmonization,
and the differences in the outcomes were evaluated. If a site
had multiple scanners, then each scanner was assigned as
a separate site for harmonization purposes. The coefficient
of variation was measured at each vertex (ratio of standard
deviation across all participants to the average value of
thickness across all participants) and compared before and after

harmonization to ascertain a reduction in systematic variability.
Similarly, a regression analysis was performed to determine if
the hippocampal volume was associated with the diagnostic
group after adjusting for age, gender, and intracranial volume
using the “rms” package in R. Coefficient of variation was
estimated for hippocampal volume and intracranial volume and
compared before and after harmonization. Due to the inclusion
of categorical variables (for group) in our model, the linear
regression was implemented as an analysis of variance (ANOVA).

Longitudinal Cortical Thickness and
Hippocampal Measurements
Eighteen NC, 137 MCI+, and 61 A-T+ participants were
available with longitudinal data. We applied FreeSurfer’s
longitudinal pipeline to estimate the rates of cortical atrophy
(change in thickness per year) (Reuter et al., 2010, 2012; Reuter
and Fischl, 2011). All analyses were completed using FreeSurfer’s
standard longitudinal pipeline on a voxel-wise basis followed by
a multiple comparison’s correction using False Discovery Rate
(FDR) of <0.05. We applied a linear mixed-effects model to
assess the difference in rates of atrophy between NC and A-T+
MCI groups. Using the longitudinal approach is advantageous
because it does not include variability due to sites or scanners.
All comparisons were adjusted for age and gender. Finally,
the p-value cut-offs for the mass-univariate regression equation
provided by FreeSurfer were projected on the standard 2D-
surface space, i.e., on the “fsaverage” brain. With the small
number of NC participants, we did not expect significant
differences from comparisons with or within the NC group.

We would like to note that association with cognitive
assessments was not a focus of this study. Furthermore, not all
studies conduct identical tests or in an identical manner. For
instance, ADNI sites use the cognitive battery from the Uniform
Data Set (UDS), (Weintraub et al., 2018) while EDSD uses
the Consortium to Establish a Registry of Alzheimer’s Disease
(CERAD) testing battery (Petersen, 2004). This would make
the above question difficult to assess correctly. The ARWiBo
and PharmaCog studies used a variety of cognitive tests to
assess short-term and long-term memory impairment as well as
other assessments (for depression, behavior, etc.) to determine
MCI status. Due to subjectivity in the selection process and
the heterogeneity in the assessment of MCI status, it would
be difficult to combine all data and test associations with
cognitive performance.

RESULTS

Cross-Sectional Comparisons
Overall, we did not find any group differences in cortical
thickness between groups. Cross-sectionally, reduced cortical
thickness was associated with older age in the left temporal cortex
in the A-T+ MCI participants, as shown in Figure 1A. This
observation was made on unharmonized data. As expected, no
observations of significance were observed in the NC group. The
p-values refer to the probability of the cluster. The average vertex-
wise Z score for each cluster along with the cluster-wise p-values
are reported in Table 1.
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FIGURE 1 | Association between cross-sectional cortical thickness and age. (A) This shows thinner cortical thickness with increasing age in amyloid positive and

A-T+ MCI. Both groups show similar cortical atrophy in the temporal cortex. The results were lateralized to the left hemisphere. (B) This shows cross-sectional cortical

thinning with age in the same two groups after harmonization. The cortical thinning is more bilateral and widespread in both groups. Table 1 outlined all regions or

clusters identified using the Desikan Killany atlas with a cluster-wise p < 0.05 before and after harmonization. The average Z-value of all vertices in the cluster is also

included in Table 1. Blue-color bar represents negative association between age and cortical thickness, i.e., higher the age, thinner the cortex, with lighter blue

representing more significant p-values.

Figure 2 shows a carpet-plot of cortical thickness data in all
265 participants before and after harmonization. Each column
represents a single participant, and each row represents a
single vertex on the FreeSurfer surface mesh. Evidently, after
harmonization, the carpet plot appears smoother with similar
values for the same vertex across all participants irrespective
of sites (i.e., each row). The values for the coefficient of
variation in thickness measurements before harmonization and
after harmonization were 13.55 ± 9.28 and 10.15 ± 7.52%,
respectively; a reduction of 3.4± 2.38% was noted.

Figure 1B shows the cross-sectional cortical thickness and
its association with age after harmonization of the cross-
sectional data. Figure 1A represent the cross-sectional analyses
before harmonization and Figure 1B represents the same
cross-sectional analyses after harmonization. The reduction
in site-related variability is clearly visible in Figure 2. After
harmonization, the main effect of age on cortical thickness was
bilateral and more widespread in both MCI groups. Table 1
outlines the regions from Figure 1, showing a significant main
effect of age before and after harmonization. Still, no differences
were observed between the groups.

Figure 3A shows hippocampal volume differences between
the three groups after adjusting for age, gender, and intracranial
volume (ICV). Average hippocampal volumes were the highest
in the NC group, followed by the A-T+ MCI group, and it

was the least in the A+T+ MCI group. Group differences were
significant (p << 0.001) and not affected by harmonization.
Cross-sectional, age-related hippocampal atrophy was the least
in controls, followed by the A+T+ MCI group, and then
the A-T+ MCI group (Figure 3B). The lack of relationship
between hippocampal volume and age in controls could also be
due to a smaller sample size. These patterns were unchanged
with harmonization. The coefficient of variations reduced by
10.30% from 16.4% to 14.7% bilaterally in the hippocampus
and by 7.7% in the ICV measurements. Note that the plots
are outcomes of regression analysis; hence no correlation values
are shown.

Longitudinal Comparisons
Longitudinal cortical atrophy differences are depicted in
Figure 4. Using the advanced linear mixed-effects model in
FreeSurfer tools, the A+T+ group had significantly higher rates
of cortical thinning compared to the NC group bilaterally in
the temporal lobe (superior, middle, and inferior temporal gyri),
superior frontal gyrus, posterior cingulate, and precuneal regions,
as well as anterior cingulate (p < 0.02). The A+T+ MCI group
also showed significantly higher rates of longitudinal cortical
atrophy in the temporal lobe (superior, middle, and inferior
gyri), superior frontal gyrus, and the cingulate (p < 0.04) when
compared to the SNAP group. All results were corrected for
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TABLE 1 | Comparison of cross-sectional associations between cortical thickness and age before and after applying harmonization (with reference to Figure 1).

Group/region Before harmonization (1A) Cluster

p–values (mean vertex Z)

After harmonization (1B) Cluster

p–values (mean vertex Z)

A+T+ MCI Left cortex Right cortex Left cortex Right cortex

Superior temporal 0.0002 (−4.6) 0.0002 (-4.5) 0.0002 (-4.2)

Precentral 0.02 (−4.2) 0.0002 (-4.4) 0.0002 (-4.3)

Superior frontal 0.03 (−4.2) 0.002 (-4.2)

Entorhinal 0.0002 (-4.3)

Parahippocampal 0.0002 (-4.4)

Rostral middle frontal 0.0002(-4.4)

Isthmus Cingulate 0.0002 (-4.2)

Middle temporal 0.0002 (-4.4)

Inferior temporal 0.002 (-4.0)

Precuneus 0.002 (-4.3) 0.0002 (-4.6)

Medial orbitofrontal 0.003 (-4.0)

Lingual 0.005 (-4.4)

Rostral anterior cingulate 0.008 (-4.5)

Postcentral 0.02 (-4.2)

Paracentral 0.02 (-4.2)

Inferior parietal 0.03 (-4.1)

Fusiform 0.002 (-4.3)

Supramarginal 0.0002 (-4.5)

A-T+ MCI Left cortex Right cortex Left cortex Right cortex

Superior temporal <0.001 (−4.2) 0.0002 (-4.3) 0.0002 (-4.5)

Precentral 0.002(−4.2) 0.0002 (-4.6) 0.0002 (-4.3)

Superior frontal 0.03 (−4.3) 0.0002 (-4.9) 0.0002 (-4.6)

Insula 0.0002 (-4.4)

Caudal middle frontal 0.0002 (-4.2)

Isthmus cingulate 0.0002 (-4.4) 0.001 (-4.5)

Superior parietal 0.0002 (-4.2)

Precuneus 0.0002 (-4.1) 0.0002 (-4.1)

Middle temporal 0.006 (-4.4)

Rostral anterior cingulate 0.02 (-4.4)

Supramarginal 0.0002 (-4.6)

Temporal pole 0.003 (-4.2)

Lateral orbitofrontal 0.03 (-4.2)

age, gender, and multiple comparisons across tests and the
two cortices using False Discovery Rate (FDR). No significant
difference was observed between the A-T+ MCI group and the
NC group.

Compared with NC, the A+T+ MCI participants showed a
significantly faster rate of atrophy in the two hippocampi (p =

0.005). The A-T+MCI participants also had a significantly faster
rate of hippocampal atrophy (p=0.03). No significant difference
was observed between the longitudinal rates of hippocampal
atrophy between A-T+ MCI and A+T+ MCI participants (p
= 0.67).

DISCUSSION

This study has three observations. (1) Using a large dataset
from multiple sites, this study shows that with age, the A+T+

and A-T+ MCI groups have a similar pattern of cortical
thinning and hippocampal atrophy cross-sectionally, as shown
in previous studies. (2) Novel in this study is the comparison
of hippocampal atrophy and cortical thinning in the two
groups. Longitudinally, both MCI groups showed a higher
annual rate of hippocampal atrophy. No significant differences
were observed in the longitudinal hippocampal atrophy rates
between the two groups. (3) However, only the A+T+ group
showed a significantly faster rate of cortical thinning compared
with both NC and A-T+ MCI groups. (4) Harmonization
greatly minimized site differences and improved the detection of
group differences.

We studied a sub-group of amyloid-negativeMCI participants
with elevated p-tau, since it is also a signature of AD pathology
(Baldeiras et al., 2018). In our study, the p-tau levels in ADNI
were 50.6 ± 21.8 pg/ml in A+T+ MCI and 33 ± 9.9 pg/ml in
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FIGURE 2 | Minimizing site-effects using ComBat Harmonization. This study

included 265 participants from 41 different sites. (A) This shows cortical

thickness values on the FreeSurfer mesh. Each column represents one

subject, and each row represents cortical thickness at each vertex on the

FreeSurfer 3D mesh. (B) This shows a similar plot after applying the ComBat

routine with parametric adjustments. The carpet plot of cortical thicknesses

clearly shows site-specific differences along the columns before

harmonization. After harmonization, the carpet plot appears smoother.

A-T+ MCI group. The respective values were 96.6 ± 19.0 and
96.0± 22.1 pg/ml in ARWiBo, 89.4± 22.0 and 104± 49.7 pg/ml
in EDSD, and 93.0 ± 35 and 92.9 ± 31.8 pg/ml in PharmaCog.
All the values are above the cut-off for p-tau positivity. The equal
distribution of the neurodegeneration marker N in the two MCI
groups, the lack of longitudinal cortical thinning in our large A-
T+ MCI cohort, and the presence of only hippocampal atrophy
support that A-T+ MCI group with elevated p-tau levels may
be reflective of PART pathology and can be confirmed only by
histopathological studies (Jack et al., 2016a). In that case, this
sub-group may not develop amyloid pathology (Crary et al.,
2014) or become amyloid positive in subsequent years (Gordon
et al., 2015; Burnham et al., 2016). The A-T+ MCI group had
a higher hippocampal volume and faster rates of atrophy, while
the A+T+ MCI groups had a significantly lower hippocampal
volume and a slower rate of atrophy. This is in accordance with
other studies showing different baseline hippocampal volumes
and rates of atrophy depending on the A/T/N status (Burnham
et al., 2016). The A+T+ MCI group likely showed a higher
rate of atrophy earlier and hence has more severe cognitive
symptoms (poorer MMSE scores) compared with the A-T+MCI
group. In a study by Holland et al., hippocampal volume was
the lowest at 65 years of age in AD, and the rate of atrophy
decreased indicating the process of hippocampal volume loss was
prolific in the earlier decade (Holland et al., 2012). Contrarily,
hippocampal volume was higher in MCI and controls, and
the rate of atrophy increased after 65 years indicating that the

hippocampal loss was an active process that began around 65
years of age.

No study has measured cross-sectional cortical thickness or
longitudinal rates of cortical thinning in amyloid-negative, p-
tau positive MCI groups. To our knowledge, this is the first
study to leverage the GAAIN platform to consolidate and further
harmonize datasets across multiple repositories and provide
adequate subjects for a thickness-based analysis. Studies of
sample size estimates suggest a sample size of at least 50 to
detect robust differences in cortical thickness comparisons. Our
approach provided us with 91 SNAP participants. Furthermore,
we applied ComBat harmonization to reduce site-related
variability, and the differences due to harmonization are evident
in Figure 2. We could only identify 20 NC participants. Only
the ADNI dataset had NC participants with concurrent CSF
and T1 MRI data, and most were A+. Hence, all cross-sectional
comparisons with the NC group were considered secondary
analyses. Note that previous studies of amyloid negative MCI
groups (not necessarily T+) used NCs as amyloid-negative
participants with normal cognition (disregarding the status of
T and sometimes also, N) or included only MCI participants
(Caroli et al., 2015; Wisse et al., 2015, 2018). Our approach
chose an NC group with individuals without AD-related amyloid
and tau pathology, resulting in a small number of A-T-
control participants.

For longitudinal analyses, no harmonization was performed
since a subject-specific template is created for estimating annual
rates of atrophy. With our approach, no longitudinal deficits in
cortical thickness were observed in A-T+ group. Deficits were
prevalent in the A+T+ group only. No longitudinal study exists
that evaluates cortical thinning in the A-T+ MCI group. The
lack of a longitudinal cortical atrophy signature could explain
the slow progression or stable nature of these individuals, but
further investigations are warranted. One issue is that scanners
often undergo upgrades that may introduce variability even in
longitudinal measurements, and these are not accounted for in
this study.

Most studies of the MCI population are performed in
a mixed MCI population irrespective of amyloid status or
only in amyloid-positive MCI participants. Our findings are
very much in accordance with previous studies of amyloid-
positive MCI participants, showing higher atrophy compared
with controls (Huijbers et al., 2015; Nosheny et al., 2015; Jang
et al., 2019). Cortical thinning has been most commonly reported
in the medial temporal regions, parieto-occipital regions, and
the frontal regions, also known as AD-vulnerable regions.
These patterns of atrophy are more conspicuous in A+ MCI
participants (Becker et al., 2011; Ekman et al., 2018). Importantly,
these regions also show the earliest amyloid accumulation in AD
beside the hippocampus. Amyloid accumulation is known to exit
even decades before AD symptoms manifest, and it is associated
with greater thinning in the AD vulnerable regions (Doré et al.,
2013). Amyloid is known to cause vasoconstriction, increase
inflammation, and oxidative stress, all of which eventually result
in neuronal injury or death (Zlokovic, 2005). It is, therefore,
not surprising that amyloid status plays an important role in
brain atrophy. Phosphorylated tau, p-tau181, is associated with
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FIGURE 3 | (A) Cross-sectional hippocampal volume comparisons. After adjusting for age, gender, and total intracranial volume (ICV), hippocampal volumes were

significantly different between all three groups (p < 0.001 both before and after harmonization). The NC group had the highest hippocampal volume and the amyloid

positive MCI group had the lowest hippocampal volume. (B) Interestingly, the A-T+ groups show the strongest association between decreasing hippocampal volume

and increasing age, followed by the A+T+ MCI group. In the NC group, it declined the least.

FIGURE 4 | Longitudinal cortical thinning. Using the mass-univariate linear mixed-effects model proposed by FreeSurfer, MCI+ group showed a faster rate of atrophy

compared with both NC and SNAP groups. The p-values indicate the cut-off threshold determined by the model after adjusting for multiple comparisons and separate

evaluation of the two cortical surfaces. Blue-color bar represents cortical thinning in the AT+ MCI group compared with NC and compared with A-T+ MCI, with lighter

blue representing more significant p-values. Multiple comparisons correction is achieved using false discovery rate (FDR). No significant difference was observed

between NC and SNAP groups.
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axonal transport, cell signaling, microtubule stabilization, and
tau release. P-tau181 activity is regulated by enzymes that are
also partly affected by amyloid. Markers of abnormal p-tau and
amyloid together increase the specificity to AD compared with
either one of them, indicating that amyloid and p-tau have
distinct effects on AD pathogenesis.

Whether A-T+ is a distinct pathological state still remains
unknown. Even with the larger sample sizes, we achieved in
our study, no cortical signatures were identified. Hippocampal
atrophy was similar in A-T+ and A+T+MCI groups.

CONCLUSIONS

Our study shows that A-T+ MCI participants have higher
hippocampal volume loss at baseline and similar longitudinal
rates of atrophy as amyloid positive MCI participants. Only
the amyloid-positive MCI participants additionally exhibit
widespread cortical thinning longitudinally. This study included
a very limited number of cognitively normal controls. Future
studies are needed with a larger sample of amyloid and p-tau
negative cognitively normal controls.
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