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There exists growing interest in understanding the dynamics of resting state functional

magnetic resonance imaging (rs-fMRI) to establish mechanistic links between individual

patterns of spontaneous neural activation and corresponding behavioral measures

in both normative and clinical populations. Here we propose and validate a novel

approach in which whole-brain rs-fMRI data are mapped to a specific low-dimensional

representation—affective valence and arousal processing—prior to dynamic analysis.

This mapping process constrains the state space such that both independent validation

and visualization of the system’s dynamics become tractable. To test this approach,

we constructed neural decoding models of affective valence and arousal processing

from brain states induced by International Affective Picture Set image stimuli during

task-related fMRI in (n = 97) healthy control subjects. We applied these models to

decode moment-to-moment affect processing in out-of-sample subjects’ rs-fMRI data

and computed first and second temporal derivatives of the resultant valence and arousal

time-series. Finally, we fit a second set of neural decoding models to these derivatives,

which function as neurally constrained ordinary differential equations (ODE) underlying

affect processing dynamics. To validate these decodings, we simulated affect processing

by numerical integration of the true temporal sequence of neurally decoded derivatives

for each subject and demonstrated that these decodings generate significantly less (p

< 0.05) group-level simulation error than integration based upon decoded derivatives

sampled uniformly randomly from the true temporal sequence. Indeed, simulations of

valence and arousal processing were significant for up to four steps of closed-loop

simulation (1t = 2.0 s) for both valence and arousal, respectively. Moreover, neural

encoding representations of the ODE decodings include significant clusters of activation

within brain regions associated with affective reactivity and regulation. Our work has

methodological implications for efforts to identify unique and actionable biomarkers

of possible future or current psychopathology, particularly those related to mood and

emotional instability.
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INTRODUCTION

Emotional experiences unfold over time (Zelazo and
Cunningham, 2007; Cunningham et al., 2013). Thus, knowledge
of normative emotion processing dynamics may be particularly
important for informing our understanding of mental well-
being. Indeed, emotion dysregulation, which is implicated in

maladaptive trajectories of emotion processing, has been linked
to depression, borderline personality disorder, substance-use
disorders, eating disorders, somatoform disorders, and other

psychopathology (Berking and Wupperman, 2012). At present,
however, we know little of the neural mechanisms through which
emotion processing temporally evolves.

Along these lines, the elucidation of affect processing within
the untasked brain has been an area of recent inquiry.
Mind wandering is the default mode of human brain activity
(Raichle et al., 2001), comprising as much as 47% of all
wakeful cognitive states (Killingsworth and Gilbert, 2010).
Interestingly, observations have been made in studies of mind
wandering that show diverse, often negative, self-reported
affective experiences (Killingsworth and Gilbert, 2010; Kragel
et al., 2016). Evidence from a large-scale (n = 2,500) ecological
momentary assessment study suggests that mind wandering is a
cause, rather than an effect, of negative affect (Killingsworth and
Gilbert, 2010). However, a brain-based mechanistic explanation
for this phenomenon remains poorly described. Advancements
in methods for analyzing resting state brain data, therefore, may
hold promise in expanding our overall understanding of affect
processing dynamics.

Neural signatures of mind wandering are typically captured
via resting state functional magnetic resonance imaging (rs-
fMRI) while the subject remains inactive, visually fixating
on crosshairs, and under instructions to let the mind freely
wander. Standard analysis methods currently utilize functional
connectivity (FC) to characterize the temporal correlations
between neural activations measured from disparate spatial
regions throughout the brain. Using the FC approach, researchers
have demonstrated that the functional organization of the resting
brain broadly recapitulates task-related cognitive processing
(Gordon et al., 2017), thereby allowing patterns of rs-fMRI brain
activity to predict cognitive and behavioral states as well as to
infer mechanisms of cognitive development (Dosenbach et al.,
2010; Gu et al., 2015) and deficit states (Greicius et al., 2004, 2007;
Cisler et al., 2013). It is this broad informing potential of rs-fMRI
that prompted its inclusion in population-scale normative adult
(Smith et al., 2013) and developmental (Brown et al., 2015; Casey
et al., 2018) imaging studies.

However, rs-fMRI temporal and spatial pattern analyses have
inherent theoretical, conceptual, and interpretive limitations to
their ultimate potential for improving our understanding of the
mechanisms of mind wandering. First (in what we term the
dynamics problem), existing rs-fMRI FC analyses largely rely
on static topologies of functional brain organization (Bullmore
and Sporns, 2009) in which steady-state network structures (e.g.,
default mode network) emerge from correlations between coarse-
grained anatomical parcellations (Glasser et al., 2016) of fMRI
BOLD signal (Buxton et al., 2004). Second (in what we term

the identity problem), fluctuating rs-fMRI patterns of neural
activation lack defined cognitive process identities that directly
relate individual and group variation to the extant task-related
functional neuroanatomical literature, thus diminishing their
potential value for informing our understanding of cognitive
processes (and their interactions) within the untasked brain.

Highly innovative work has recently approached the
dynamics problem by decomposing the steady-state functional
organization of the human brain into temporally finer-
grained, moment-to-moment dynamics of resting state FC
reorganization (Liu and Duyn, 2013; Calhoun et al., 2014;
Gonzalez-Castillo et al., 2015), which appears strikingly similar
to FC reorganization that has been observed when the brain
alternates between tasks or between task and rest (Gonzalez-
Castillo et al., 2015). This approach suggests that modes of
resting state FC are governed, macroscopically, by a stochastic
process (Parzen, 2015) such as a Markov chain (Privault, 2013;
Kragel et al., 2021).

Recent work has approached the identity problem by
demonstrating that cognitive-like identities spontaneously and
dynamically emerge within rs-fMRI data (Gonzalez-Castillo
et al., 2019). Further, advances in multivariate neural decoding
(Mitchell et al., 2008) have provided insight into the specific
cognitive process identities that are corollary to free-forming
rs-fMRI neural activity. Both emotion processing (Kragel et al.,
2016) and affect processing (Bush et al., 2018c) identities have
been decoded from rs-fMRI data and independently validated,
either by self-reported ecological affective experience (Kragel
et al., 2016) or by concurrently recorded psychophysiology (Bush
et al., 2018c).

Building on these separate findings, we propose that
innovative work must investigate methodologies that merge
the analysis of resting state dynamics with specific cognitive
identities in order to provide insight into the processing and
regulatory mechanisms involved. One candidate approach that
has embraced this exploratory framework was recently presented
by Kragel et al. (2021). In this approach, a low-dimensional set of
emotion identities (anger, contentment, fear, happiness, sadness,
surprise, and neutral) were neurally decoded from each timepoint
of the subjects’ rs-fMRI data and then subjected to dynamic
analysis according to a Markov process, yielding the underlying
probabilities of transitioning between each emotional identity.
While this approach shed light on the critical link between
emotion transition dynamics and psychopathology, it was limited
by its inability to elucidate the neural mechanisms underlying the
transition function.

In seeking a uniquely innovative approach to rs-fMRI
dynamic analysis, this study explored the continuous
dimensional space of affective valence and arousal rather than the
discrete space of basic emotions. We applied previously reported,
psychophysiologically validated neural decoding models of
affective valence and arousal processing to characterize the
affective experiences evolving within the untasked brain during
rs-fMRI acquisition (Bush et al., 2018c). Next, we calculated
the first and second temporal derivatives of the respective
valence and arousal time-series and subsequently fit additional
decoding models to these data. These decodings represent
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neurally constrained ordinary differential equations (ODE)
underlying affect processing dynamics. The goal of this work
was to test the validity of these ODEs in describing resting state
affect processing dynamics and elucidate the functional neural
correlates driving this dynamical system.

METHODS

Analysis Overview
The data for this analysis were drawn from two existing
studies, the Intrinsic Neuromodulation of Core Affect (INCA)
experiment and the Cognitive Control Theoretic Mechanisms
of Real-time fMRI-Guided Neuromodulation (CTM) experiment
(National Science Foundation, BCS-1735820). Both studies
shared identical MRI acquisitions up to and including the
resting state task data analyzed herein. In brief, the INCA
and CTM studies were conducted across two sessions, each
occurring on separate days. Within Session 1, participants
were consented, screened for clinically relevant exclusionary
criteria, and behaviorally assessed. Within Session 2, participants
underwent a T1-weighted structural acquisition, two affect
induction fMRI task acquisitions, and a resting state fMRI
task acquisition, as well as two additional real-time fMRI task
acquisitions, which are not part of this analysis. We have
reported the details of this combined dataset and our analysis
methods previously (Bush et al., 2020). For clarity of this current
analysis, we explicitly report salient details of our participant
sample as well as our neuroimaging acquisition and data
processing pipelines.

Participants
The combined participant sample (n = 97) of the CTM and
INCA studies was the maximum number of healthy control
subjects available with the affect induction and resting state
fMRI acquisitions necessary to conduct the analysis. From this
sample, we excluded three participants (one INCA participant
was incorrectly included despite meeting exclusion criteria and
two CTM participants failed to complete the resting state scan
due to early exit from the scanner). Thus, the final combined
dataset of these studies (n =94; nCTM = 75 and nINCA = 19) was
comprised of participants exhibiting the following demographic
characteristics: age [mean(s.d.)]: 36.6(13.8), range 18–64; sex:
61(65%) female, race/ethnicity: 80(85.1%) self-reporting as
White or Caucasian, 11(11.7%) as Black or African-American,
1(1.1%) as Asian, and 2 (2.1%) reporting as more than
one race; education [mean(s.d.)]: 16.7(2.6) years, range 12–
23; WAIS-IV IQ [mean(s.d.)]: 105.8(14.0), range 74–145.
All participants were right-handed native-born United States
citizens, were medically healthy, and exhibited no current Axis
I psychopathology as assessed by the SCID-IV clinical interview
(American Psychiatric Association, 1994). Participants reported
no current use of psychotropic medication and produced a
negative urine screen for drugs of abuse (cocaine, amphetamines,
methamphetamines, marijuana, opiates, and benzodiazepines)
immediately prior to the MRI scan. Further, CTM participants
produced a negative urine screen prior to SCID-IV clinical
interview. When necessary, participants’ vision was corrected to

20/20 using an MRI compatible lens system (MediGogglesTM,
Oxfordshire, United Kingdom). Participants endorsing color
blindness were excluded.

Ethics Statement
All participants provided written informed consent after
receiving written and verbal descriptions of the study procedures,
risks, and benefits. All study procedures and data analysis were
performed with approval and oversight of the Institutional
Review Board at the University of Arkansas for Medical Sciences
(UAMS) in accordance with the Declaration of Helsinki and
relevant institutional guidelines and policies.

Task Design
The System Identification fMRI task acquisition consisted of
two 9.4min scans during which the participant was presented
with 120 images that were computationally sampled from
the International Affective Picture System (Lang et al., 2008)
(IAPS) in order to induce the maximum span of arousal-
valence experiences. Details of these task stimuli have been
extensively reported (Bush et al., 2018a,c; Wilson et al., 2020).
Image stimuli were presented according to two pseudo randomly
sequenced trial types: implicit affect induction (90 images)
and cued-recall/re-experiencing (Bush et al., 2020) (30 images).
This analysis was informed by fMRI data acquired during
implicit affect induction trials, which are characterized by a 2 s
presentation of the image stimulus followed by an intertrial
interval uniformly randomly sampled from the range 2–6 s
during which a white fixation cross was presented on a black
background. The Resting State task acquisition consisted of one
7.5min resting state fMRI scan in which a white fixation cross
was displayed on a black background throughout. During pre-
acquisition training for this task, participants were instructed to
“let your mind wander, not focusing on any specific thought”
and to “try to keep your head still and your eyes open” but to
“blink naturally.”

MR Image Acquisition and Preprocessing
All imaging data were acquired using the same Philips 3T
Achieva X-series MRI scanner (Philips Healthcare, Eindhoven,
The Netherlands) with a 32-channel head coil. Anatomic images
were acquired using an MPRAGE sequence (matrix = 256 ×

256, 220 sagittal slices, TR/TE/FA = 8.0844 ms/3.7010 ms/8◦,
final resolution = 0.94 × 0.94 × 1 mm3). Functional images
were acquired using the following EPI sequence parameters:
TR/TE/FA = 2,000 ms/30 ms/90◦, FOV = 240 × 240mm,
matrix = 80 × 80, 37 oblique slices, ascending sequential
slice acquisition, slice thickness = 2.5mm with 0.5mm gap,
final resolution 3.0 x 3.0 x 3.0 mm3. All MRI preprocessing
and neuroimage manipulations were performed using AFNI
(Cox, 1996) (Version AFNI_19.1.04) unless otherwise noted.
Anatomical data were processed via the following sequence of
steps: skull stripping, spatial normalization to the MNI152 brain
atlas, and segmentation (via FSL; Jenkinson et al., 2012) into
white matter (WM), gray matter (GM), and cerebrospinal fluid
(CSF). A group-level GM mask was constructed from individual
participant GM segmentations that included voxels identified
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as GM for ≥ 50% of individuals. Functional neuroimages
were processed according to the following sequence of steps:
despiking, slice-time correction, deobliquing, motion correction,
transformation to the spatially normalized anatomic image,
regression of the mean time courses and temporal derivatives of
the WM and CSF masks as well as a 24-parameter motion model
(Power et al., 2012, 2015), spatial smoothing (8mm FWHM
Gaussian kernel), and scaling to percent signal change. The global
mean signal was subtracted from resting state functional images
prior to smoothing and scaling.

Computational Modeling
Constructing and Validating Decoding Models of

Affect Processing
Following methodology that has been extensively reported (Bush
et al., 2018b,c; Wilson et al., 2020), within-subject neural
decoding models of affect processing were constructed for
each participant as follows. For each implicit affect induction
trial, affect processing brain states were extracted from the
fMRI BOLD signal via the beta-series method (Rissman et al.,
2004) using the AFNI 3dDeconvolve function’s individual
modulation configuration followed by regression via the AFNI
3dLSS function. In essence, the beta-series method permits the
generation of a general linear model consisting of individual
hemodynamic response function regressors for each task-related
trial. This preserves individual trial variance when compared to
conventional methods that average the beta coefficients fit to
each trial. The extracted brain states were then paired with the
IAPS normative scores associated with the individual stimuli
and binarized to affective class labels {+1,-1}, respectively, for
the valence and arousal dimensions of affect, according to the
middle Likert score (5 on a 9-point scale). These brain states
and class labels were then used as feature-label pairs to train
linear support vector machine classifiers of affect processing
using Matlab’s fitcsvm function with default hyperparameters
(i.e., solution via the Iterative Single Data Algorithm (Kecman
et al., 2005), penalty = 1 for all misclassifications, and solution
tolerance = 0.001). Each within-subject model’s classification
accuracy was measured according to a leave-one-out cross
validation scheme in which, upon removal of each hold-
out feature-label pair, the remaining feature-label pairs were
randomly sampled (30 times) to insure that the null classification
probability remained 50%, respectively, for both valence and
arousal (see prior work; Bush et al., 2018c).

Decoding of Resting State Affect Processing
Following previously reported and psychophysiologically
validated methodology (Bush et al., 2018c), within-subject
neural decoding models of affect processing were applied
to decode the moment-to-moment affect processing taking
place during resting state task fMRI acquisition. The focus
here on resting state affect processing dynamics, rather than
task-related affect processing dynamics, controls for potential
ruleset maintenance and goal representation cognitive processes
that would be entrained by task-related fMRI analysis. At present
there is not a clean method for disambiguating lower-level affect
processing dynamics from these higher-level cognitions. To

FIGURE 1 | Resting state neural decodings of affect processing. This figure

depicts an example neural decoding of affect processing for a participant

involved in this study. Bold lines depict out-of-sample ensemble-average

predicted hyperplane distances of the presented participant’s affect

processing during resting state fMRI acquisition (225 volumes total). Thin lines

represent the 95% confidence intervals of the distribution of mean. The plot

excludes decodings from the first 5 and final 10 volumes of resting-state

acquisition, which are discarded during the decoding process (see Methods).

For visualization purposes, the plot also excludes decodings for resting state

fMRI volumes 96 through 180.

summarize this approach, each hold-out participant’s resting
state acquisition is assumed to contain theoretical “self-task”
stimuli (timepoints uniformly randomly sampled from the range
of EPI volume acquisition times). These self-task stimuli are
repeatedly sampled, transformed to brain states via the beta-
series method, and decoded according to the ensemble average
hyperplane distance (Dietterich, 2000) predicted by the linear
SVM classifiers fit to the set of training participants (i.e., all other
participants in the dataset). Repeatedly decoding these random
self-task stimuli and grouping the decodings by EPI volume
acquisition time yields resting state decoding estimates that
converge to a stable temporal distribution of affect processing,
respectively, for valence and arousal (see Figure 1). Each
participant’s resting state acquisition was assumed to contain
100 self-task stimuli which were randomly sampled 30 times
to construct the decoding estimate. Significant outliers were
replaced with undefined (i.e., NaN) values considering a nominal
probability threshold of 0.05 and median/median absolute
deviation (MAD) statistics using published methodology (Cox,
2002).

Estimating and Decoding Affect Processing

Dynamics
Time-derivatives of the mean decoded affective arousal and
valence were estimated according to a center divided difference
method, which is known to have superior error profiles to
single differencing methods (Thomas, 1995). Thus, numerical
approximations of the first derivative and second derivative are
provided by Equations 1 and 2 where x denotes the decoded affect
property, xǫ{v,a}, such that:

dx

dt
=

xt+1 − xt−1

2
, and (1)

d2x

dt2
=

dx
dt t+1

−
dx
dt t−1

2
. (2)
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The time-derivatives were calculated from the outlier corrected
valence and arousal predictions. Within-subject linear SVM
neural decoding models of these derivatives were then
constructed, using identical LOOCV validation methodology
as was performed for the affect processing decoding models.
Here, however, the decodings are linear Matlab SVM regression
models trained directly on the derivatives (via the fitrsvm
function with default hyperparameters). Only non-NaN target
data were utilized for model fitting, but no additional constraints
were placed on the distribution of values used for training the
decoding models.

Simulating Resting State Affect Processing
Numerical simulation of resting state affect processing was
performed according to Equations (3, 4). For each volume
of resting state fMRI BOLD data, the simulation state, s,
was initialized according to the decoded valence and arousal
properties of the brain state such that s = [v,a]. The first
and second time-derivatives of this volume were also decoded
and numerical integration proceeded according to the forward
differencing method (Thomas, 1995) such that:

xt+1 = xt +
dx

dt
, and (3)

dx

dt t+1
=

dx

dt t
+

d2x

dt2
. (4)

Additional numerical integration steps proceeded via closed-
loop (i.e., the current x and dx/dt were generated via numerical
integration rather than substituting the decodings for those
quantities at the current time-step). The simulation was
conducted over all sequences for which numerical values of
state and dynamics were present (i.e. not NaN) with no
additional constraints.

Transforming Decoding Models to Neuroanatomical

Encodings
To visualize the neural correlates of affect processing dynamics,
a previously reported encoding transformation of our decoding
models (Bush et al., 2018a) was used. The Haufe-transform
(Haufe et al., 2014) was applied to each participant’s decoding
hyperplane. A map of group-level mean encoding values was
then assembled for each gray matter voxel. Separately, 500
mean encoding permutations were generated by applying the
Haufe-transform to the classification hyperplanes fit to each
participant’s true beta-series and randomly permuted sets of the
true affective labels. Those voxels exhibiting extreme group-level
mean encoding values in comparison to the observed group-
level mean permutation encoding values (2-sided test, p < 0.05)
were kept for visualization. This encoding process was performed
separately for each dimension of affect processing (valence and
arousal) and both the first and second derivatives as well as the
base brain states (see Supplementary Figure 1). Only non-NaN
target data were utilized for permutation model fittings.

RESULTS

Decoding Models of Resting State Affect
Processing Dynamics
We validated, using general linear mixed-effects models
(GLMM), the neural decoding models of rs-fMRI temporal
derivatives, depicted in Figure 2. Data is representative of n= 92
subjects whose rs-fMRI data survived motion thresholding.
For all models, the measure-of-interest was the true derivative
(numerically computed from the decoded rs-fMRI data), and
the main fixed effect was the neurally decoded derivative.
Random slope and intercept effects were modeled subject-wise.
We demonstrated significant group-level evidence for neural
decoding of affect processing dynamics. Specifically, for the
first temporal derivative models, true normative valence scores
were significantly predicted (fixed effect: β = 0.29, 95% CI [0.25,
0.33], p < 0.001, t-test, h0: β = 0) with effect size R2

adj
= 0.24,

and true normative arousal scores were significantly predicted
(fixed effect: β = 0.26, 95% CI [0.22, 0.29], p < 0.001, t-test, h0:
β = 0) with effect size R2

adj
= 0.23. There were n = 90 (97.8%)

and n = 91 (98.9%) subjects respectively that demonstrated
within-subject significant effects (p < 0.05, t-test, h0: β = 0).
For the second temporal derivative models, true normative
valence scores were significantly predicted (fixed effect: β = 0.21,
95% CI [0.18, 0.24], p < 0.001, t-test, h0: β = 0) with effect
size R2

adj
= 0.16, and true normative arousal scores were also

significantly predicted (fixed effect: β = 0.20, 95% CI [0.17, 0.24],
p < 0.001, t-test, h0: β = 0) with effect size R2

adj
= 0.16. There

were n = 88 (95.7%) and n = 87 (94.6%) subjects, respectively,
that demonstrated within-subject significant effects (p < 0.05,
t-test, h0: β = 0).

Simulation of Resting State Affect
Processing Dynamics
Neurally decoded valence and arousal processing temporal
derivatives were successfully used to simulate affect processing
trajectories according to closed-loop numerical integration.
Numerical integration of the true temporal sequence of neurally
decoded derivatives for each participant demonstrated that
these decodings exhibit significantly less (p < 0.05, t-test, h0:
µ1-µ2 = 0) group-level simulation error than integration of
decoded derivatives sampled uniformly randomly from the same
sequence, depicted in Figure 3. These errors were averaged
over 30 iterations of the simulation. Moreover, simulations of
valence and arousal processing were significant for up to four
steps of closed-loop simulation (1t = 2.0 s) for both valence
and arousal, respectively. As an additional validation of these
simulations, we modeled within-subject root mean squared error
(RMSE) of the closed-loop first derivatives as a function of
the number of simulation steps (from 1 to 6 steps) according
to iteratively reweighted least-squares regression (Holland and
Welsch, 1977). We then calculated the group-level mean RMSE
of these growth models, which we found to be 0.37 Likert-scale
units per simulation step (95% CI [0.35–0.40], p < 0.001, t-test,
h0: β = 0) for valence and 0.37 Likert-scale units per simulation
step (95% CI [0.35–0.39], p < 0.001, t-test, h0: β = 0) for arousal.
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FIGURE 2 | Affective dynamics decoding model validation. GLMM of the first

and second temporal derivative within-subject rs-fMRI valence and arousal

predictions made from rs-fMRI patterns of neural activation. Circle markers

represent individual predictions. Red lines depict group-level prediction effects.

Dark gray lines indicate significant subjects’ effects. Light gray lines indicate

nonsignificant subjects’ effects.

FIGURE 3 | Simulation of affect processing trajectories. Neurally decoded first

and second temporal derivatives of valence and arousal were used to simulate

processing trajectories according to closed-loop integration. We compared

the difference between the average errors—with respect to the true

trajectories—of simulated (Sim) trajectories vs. surrogate (Surr) trajectories

formed using uniformly randomly sampled derivatives drawn from the overall

distribution of observed derivatives. The relatively thinner red lines indicate the

upper and lower limits of the 95% confidence interval of the distribution of

simulation errors. The thick middle red line is indicative of the mean simulation

error. The light gray lines depict the individual simulation error trajectories.

Neural Encodings of Resting State Affect
Processing Dynamics
We then applied the Haufe-transform (Haufe et al., 2014) to
form neural encoding representations of the neural decoding
models by which we simulated affect processing. The resultant
group-level encodings for both first and second derivatives,
respectively, of the processing of affective valence and arousal are
presented in Figure 4. Due to the profuse activations throughout

FIGURE 4 | Neurocircuitry of affect processing dynamics. Group-level neural

encodings of the first and second temporal derivatives of resting state valence

and arousal processing. T-scores are presented only for those voxels in which

encoding parameters survived global permutation testing (p < 0.05, N = 500

random permutations) as well as cluster-size thresholding ≥20 voxels

(measured as face-wise nearest neighbors). Slices are presented in MNI

coordinate space and neurological convention (image left equals participant

left). Voxel intensities are depicted as colors having a maximum absolute

intensity of |t| = 6.0, i.e., color saturates for absolute t-scores above the

maximum intensity.

the brain across the encoding, we summarize key observations
here and refer those interested in detailed analysis to the
raw encoding maps, which are publicly available (see Data
Availability Statement).

Affective Arousal Processing Dynamics
The processing of affective arousal dynamics is distributed across
broad networks of regions that exhibit both shared and distinct
dynamic roles. The first temporal derivative of arousal processing
is positively encoded by a network comprising the anterior
cingulate cortex (aCC), bi-lateral insula, bilateral lingual gyrus,
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right superior occipital gyrus, left precuneus, and left superior
frontal gyrus as well as a smaller right-lateralized network
comprising negative encodings of the middle frontal gyrus,
superior parietal lobule, and middle orbital gyrus.

The second temporal derivative of arousal processing is highly
lateralized by positive vs. negative encoding. Positive encoding
derives from a left-lateralized network composed of the ventral
lateral prefrontal cortex (vlPFC), middle frontal gyrus, inferior
frontal gyrus, and angular gyrus as well as the supplementary
motor area and bi-lateral somatosensory cortex. Negative
encodings derive from a right-lateralized network composed of
dorsolateral prefrontal cortex (dlPFC), vlPFC, and the aCC and a
bi-lateral posterior middle temporal gyrus (pmTG).

Affective Valence Processing Dynamics
Similar to that of arousal, the processing of affective valence
dynamics is widely distributed throughout the brain. The first
temporal derivative of valence processing is positively encoded
by a network comprising the left superior temporal gyrus and
left medial temporal pole as well as right posterior middle
temporal gyrus and right inferior parietal lobule (IPL); it is
negative encoded by the superior medial gyrus, bi-lateral inferior
frontal gyrus, left middle frontal gyrus, bi-lateral putamen, right
precentral gyrus, and precuneus.

The second temporal derivative of valence processing is
represented by an extensively distributed network comprising
positive encodings in the right dlPFC, bi-lateral putamen, left
amygdala, left superior temporal gyrus, right somatosensory
cortex, and bi-lateral pmTG as well as negative encodings
in bi-lateral middle frontal gyrus, posterior cingulate cortex,
precuneus, bi-lateral IPL, and the primary visual cortex.

DISCUSSION

In this study, we applied neural decoding models of affect
processing in order to characterize low-dimensional (valence
and arousal) moment-to-moment affect processing dynamics
(operationalized as temporal derivatives) that arise within the
untasked human brain. We then constructed and validated
neural decoding models of these derivatives, thus defining the
neurally constrained ordinary differential equations (ODEs)
that drive resting state affect processing dynamics. From
these models, we made two important contributions to
the affective neuroscience and neuroimaging literature. First,
we demonstrated that the neurally-derived ODEs accurately
simulated low-dimensional affect processing dynamics, thereby
computationally validating our proposed novel framework for
analyzing the dynamics of resting state fMRI data. Critically,
our proposed approach used out-of-sample ensemble averaging
to decode affect processing in hold-out subjects. Thus, our
approach can potentially be scaled to resting state fMRI
datasets for which no affect induction task-related fMRI data
is available, and, therefore, no neural decoding models of
affect processing could be constructed. Second, our approach
allowed for the neurally-derived ODEs to be transformed to
encoding models such that the neural correlates of affect
processing dynamics could be identified. To our knowledge,

this is the first time the neurocircuits driving these dynamics
have been observed. Overall, we found that affect processing
dynamics are driven by widely distributed networks that
differ between the valence and arousal dimensions of affect
processing. We also found that several regions perform
encoding roles across affective properties as well as orders of
temporal dynamics.

Overall, the identified encoding regions of affect processing
dynamics overlap with well-established regions associated with
the encoding of task-related affective reactivity and regulation,
which include the sensory motor area (SMA), pre-SMA,
dACC, dlPFC, vlPFC, amygdala, insula, and ventral medial
PFC (Lindquist et al., 2012; Etkin et al., 2015). Our work
adds additional context to these findings, providing a map
of how activation in these regions may signal moment-to-
moment changes in overall affective experience. Perhaps more
intriguing is that we found the second derivative of affect
processing dynamics to be more robustly encoded than the
first derivative. Specifically, there is a greater total number of
significant voxels present in the group-level neural encoding
representations of the second derivative as visually depicted in
both Figure 4 and the raw encoding maps. This finding was
true across the independent dimensions of affective valence and
arousal. At present, we hypothesize that this finding suggests
one of two possibilities. First, this difference may suggest that
one or more regions may encode both positive and negative
instantaneous change. As specified, our decoding approach
would not detect regions performing this processing role. Second,
instantaneous affect processing change (first derivative) may
require relatively less information processing relative to the
second derivative. For example, second derivative dynamics are
more indicative of regulation processes rather than a measure
of system state, which may draw upon multiple levels of
cognition such as goal formation, rule-set maintenance, and
planning. Additional experimentation may be necessary to
disambiguate the potential presence of these complex cognitions
from the overall encoding of the second derivative that we
depict here.

Limitations
As with all machine learning studies, our decoding model
predictions (on which we built the primary findings of this
work) relied extensively on the quality of the fMRI-derived
features and their labels. We have previously reported on the
limitations of exploiting IAPS normative scores as affective
labels for training predictive models (Bush et al., 2018a,b;
Wilson et al., 2020). We have also previously reported on
the limitations of neural decoding of affect processing in
populations, such as the one reported here, which diverge
from the population on which the IAPS images’ normative
scores were collected (Wilson et al., 2020). Both age (Mather
and Knight, 2005; Grühn and Scheibe, 2008; Charles and
Piazza, 2009) and sex (Sabatinelli et al., 2004; McRae et al.,
2008; Domes et al., 2009) are known to impact participants’
affective experiences, which may bias the underlying decoding
models, and, therefore, alter our group-level encodings of
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affect processing dynamics, which are derived from these
base measures.

Broader Contributions
The analysis framework proposed in this work is a specific
case of a more general neuroimaging framework that could be
extended to explore the dynamics of other cognitive processes
beyond that of affect. This framework proposes the use of
neural decoding models, trained out-of-sample, to project
resting state fMRI data into low-dimensional, cognition-specific
state spaces within which neural decoding models of process
dynamics may be constructed, validated (via simulation), and
subsequently encoded in order to elucidate the underlying neural
mechanisms. This framework may also, given representative sets
of neural decoding models, provide a way of understanding
group-level differences in cognitive processing dynamics, e.g.,
healthy vs. psychopathological populations, and may lead to
novel biomarkers for characterizing psychopathologies. The
framework could also be extended to pediatric populations if
the challenge of significant motion artifact in these populations
is overcome to therefore permit the building of high-quality
decoding models. We recognize the potential impact of this work
in applications to the large-scale ABCD study dataset (Casey
et al., 2018).
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