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Neural activity can be readily and non-invasively recorded from the scalp using

electromagnetic and optical signals, but unfortunately all scalp-based techniques have

depth-dependent sensitivities. We hypothesize, though, that the cortex’s connectivity

with the rest of the brain could serve to construct proxy signals of deeper brain activity.

For example, functional magnetic resonance imaging (fMRI)-derived models that link

surface connectivity to deeper regions could subsequently extend the depth capabilities

of other modalities. Thus, as a first step toward this goal, this study examines whether

or not surface-limited support vector regression of resting-state fMRI can indeed track

deeper regions and distributed networks in independent data. Our results demonstrate

that depth-limited fMRI signals can in fact be calibrated to report ongoing activity of

deeper brain structures. Although much future work remains to be done, the present

study suggests that scalp recordings have the potential to ultimately overcome their

intrinsic physical limitations by utilizing the multivariate information exchanged between

the surface and the rest of the brain.

Keywords: support vector machine, resting state connectivity, functional magnetic resonance imaging,

multimodal, cerebral cortex

1. INTRODUCTION

Every neuroimaging method has intrinsic physical limitations. But even once the technology is
sufficiently advanced to harness the theoretical physical capabilities of a given approach, there
is often room for sometimes astounding additional methodological and algorithmic innovation.
As an example, today’s functional magnetic resonance imaging (fMRI) has benefited from major
transformations that surpassed the perceived physical limits in terms of both resolution and
acquisition speed. Specifically, MRI exceeds the diffraction limits of 43 MHz/T resolution (an
approximate field-dependent wavelength of 2 m·T) by multiple orders of magnitude thanks to the
insights of Paul Lauterbur that magnetic field gradients can be used to spatially encode the NMR
signal and, in addition, that algorithmic approaches can be used to reconstruct images from such
data (Lauterbur, 1973). The use of magnetic gradients, though, makesMRI slow. Nonetheless major
speed gains have been realized over the years by repeatedly looking beyond the physical limits of the
current conventions. Echoplanar imaging (Mansfield, 1977), in-plane parallel imaging (Sodickson
and Manning, 1997; Pruessmann et al., 1999; Griswold et al., 2002), and simultaneous multi-slice
acquisitions (Larkman et al., 2001; Nunes et al., 2006; Feinberg et al., 2010; Moeller et al., 2010) have
all culminated to exceed previous “speed limits” by orders of magnitude and to enable sub-second
sampling rates.
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Although fMRI is a unique and particularly successful
example, one general approach for circumventing physical
limitations has been to look to multimodal imaging to merge
two or more techniques with complementary capabilities.
In human studies, common modalities for functional
measurements include magnetoencephalography (MEG),
electroencephalography (EEG), positron emission tomography
(PET), functional near-infrared spectroscopy (fNIRS), and
fMRI. Multimodal examples include combining structural and
functional imaging (e.g., using anatomical MRI to constrain
source localization in EEG Pascual-Marqui, 1999; Fiederer
et al., 2016), as well as combining shared primary physiological
measures (e.g., obtaining both spatial and temporal resolution
from fMRI and EEG or MEG (Menon et al., 1997; Dale et al.,
2000). The most common motivation for employing multimodal
techniques is to simultaneously capture the highest possible level
of both temporal and spatial resolution (Meyer-Lindenberg,
2010). Depth of measurement, however, is a related physical
limitation of scalp-based modalities that has been largely
overlooked in the multimodal literature.

To simulate approaches to bypass physical limitations in
measurement depth, we used resting-state fMRI data to examine
whether surface activity could serve as a proxy for deeper
brain signals. The crux of this idea is the hypothesis that
the multivariate connectivity of the brain “transmits” enough
information to the surface of cortex to enable decoding of
target signals from interior regions and networks. This study
tests that basic premise by examining whether whole-brain
measurements could be used to calibrate surface-restricted ones.
The general concept of training a surface-limited model to
track a deeper target signal is illustrated in Figure 1. Namely, a
training step produces a model comprised of multivariate weight
vectors that can subsequently track the target signal using only
recordings from the surface. Arguably, this fMRI-based initial
demonstration of feasibility would be most easily translatable to
a hemodynamic measure, like fNIRS. Nevertheless, future studies
will be needed to evaluate strategies for fMRI to calibrate surface

FIGURE 1 | Illustration of the surface decoding approach. Left: At each point in time, voxels from the surface of the brain (yellow) are extracted. Their intensities

comprise the training features, Extrain(t). In addition, training labels, ytrain(t), are extracted from the average of voxels in a network or region of interest (green). (Not

illustrated: Induction is used to train a regression model, Ew, that relates Extrain(t) to ytrain(t)). Right: In a new dataset, Extest (t) and ytest (t) are extracted. Combining each

testing vector with the regression weights Ew yields the predicted testing label ŷtest (brown). In this study, the correlation between the predictions, ŷtest (t), and the true

values, ytest (t), is defined as the prediction accuracy.

modalities like EEG, fNIRS, and MEG. To fully implement a
multimodal strategy around this idea will ultimately require
multiple steps. Perhaps the most challenging of which would be
to evaluate forward and reverse transfer functions between fMRI
and the other modalities (e.g., EEG’s correspondence between
hemodynamic responses; Sato et al., 2010).

Currently, it is not known if even surface fMRI signals
can reconstruct deeper fMRI signals. Thus, this study aimed

to demonstrate that such an approach can accurately track

such localized and distributed signals. Our primary question
was “Can we use the surface of the brain to track distributed

networks and anatomical regions?” This was examined through
cross-validation on a thirteen-participant data set under two
conditions i) a fixed-depth surface mask, and ii) a sparse,
low resolution mask of strategic surface locations that was
specific for each of the 16 target signals. The sparse masks
were generated with independent data from 99 participants,
which additionally enabled us to explore our secondary question
“Can we map the surface connectivity that enables decoding?”
Finally, we examined the reproducibility of our results by
repeating our cross-validation estimates in 83 participants from
an archival data set (openneuro.org; Power et al., 2017). Together,
our findings suggest that surface techniques could enjoy a
fundamental advancement by overcoming their intrinsic physical
limitations through the use of machine learning models that
capture whole brain functional connectivity.

2. MATERIALS AND METHODS

Participants and Data Collection
A group of 13 participants (eight females, mean age 26 years) was
used to estimate cross-validated prediction accuracies. A second,
larger group of 99 participants (48 females; mean age 25 years)
was formed from six ongoing protocols in the lab and used to
construct group-level support vector regression (SVR) maps and
volumetrically-subdivided feature masks. All participants gave

Frontiers in Neuroimaging | www.frontiersin.org 2 March 2022 | Volume 1 | Article 815778

https://openneuro.org
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroimaging#articles


Tenzer et al. Decoding the Brain’s Surface

informed consent, and the study was done in accordance with
the Institutional Review Board of Virginia Tech.

Structural and functional brain data were acquired on
a 3 Tesla whole-body scanner (Siemens Trio). A three-
dimensional magnetization prepared rapid acquisition gradient
echo (MPRAGE) pulse sequence (Mugler and Brookeman, 1990)
was used to collect T1-weighted anatomical volumes (resolution
= 1×1×1 mm3; TR = 2,600 ms; TE = 3.02 ms; TI = 900 ms, FOV
= 256 mm2; FA = 8◦). Echo planar imaging (EPI) was used to
acquire resting-state data. For the 13-participant data set, two 6
min runs were acquired (33 interleaved axial slices; resolution
= 3.4×3.4×3.6 mm3; TR = 2,000 ms; TE = 30 ms; FOV = 220
mm2; FA = 90◦). For the 99 participants, only one resting state
run was used per participant and there was minor variability
across acquisition protocols with slice thickness, number of
slices, TR, and scan duration ranging between 3.6 and 4 mm,
29 and 33 interleaved axial slices, 1,750 and 2,000 ms, and 6–
10 min., respectively. Specifically: n = 56, slice thickness = 3.6
mm, 33 slices, TR = 2,000 ms, duration = 6.1 min; n = 36,
slice thickness = 3.6 mm, 29 slices, TR = 1,850 ms, duration
= 10.0 min; n = 7, slice thickness = 4.0 mm, 33 slices, TR =
2,000 ms, duration = 6.0 min. The resting state instructions
were consistent throughout. Participants were instructed to keep
their eyes open during the scan and direct their gaze on a
white plus (+) sign centered on a black background. The verbal
instructions before the scan were, “Remember to keep your eyes
open and directed at the fixation symbol. Let your mind wander
freely. If you notice yourself focusing on any particular train
of thought, let your mind wander away from it.” Note that the
Supplementary Material characterizes the quality of these two
datasets. Supplementary Figures S1–S4 provide an overview of
motion in terms of both displacement and displacement change
for the N = 99 and N = 13 datasets.

Finally, while our findings were statistically robust, our 13-
subject cohort is admittedly small. To evaluate the reproducibility
of our findings we used 83 participants from an archival

dataset (openneuro.org; Power et al., 2017) that included two
resting-state runs per participant to replicate our cross-validated
prediction accuracy estimates. These data were acquired at 3T
(Siemens MAGNETOM Trio) with TR = 2,500 ms; TE = 27 ms;
voxels = 4 x 4 x 4 mm; 32 interleaved slices. Run lengths varied
from 130 to 133 volumes (mean: 132 volumes).

Surface Masks
As shown in Figure 1 the training features are depth-limited
signals. As such, this approach could be considered a surface-
based analysis. The goal however is not to use sophisticated
surface techniques such as those supported by FreeSurfer
(Fischl, 2012) to reconstruct the topology of the cortical
surface. Rather, the focus here for evaluating the potential
future application to scalp-based measurements simply requires
depth-limited masks of the brain’s folded surface to simulate
depth-attenuated measurements.

We used morphological image processing on binary whole-
brain masks to obtain surface cortical masks. These surface
masks excluded regions that would not be easily accessible to
surface-based measurements (e.g., the inferior surface of the
brain). The approach for deriving the surface masks is illustrated
in Figure 2. Surface masks were developed from whole-brain
binary masks that were zero-padded in the superior and inferior
planes (Mask A). For mask thicknessm, a “subsurface” mask was
generated by zeroing each voxel within m millimeters from the
surface boundary in any direction. That is, a new binary mask
was produced that excluded voxels outside the brain as well as
within m millimeters of the surface of the brain (see Mask B).
Next a brain surface mask was generated by including all voxels
within the whole-brainmask while excluding all voxels within the
subsurface mask (Mask A−Mask B).

Finally, to exclude surface regions that are not easily accessible
to surface-based methods (e.g., the cerebellum and the inferior
surface of the brain), the subsurface mask was repeatedly
translated in the inferior direction, and after the first shift, each

FIGURE 2 | Masking the surface. First, a whole-brain mask was generated (A). All voxels within mask thickness m of the surface were eliminated to generate (B),

containing the interior of the brain. A surface mask was then generated (A− B). To eliminate the inferior surface, (B) was repeatedly translated downward along the

z-axis. After the first shift, each subsequent translational iteration was added to the previous one, creating an extended inferior volume shown in (C). Finally, C was

used to exclude inferior regions in the final mask (A− B− C).
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subsequent translational iteration was added to the previous one,
creating an extended inferior volume (Mask C). This effectively
removed all voxels inferior to the cortex (Mask A − Mask B −

Mask C). Note that for this study, we fixed the surface mask
thickness, m, to 10 mm, which represents a conservative depth
that is applicable to both MEG and fNIRS to explore the utility of
surface-based tracking.

Preprocessing
We used tools from AFNI (Cox, 1996) and FSL (Smith et al.,
2004) to preprocess the imaging data. Specifically, FLIRT
(Jenkinson et al., 2002) and FNIRT were used to register
skull-stripped anatomical images to the MNI 152 space. Skull
stripping was performed in AFNI and visually inspected for
errors. We generated white matter and cerebrospinal fluid masks
using a probability ≥ 0.99 threshold to both corresponding
maps generated by the hidden Markov random field model
methods implemented in FAST (Zhang et al., 2001). Resting-
state data were slice-timing and motion corrected using the
3dTshift and 3dvolreg commands in AFNI, respectively. We
used the mean image from each run to derive a linear
transformation matrix to co-register each functional scan to that
participant’s corresponding anatomic image when using FLIRT.
Next, nuisance variable regression was performed by regressing
out white matter and cerebrospinal fluid time series, the six
motion parameters calculated during motion correction, and
a 4th order polynomial to account for baseline drifts (Friston
et al., 1996; Lund et al., 2006). The functional-to-anatomical
and anatomical-to-MNI152 transformations calculated for each
dataset were concatenated to construct a functional-to-MNI152
transform. This transform was applied to the functional images,
producing 4 mm isotropic data in MNI space. These images
were then smoothed using a 6mm2 full -width-at-half-maximum
(FWHM) Gaussian kernel.

Support Vector Regression
SVR models for the masked resting-state datasets were generated
using 3dsvm (LaConte et al., 2005), a wrapper of SVMlight

(Joachims, 1999) that is convenient for processing fMRI data.
Our general approach was to normalize each subject’s T1
anatomical volume to MNI space and extract a target time series
from either a network or anatomical region. The target time
series were generated from both resting state networks (RSNs)
and atlas-defined regions, and the features consisted of either
brain surface voxels or surface group map-based volumetric
subdivisions. For the RSNs, we used the top 10 components from
a 20-component ICA meta-analysis of resting state as well as
task data by Smith et al. (2009) and obtained the target time
series using spatial regression. The atlas-defined bilateral regions
were extracted from the Eickhoff et al. (2005) macro-label atlas
available in AFNI. We examined amygdala, anterior cingulate
cortex (ACC), caudate nucleus, insula, posterior cingulate cortex
(PCC), and putamen. The time series for the atlas-defined regions
were calculated by extracting the ROI time series data from MNI
space at 4 mm3 resolution and by averaging the time series data
within each ROI. The time series targets served as labels for the

surface features to generate SVR models using 3dsvm (Joachims,
1999; LaConte et al., 2005).

Estimating Prediction Accuracy
Using the 13-participant dataset, each participant’s two resting-
state runs alternately served as training and testing data to
produce a cross-validated (averaged) estimate of prediction
accuracy. We defined prediction accuracy as the Pearson’s
correlation coefficient r between predicted and observed target
time series. Appropriate SVR parameters were evaluated by
Craddock et al. (2013); based on our previous work, C was
set to 100 and ǫ was set to 0.1 with a linear kernel for
surface-masked data.

To test the statistical significance of the prediction accuracies,
we used a “wavestrapping” algorithm as outlined by previous
groups (Breakspear et al., 2004; Bullmore et al., 2004).
Specifically, a discrete wavelet decomposition of true target time
series was used to generate 26,000 surrogate time series, that in
turn were used to train SVR models and then predict the ‘true’
labels in the appropriate test data. The resulting set of SVR-based
correlations provided a null distribution to non-parametrically
estimate the p-value for each network and bilateral region. In
other words, the “true training label”-based model was applied
to the test data to produce a predicted time series of correlation
accuracy r. Then the significance of r was estimated by training
with the distribution of wavestrapped training labels to produce
a distribution of correlations with the (unaltered) test data labels.
Specifically the non-parametric p-value was approximated as the
proportion of trials in which the true target’s correlation exceeded
the distribution of surrogate correlations.

The PyWavelets Python module (Wasilewski, 2006) was used
to perform discrete wavelet decompositions on the target time
series using the 4th-order Daubechies wavelet. Four levels were
used, based on the equation

max_level =

⌊

log2
signal length

filter length− 1

⌋

, (1)

which ensures the signal is longer than the FIR filter length
of the wavelet. Here, the signal contained 182 measurements
and the decomposition filter length of the 4th-order Daubechies
wavelet is 8. The detail coefficients, but not the approximation
coefficients, at each level were randomly permuted. Then
the resulting surrogate target time series was reconstructed
with an inverse wavelet transform. As mentioned, the null
distribution was constructed by repeating this process for 26,000
permutations for every network and region (an average of 1,000
permutations per run for every network and region) using GNU
parallel (Tange, 2011). Finally, to evaluate the reproducibility of
these results, we also estimated r values using archival data from
83 participants (openneuro.org; Power et al., 2017).

Group Maps and Target-Specific Surface
Subdivisions
In the 99-participant data set, a single resting-state run was used
to generate surface SVR models. These results were subsequently
used as first-level data to generate group maps for every RSN and
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bilateral region. The significant clusters within these group maps
were then volumetrically subdivided to derive a sparse feature set
for each target RSN and region. Each group map was organized
into clusters of five or more nonzero voxels. Each voxel had to
be within one grid cell of its nonzero neighbor to be included in
the cluster. These clusters were recursively subdivided to ensure
that their total volumes would be less than or equal to a fixed
maximum volume, set to 40 voxels (2,560 mm3). To do this, the
two points within a cluster with the greatest distance between
them were found; these were used to derive a vector between
them, v, and a midpoint, x. These were used to construct a plane
normal to v and containing x, bisecting the cluster: v · x =

b. This procedure was used to generate two new clusters from
each existing cluster. This subdivision procedure was repeated
recursively through all clusters greater than 40 voxels in size. To
use the subdivided surface as features, the voxel values within
each subdivision were averaged. SVMlight was used directly and
because these models had far fewer features, C and ǫ were set to
the SVMlight defaults; C varied from model to model, whereas ǫ

remained at 0.1.

Summary of Methods
To summarize, we used 10 RSNs from Smith et al. (2009) as well
as six bilateral anatomical regions. SVR, restricted to a 10-mm-
thick surface of the brain, was used to model these 16 target
signals. Data from 13 participants who completed two resting-
state runs provided the ability to estimate prediction accuracy
using split-half resampling (training on one run and testing
on the other) (Strother et al., 2002). This was then replicated
with additional 83-participant archival data set. To generate
group maps of the surface, SVR training was performed on
an additional 99 independent participants who completed only
one resting-state run. For each target, the 99 SVR maps were
combined using a one-sample t-test. Finally, to examine the
impact of sparser and lower spatial resolution measures, these
maps were volumetrically subdivided to create feature sets to also
test with the 13- and 83-participant data sets.

3. RESULTS

Depth of Measurement
This study used a mask thickness of 10 mm throughout. To
characterize the impact of depth, however, Figure 3 shows the
13 participant SVR accuracies averaged across the 10 RSNs
and 6 regions for mask thicknesses over a range of 5 to
20 mm. As shown, prediction accuracy is stable and high
over this range, with no peak optimum or sign of asymptotic
plateau. We observed that accuracy increases monotonically,
with correlations increasing by approximately 0.005 per mm of
mask thickness (R2 = 0.953). Interestingly, participants tend to
rank by prediction accuracy. In other words, with only minor
exceptions, the relative performance of each participant was
consistent across all map thicknesses. Thus, some participants’
brain activity was consistently easier to predict than others. This
observation is examined further in our Supplemental Results
(Supplementary Figure S5).

Sparsity of Surface Features
To examine sparser and lower spatial resolution measures, we
volumetrically subdivided the SVR group maps for each of the
16 target signals. To do this, spatially distinct clusters were
recursively subdivided to produce volumes of 2,560 mm3 (40
voxels) or less. The end result produced subdivided surface
masks that were specific for each of the target signals. Figure 4
shows an example of the recursive volumetric subdivision for a
surface cluster spanning right inferior frontal, superior temporal,
and inferior parietal regions (from the insula target SVR group
map). The Supplementary Tables S1–S16 include the volume
and MNI coordinate for the centroid of each subdivision for
all 16 target signals. For comparison, the full 10 mm surface
models used approximately 8,000 voxels, and the subdivision
produced an approximately 30–800 fold reduction of features
(the number of subdivisions/reduced features were RSN1: 73,
RSN2: 104, RSN3: 159, RSN4: 175, RSN5: 22, RSN6: 178,
RSN7: 211, RSN8: 115, RSN9: 273, RSN10: 242, Amygdala:
10, ACC: 16, Caudate: 14, Insula: 50, PCC: 39, Putamen:

FIGURE 3 | Decoding is highly accurate across a practical range of surface-limited recording depths. Each line is a participant’s average across 16 target signals (10

RSNs and 6 anatomical regions). The bold line connected by points shows the average prediction accuracy across all 13 participants. The inset replicates the plot at a

magnified vertical scale to emphasize that prediction accuracy increases monotonically with mask thickness and to highlight the observation that, even within the tight

range of observed correlation values, participants are highly consistent in their performance ranking across the tested mask thicknesses.
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FIGURE 4 | Graphical depiction of the iterative surface volumetric subdivision. Group maps were generated for each RSN and anatomical target signal using the

99-participant SVR surface models. Each significant cluster was then volumetrically subdivided to generate sparse feature sets for each target. This example shows

the iterative steps used to subdivide cluster 1 in the insula target group map (see also Supplementary Table S14). The cluster spans frontal, postcentral, temporal,

and parietal regions. This particular cluster was subdivided in 5 iterations, reducing 489 voxels to 17 subdivisions. Colors distinguish individual subdivisions.

Subsequently, the signal average within each subdivision was used as a training/testing feature in the independent 13-participant data.

20). To test these subdivided features, training and test data
from the 13-participant set were extracted by averaging within
each member voxel of a given subdivision. This was then also
examined in the replication data set (openneuro.org; Power et al.,
2017).

Decoding Performance, Surface Weight
Vectors and Example Target Decoding
Our primary question was, “Can we use the surface of
the brain to track distributed networks and anatomical
regions?” The prediction accuracies and wavestrap significance
thresholds are shown in Figure 5, confirming that it is indeed
possible to track interior brain regions and distributed RSN
fluctuations using only surface measurements (see also
Supplementary Figures S6, S7 for wavestrap details). For
consistancy with our mapping results, Figure 5 uses MNI-
normalized data. As Supplementary Figure S8 shows, however,
the prediction accuracies are similar when calculated in in
each subject’s native (and unsmoothed) space. Moreover, these
results were remarkably reproducible in the 83 participants
(Supplementary Figure S9). Our secondary question was, “Can
we map the surface connectivity that enables decoding?” Group
maps of the 99 participants’ surface weight vectors are shown
for the RSN targets in Figure 6 and for the anatomical targets
in Figure 7. These maps represent functional connectivity
relationships between the surface and each predicted target
signal. Specifically, these maps show consistencies in the SVR-
derived multivariate combinations of surface time series that best
reconstructed the interior brain signal. The maps in Figures 6,
7 are fully described in Supplementary Tables S1–S16 and
available on neurovault.org (https://neurovault.org/collections/
QAGSDTLT/).

In addition, these figures show the best- and worst-
predicted run for the 13 participants, corresponding to the
full resolution surface (maroon bars) in Figure 5. Finally,
we examined the residuals of all predictions. Individual
examples are include in Figures 6, 7. On average, the residuals
appear to be normally distributed and absent of strong
correlations between the residuals vs. predicted values. See
Supplementary Figures S10, S11.

4. DISCUSSION

The surface of the brain is comprised of the neocortex, an
evolutionarily young, folded sheet of neurons that are the
substrate for highly refined sensory, motor, and cognitive
function. Its connectivity with itself and the rest of the brain is
critical for higher order function and may be one of the keys
to understanding neurodegeneration and psychiatric disorders.
Importantly, since the cortex forms the exterior of the brain,
all but its medial walls are accessible to a broad range of
physiological measures. Consequently, however, the surface
also physically obscures the deeper structures it surrounds to
depth-limited measures. We hypothesized, though, that machine
learning models of functional connectivity might enable the
surface of the brain to be used as a steerable array, tuned to report
activity of deeper regions and distributed networks. If this were
true, then potentially even surface-limited measurements could
be calibrated to report ongoing internal activity and to examine
the multivariate information exchange between the cortex and
the rest of the brain.

With this in mind, this study set out to evaluate whether
supervised regression models of functional connectivity could
harness multivariate signals from the surface of the brain to track
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FIGURE 5 | 10 mm depth-limited prediction accuracies for all target signals demonstrates the general feasibility of tracking activity using the brain’s surface. The full

voxel resolution results are shown in maroon and the volumetrically subdivided results are shown in orange. Error bars are plus-or-minus one standard deviation.

Non-parametric estimates of significance were generated from wavestrapped distributions and were corrected for multiple comparisons with respect to these 32

hypothesis tests. *** indicates corrected p < 0.001, ** indicates corrected p < 0.01, * indicates FDR-corrected p < 0.05, • indicates corrected p < 0.06. ACC

denotes anterior cingulate cortex. PCC denotes posterior cingulate cortex.

underlying regions and distributed networks. Taken together,
the results demonstrate that it is, indeed, possible to decode
the brain’s surface in such a manner. Thus, while physically
surrounding the rest of the brain, the cortex nonetheless remains
a window to the deeper activity it encases. These results reveal
that a substantial amount of information is shared between the
cortex and the rest of the brain through functional connectivity.
The fidelity of the decoding depends upon several factors
such as the depth of measurement, the specific target network
or region, the trade-off between utilizing the entire surface
vs. sparse, volumetrically-subdivided features, and the subject-
specific variability observed in Figure 3. Note also that Figures 6,
7 indicate subject-specific characteristics for the best and worst
predictions. Almost half of the worst performances (7 of 16)
come from 2 of the 26 runs: participant 2’s first run (ACC,
putamen, RSN3, RSN10) and participant 9’s s run (insula,
RSN5/cerebellum, RSN9). Participant 9 is interesting, however,
because while her/his second run represents three of the worst

performances, her/his first run represents three of the best
(caudate, RSN3, RSN8). Finally, although not shown here, we and
others have previously noted that the amount of training data (in
this case, the length of the fMRI runs) also plays an important
role in determining the prediction accuracy of classifiers and the
reliability of estimates (Kjems et al., 2002; LaConte et al., 2007;
Pereira et al., 2009).

The RSN accuracies were generally higher than those for the
bilateral anatomical regions included in this study. The results
corroborate that these networks can, indeed, be treated as a unit
and that the functional coherence that originally defined them
(Smith et al., 2009) is replicated here in a new cohort and in
a new analysis context. One important factor that also likely
contributed to the strong performance of the RSNs is that their
spatial extent partially comprises the surface, itself. Thus, there
is a redundancy between the RSN voxels averaged to define
the target signal and the surface features, vastly simplifying the
training complexity. The exception is the cerebellar network
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FIGURE 6 | Support vector regression group maps for the ten resting-state networks from Smith et al. (2009). Left panel: The resting-state network templates (with

RSN1 to RSN10 ordered from top to bottom, respectively). Center panel: Group maps from the 99-participant SVR models using the full-resolution (10 mm depth)

mask for each participant (FDR-corrected p < 0.05). Group maps for all network targets are fully described in Supplementary Tables S1–S10. Right panel: The least

and most accurate predictions for each target, respectively from the 13-participant data set. The actual target time series is black and the surface-limited prediction is

red. Residual time series (target - predicted) are shown on the same scale below in blue. Annotations indicate the participant number, resting-state run number and

correlation (r) between the target and predicted time series. For example, “Participant 1, run 2” indicates that a surface SVR model trained on that participant’s run 1

data was used to decode her/his run 2 target activity (red time series). See Figure 7 for corresponding results for the six bilateral anatomical targets.

(RSN5), which is also notable in that it demonstrated the largest
performance drop when going from the full surface model
to the volumetrically subdivided one. This suggests that the

99-subject group model does not generalize as well for RSN5
and that more extensive surface coverage aids in predicting
cerebellum when it is defined as a cohesive network. Future
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FIGURE 7 | Support vector regression for the six bilateral anatomical targets. Left panel: Bilateral anatomical target regions. Ordered from top to bottom are amygdala,

anterior cingulate, caudate, insula, posterior cingulate, and putamen. Center panel: Group maps from the 99-participant SVR models using the full-resolution (10 mm

depth) mask for each participant (FDR-corrected p < 0.05). Group maps for all anatomical targets are fully described in Supplementary Tables S11–S16. Right

panel: The least and most accurate predictions for each target, respectively from the 13-participant data set. The actual target time series is black and the

surface-limited prediction is red. Residual time series (target-predicted) are shown on the same scale below in blue. Annotations indicate the participant number,

resting-state run number and correlation (r) between the target and predicted time series. For example, “Participant 1, run 2” indicates that a surface SVR model

trained on that participant’s run 1 data was used to decode her/his run 2 target activity (red time series). See Figure 6 for corresponding RSN results.

studies are needed to further characterize functional connectivity
of the cortex with anatomical and functional sub-regions of
the cerebellum. Similar considerations are warranted for the six
bi-lateral anatomical regions. It is possible that their accuracy
might be improved by modeling smaller, unilateral subregions.
From a signal-to-noise point of view, it might be ideal to define
target signals by averaging across regions or networks that have
optimized the statistical trade-offs between maximizing spatial
extent and maximizing signal homogeneity (Shirer et al., 2012).
On the other hand, mixtures of signal sources may or may
not degrade accuracy, depending upon how well this mixture
can be modeled from the surface features. Thus from a more
nuanced view, both the bi-lateral anatomical regions and the
RSNs used in this study can be considered as networks. Further,
it is important to recall that fMRI voxels are several orders of
magnitude larger than their underlying cellular processes and
are thus fundamentally mixtures of signal sources. Related to
these issues, further improvements could possibly come from
adaptations of hyperalignment (Haxby et al., 2011; Feilong et al.,
2021), which could be used to account for individual variations
in coarse-grained patterns and to maximize the similarity within

ROIs and networks as well as with the brain’s surface. Overall,
we expect that tracking both smaller subdivisions as well as
extensive distributed networks will be important in future
research. Additional studies will be needed to comprehensively
test the factors that determine how well any given target signal
can be tracked from the surface. To summarize, all regions
and networks are a mixture of several sources and prediction
accuracy is a metric to evaluate how functionally connected to the
cortex the chosen target signal is. At present, the broad success
of all sixteen target signals and thus the conclusion that these
are all simultaneously represented at the level of surface cortex
is fascinating.

fMRI proved to be ideal for demonstrating the feasibility of
surface-based tracking. Because of its high resolution, it enabled
examination of the extremes of surface density measurements
to evaluate the theoretical impact of high and low numbers
of training features. And in the majority of cases, high
accuracy was maintained with a much smaller feature space.
In addition, validation is possible because the fMRI data are
whole-brain. The two runs in the 13-participant data set and
in the 83-participant replication set allowed us to estimate
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our primary measure, surface-based decoding accuracy, in a
cross-validation framework (alternating the role of training
and testing runs and averaging the two prediction accuracy
estimates). For today’s technology, the high accuracy reported
here likely serves as an optimistic upper bound on what
could be accomplished in an actual multimodal setting. As
pointed out by the reviewers of this work, spatial correlations,
head motion, global signal, and physiology are all sources of
noise that may need to be further investigated. Moreover, the
relative impact of each of these will almost certainly vary from
modality to modality, and thus may need different strategies.
One interesting possibility, however, is that variations on our
approach may lead to new ways to incorporate such nuisance
signals directly into the multi-modal modeling approach. As
shown in Supplementary Figures S10–S11, the residuals from
our surface models appear to be largely white noise—notably
unlike any of the confounding potential noise sources that
we have listed. Thus, in our case, the preprocessing that we
applied combined with the supervised learning process seemed
to effectively regress out these confounding signals. Another
point that should be elaborated upon is that the goal of our
study deviates from what some would consider usual notions of
data independence. For example, many of the RSNs extend to
the brain’s surface. Rather than excluding surface data features,
we actually want them to be incorporated into the training
stage. As shown in Figure 6 these surface portions of the
networks are highly likely to be important features in the
model. But what Figure 6 also shows is that the models do
not exclusively rely on such regions. Indeed if they did, that
would be a sign that just that region and not its network was
being disproportionately modeled. As Figure 6 shows, this is
not what is observed. Even RSNs 1–3, which are close to the
occipital pole, converge to highly distributed surface patterns.
Finally, along these lines, partial volume effects for fMRI data
could partially serve as an aid or confound for tracking regions
with surface measures. Analogous to partial volume concerns,
each surface modality has its own individual depth sensitivity
profile. Thus, while this study demonstrates the feasibility of
using surfacemodels to track deeper regions and networks, future
work will be needed to address specific concerns for adopting
this for actual surface recordings, and validation of such future
work will likely require simultaneous multimodal measurements.
Finally, while our stated goal was to demonstrate a simple
approach to surface modeling and specifically to preserve the
folded surface, it is possible that future improvements could
come from more sophisticated techniques. As the reviewers
have pointed out, with volume-based registration brain voxels
around the cortical surface can suffer from severe misalignment
issues. While a careful comparison would constitute a study of
its own, it is possible that surface-based registration may be a
necessary future step for future multi-modal implementations.
At this point, however, our intuition is that challenges with
surface probe/sensor placement will constitute a larger source of
future variance.

In a complementary way, the 99-participant data set provided
ample training data to examine commonalities of the SVR
models across individuals. As the maps show (center panels in

Figures 6, 7), this analysis approach has a secondary benefit as
a tool for studying functional connectivity with the cortex. And,
since the volumetrically-subdivided masks that these group maps
generated were independent from the 13- and 83-participant
sets, we also had the opportunity to go beyond mapping and
validate the predictive potential of these functional connectivity
findings. On the whole, the group maps representing the surface
models of the 6 anatomical regions and the 10 RSNs are highly
informative. Since the cortex’s functional connectivity is thought
to be one of the enabling properties of higher order function,
this methodological approach could provide a new avenue for
precisely exploring specific, restricted connectivity questions.

For example, the amygdala’s functional roles and its
connectivity with the brain’s surface are continually
being refined. The results in Figure 7 (see also
Supplementary Table S11) overlap with frontal and temporal
regions reported by Bickart et al. (2012, 2014), who explore
this region’s role as a critical hub of the social brain. This is
just one recent case illustrating how our understanding of the
function of the amygdala and its connectivity with the brain’s
surface continues to evolve. The first comprehensive description
of the cortical projections of the amygdala in primates was
reported by Amaral and Price (1984), who also described the
early history uncovering its cortical projections. As they note,
amygdalo-cortical connections were neither widely known nor
appreciated until the early 1960s. As the complexity of the
amygdala’s connectivity was gradually discovered, so too was the
recognition that its functional role was also likely to be highly
complex. Thus, while our driving question was “Can limited
surface models be used to track networks and deeper brain
regions?,” our approach also doubles as a mapping tool to explore
functional connectivity with the brain’s surface.

Our analysis treats the cortex as a tunable receiver array,
but this conceptual framework should not be taken literally,
and it is important to note that the direction of information
exchange between the surface and other brain regions cannot
be resolved with our approach. It is likely that these models
reflect both the cortex’s signals to and from other regions.
The ability to examine functional connectivity and to use this
property to track time series derives directly from previous
work on multivariate functional integration (Friston et al., 1993;
Friston, 1994; Chu et al., 2011; Craddock et al., 2013). This
approach has been applied to examine functional hierarchies
using both connectivity maps and prediction accuracy (Craddock
et al., 2013) through the “non-parametric prediction accuracy,
influence, and reproducibility resampling” (NPAIRS) framework
(Strother et al., 2002; LaConte et al., 2003). It is important
to note that our previous results (Craddock et al., 2013)
are not directly comparable to the those reported here. In
Craddock et al. (2013) we used parcellated features throughout
the entire brain, including subcortical areas, while this study
used features restricted to the most superficial surface of the
brain. So, for example, our full-resolution amygdala results
have an average prediction accuracy of r = 0.5 and our
sparse surface features give r = 0.41, while the subjects in
Craddock et al. (2013) average about r = 0.8. This reflects
expected decreases in accuracy because much of the amygdala’s
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functional connectivity is unavailable to the surface-restricted
models explored here.

Additional studies of functional integration include Hay et al.
(2017) who demonstrated that minimal sets of features could be
derived with recursive feature elimination and used to quantify
regional degree of functional integration. Further, multivariate
functional integration model weights have been demonstrated
as a means of connectotyping (or functionally fingerprinting)
individuals since they produce a personalized model-based
connectivity matrix (Miranda-Dominguez et al., 2014). In this
current study we have demonstrated the utility of restricting
the functional integration investigation through the use of
surface training features. Several additional variations of this
approach are possible to study the functional integration between
combinations of functional or anatomical nodes and networks
which would complement graph theoretic (Bullmore and Sporns,
2009) and dynamic causal modeling (Friston et al., 2003) studies.
Though not explored here, the utility of functional integration
may be enhanced by comparing and contrasting different loss
functions provided by alternative regression techniques such as
LASSO (Tibshirani, 1996) and elastic nets (Zou andHastie, 2005).

Restricting the training features to the surface of the brain
enabled us to computationally assess the feasibility of multimodal
enhancements to depth-limited measurements. Three major
factors interplay when considering the possibility of using surface
recordings to reconstruct deeper activity. The first (which was
the primary focus of this work) concerns algorithmic and data
properties, such as the density of measurements and their
distributed coverage. A common goal in machine learning is
to capture as much information as possible with the fewest
possible data features. For practical reasons, it is desirable to
assess the impact of sparse recordings as well as the impact on
depth of sensitivity. fMRI is well-suited to study these issues
since it provides whole brain coverage at a relatively high spatial
resolution, surpassing what is currently achievable in terms
of both density and depth of surface recordings. The second
factor is the structure of the cortex, itself. Although its flattened
dimension is approximately 2.5 mm thick on average, ranging
from 1 to 4.5 mm (Fischl and Dale, 2000), its folded sulcal
depths in humans have been reported to range from 1 to 3
cm (Ribas, 2010). Thus, the relative distance and orientation of
gray matter varies dramatically as a function of position along
the surface of the brain. Looking forward to future studies,
the third factor is that each surface measurement has unique
physical limitations. For example, MEG records magnetic fields
outside the head that are generated by neural currents. Its
sensitivity depends on both the depth and orientation of the
generating current sources (Goldenholz et al., 2009). In contrast,
functional near-infrared spectroscopy (fNIRS) uses two near-
infrared wavelengths to assess changes in blood oxygenation
arising from neural metabolic demands. Estimates of fNIRS
penetration depth varies in the literature, ranging from 12 to 21
mm into the brain (Okamoto et al., 2004; Schroeter et al., 2006;
Lu et al., 2010).

Moving beyond the feasibility of surface-limited tracking
demonstrated here, implementation could take several forms.
The basic notion is that a modality such as fMRI (that can
measure both target and surface training signals) be used to
calibrate a surface-limited modality such as fNIRS, MEG, or
EEG. Such a process would enable those modalities to track
activity that far surpasses their inherent physical capabilities.
Early empirical work suggests that this is possible in EEG, in
which amygdala activity can be tracked using an EEG finger-
print (Meir-Hasson et al., 2014) and in fNIRS, where similar
analyses confirmed the ability to track deep brain regions
in task-based fMRI (Liu et al., 2015). Thus, there is early
positive evidence suggesting that it is possible to dramatically
enhance surface limited methods well beyond their intrinsic
physical capabilities. In the meantime, we have additionally
shown that the brain has a rich surface connectivity that can be
mapped and has simultaneous predictive potential for decoding
a range of distributed networks as well as interior, localized
regions.
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