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Background: Internal carotid artery stenosis (ICAS) can cause stroke and

cognitive decline. Associated hemodynamic impairments, which are most

pronounced within individual watershed areas (iWSA) between vascular

territories, can be assessedwith hemodynamic-oxygenation-sensitive MRI and

may help to detect severely a�ected patients. We aimed to identify the most

sensitive parameters and volumes of interest (VOI) to predict high-grade ICAS

with random forestmachine learning.We hypothesized an increased predictive

ability considering iWSAs and a decreased cognitive performance in correctly

classified patients.

Materials and methods: Twenty-four patients with asymptomatic, unilateral,

high-grade carotid artery stenosis and 24 age-matched healthy controls

underwent MRI comprising pseudo-continuous arterial spin labeling (pCASL),

breath-holding functional MRI (BH-fMRI), dynamic susceptibility contrast

(DSC), T2 and T2∗ mapping, MPRAGE and FLAIR. Quantitative maps of eight

perfusion, oxygenation and microvascular parameters were obtained. Mean

values of respective parameters within and outside of iWSAs split into gray

(GM) and white matter (WM) were calculated for both hemispheres and for

interhemispheric di�erences resulting in 96 features. Random forest classifiers

were trained on whole GM/WM VOIs, VOIs considering iWSAs and with

additional feature selection, respectively.

Results: The most sensitive features in decreasing order were time-to-peak

(TTP), cerebral blood flow (CBF) and cerebral vascular reactivity (CVR), all

of these inside of iWSAs. Applying iWSAs combined with feature selection

yielded significantly higher receiver operating characteristics areas under the

curve (AUC) than whole GM/WM VOIs (AUC: 0.84 vs. 0.90, p = 0.039).

Correctly predicted patients presented with worse cognitive performances

than frequently misclassified patients (Trail-making-test B: 152.5s vs. 94.4s,

p = 0.034).
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Conclusion: Random forest classifiers trained on multiparametric MRI data

allow identification of the most relevant parameters and VOIs to predict ICAS,

which may improve personalized treatments.
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asymptomatic carotid artery stenosis, hemodynamics, random forest–ensemble
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1. Introduction

Internal carotid artery stenosis (ICAS) is a major public

health issue causing about 10% of all ischemic strokes (Flaherty

et al., 2013). Furthermore, although considered clinically

asymptomatic if no signs of stroke or transitory ischemic

attacks can be observed, some ICAS patients develop cognitive

impairments comparable to dementia (Lal et al., 2017), which

might be caused by chronic cerebral hypoperfusion (Göttler

et al., 2018). Efficient revascularization procedures, such as

stenting or endarterectomy, are available. However, these are

invasive and come with substantial periprocedural risks that

must be considered carefully for asymptomatic ICAS patients,

since the annual risk of stroke under best medical therapy is

reported to be <1% (den Hartog et al., 2013). Consequently,

the identification of severely affected patients who might benefit

most from a more aggressive treatment is crucial.

In recent years, a large variety of perfusion and oxygenation

sensitive MRI parameters have been suggested for the

assessment of brain damage and the prediction of individual

stroke risk in ICAS (Chen, 2019; Kaczmarz et al., 2021). A

decrease in cerebral blood flow (CBF) (Baradaran and Gupta,

2020) derived from pseudo-continuous arterial spin labeling

(pCASL) and a reduction of cerebral vascular reactivity (CVR)

(King et al., 2011) obtained by breath-holding functional MRI

(BH-fMRI) have been proposed as potential biomarkers to

predict strokes. Furthermore, the sensitivity of time to peak

(TTP), relative cerebral blood volume (rCBV), mean transit

time (MTT), oxygen extraction capacity (OEC), and capillary

transit-time heterogeneity (CTH) to vascular impairment has

been investigated intensively using dynamic susceptibility

contrast (DSC) imaging based on the injection of a gadolinium-

containing tracer (Nasel et al., 2001; Mouridsen et al., 2014;

Kaczmarz et al., 2021). Also, downstream alterations of the

relative oxygen extraction fraction (rOEF) calculated by

multi-parametric quantitative blood oxygen level dependent

(mq-BOLD) MRI (Hirsch et al., 2014) have been discussed

controversially (Baron et al., 1981; Chen, 2019; Göttler et al.,

2019). In addition, individual watershed areas (iWSA), located

at the edge of vascular territories, have been reported to be

most vulnerable to these impairments (Kaczmarz et al., 2018)

and are of special interest as they are also a typical location

of ICAS associated strokes (Yong et al., 2006). However, it is

currently unclear, which of these numerous MRI parameters are

best suited to predict disease severity (Baradaran and Gupta,

2020), and whether hemodynamic or metabolic changes within

iWSAs have a higher discriminative ability (Kaczmarz et al.,

2021).

The identification of the most sensitive parameters and

volumes of interest (VOI) to predict ICAS could provide a

deeper understanding of the pathology, help to adjust treatment

in an early stage of disease, and point out the most relevant

parameters for further research. Additionally, it would increase

the clinical applicability of hemodynamic and oxygenation

sensitive MRI if the examination protocol could be restricted to

the most relevant parameters, which could also be used to screen

for severely affected ICAS patients.

Lately, various machine learning algorithms have been

applied to neuroimaging data for disease prediction (Jollans

et al., 2019). Especially the random forest classifier, which is

based on an ensemble of decision trees (Breiman, 2001), has

been used widely (Lebedev et al., 2014; Maggipinto et al., 2017;

Carlson et al., 2020) to analyze data with respect to underlying

relationships between parameters. The classifier’s popularity

is due to its ability to deal with high-dimensional data sets

(Gregorutti et al., 2017), and its reduced tendency to overfit

compared to other classification models, while maintaining high

accuracies (Breiman, 2001). In addition, the importance of each

variable, called feature, can be calculated enabling an embedded

feature selection and a ranking of the most relevant parameters

and VOIs (Breiman, 1996).

In the present study, we aimed to predict ICAS by

applying a random forest classifier to an extensive set of eight

multi-modal MRI parameters of a previously published study

(Göttler et al., 2018, 2019; Kaczmarz et al., 2021; Schmitzer

et al., 2021) that investigated hemodynamic impairments

using VOIs within and outside of iWSAs (Kaczmarz et al.,

2018) in asymptomatic high-grade ICAS patients and age-

matched healthy controls.We hypothesize an increased accuracy

when considering parameters within iWSAs. Furthermore, we

analyzed the influence of the cognitive status on the patients’

misclassification probabilities.
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2. Materials and methods

2.1. Subjects

Twenty-nine patients (9 females, mean age 70.3± 7.0 years)

with an asymptomatic, one-sided, high-grade extracranial ICAS

[confirmed by duplex ultrasonography; all > 70% according to

the NASCET criteria (NASCET, 1991)] and 30 healthy elderly

(17 females, mean age 70.3 ± 4.8 years) participated in this

prospective study. The study was approved by the medical

ethical board of the Klinikum rechts der Isar and in line

with Human Research Committee guidelines of the Technische

Universität München. All participants provided informed

consent in accordance with the Declaration of Helsinki. After

being diagnosed with screeningmethods, patients were recruited

in the outpatient clinic for carotid stenoses of the Department

of Vascular and Endovascular Surgery and Angiology of our

hospital, and healthy controls were recruited by word-of-mouth

advertisement from May 2015 until May 2017. MRI neck

angiographies were used to confirm the lack of stenoses in the

healthy controls.

Examination of every participant included MRI, the medical

history, and basic screening for neurological and psychiatric

diseases. The cognitive status of the study participants was

assessed by the Trail making test A and B (TMT-A/B) and

Mini-Mental State Examination (MMSE). Additionally, Beck’s

Depression Inventory (BDI) and State Trait Anxiety Inventory

(STAI) were conducted to screen for affective disorders, as these

may impair cognitive performance. Data from this study cohort

have been previously investigated with respect to hemodynamic

impairments and variability of individual watershed areas

(iWSAs) in asymptomatic ICAS (Göttler et al., 2018, 2019;

Kaczmarz et al., 2018, 2021; Schmitzer et al., 2021).

Exclusion criteria for enrolment in the study were any

neurological or psychiatric diseases, severe chronic kidney

disease, active cancer, clinically remarkable structural MRI (e.g.,

territorial stroke lesions, bleedings, or a history of brain surgery),

and MRI contraindications.

2.2. Magnetic resonance imaging and
parameter calculation

MRI data were acquired on a clinical 3T Philips Ingenia

MRI-Scanner (Philips Healthcare, Best, The Netherlands)

using a 32- and a 16-channel head/neck-receive-coil. All MR

image processing procedures used custom MATLAB programs

(MATLAB R2016b, MathWorks, Natick, MA, USA) and SPM12

(Wellcome Trust Center for Neuroimaging, UCL, London, UK)

and were conducted as described previously (Kaczmarz et al.,

2018, 2021; Göttler et al., 2019).

In brief, we performed pCASL to obtain CBF using a label

duration of 1,800ms and a post label delay of 2,000ms. CVR was

obtained based on single-shot EPI BH-fMRI according to Pillai

et al. (Pillai and Mikulis, 2015) with five end-expiratory breath-

holdings of 15 s alternating with 45 s of normal breathing.

Furthermore, using a bolus injection of weight-adjusted Gd-

DOTA (concentration: 0.5 mmol/mL, dose: 0.1 mmol/kg, at least

7.5 mmol per subject, flow rate 4 mL/s, injection 7.5 s after

DSC imaging onset) DSC-MRI yielded TTP maps calculated as

the interval between global bolus arrival time and each voxel’s

peak signal loss (Kaczmarz et al., 2018). Additionally, rCBV was

derived fromDSC data with leakage correction (Hedderich et al.,

2019) and MTT, CTH and OEC were obtained by parametric

modeling (Mouridsen et al., 2014). Finally, T2 and T2∗ mapping

by multi-echo gradient-spin echo (GRASE) and gradient echo

were performed for multi-parametric quantitative blood oxygen

level dependent (mq-BOLD) MRI (Hirsch et al., 2014). Relative

oxygen extraction fraction rOEF = R2′/(c·rCBV) was calculated

fromR2′= (1/T2∗) – (1/T2) and rCBVusing c= 4/3·π ·γ ·1χ ·B0

= 317Hz at 3 Tesla (Kaczmarz et al., 2020), resulting in eight

quantitative maps of perfusion, oxygenation and microvascular

parameters in total (Figure 1). For detailed information see the

Supplementary material.

AllMRI parametermaps were carefully screened for imaging

artifacts (by JG and SK with each 5 years of experience, and CP

with 25 years of experience in cerebral research). No arterial

transit time artifacts were observed by careful inspection of

unsmoothed CBF maps. Data from five patients and six healthy

controls were excluded due to the impaired quality of more than

four parameters, resulting in 24 subjects in both groups. From

the final data set, about 15% of all parameter maps were excluded

due to low quality.

2.3. Feature extraction

Feature vectors were defined by extracting MRI parameter

values from gray and white matter VOIs inside and outside of

individual watershed areas.

• iWSAs were defined based on temporal perfusion delays

derived fromDSC-based TTPmaps as described previously

(Kaczmarz et al., 2018). In short, smoothed TTP-maps were

segmented by masking voxels above the 90th percentile of

the whole brain histogram. In addition, external/cortical

watershed zones were manually included and venous blood

sinuses/vessels as well as the ventricular system and choroid

plexus were excluded (Kaczmarz et al., 2018).

• GM and WM tissue masks were defined by segmenting

MPRAGE data with SPM12 using default settings. The

resulting probability maps were thresholded at p > 0.70

(Kaczmarz et al., 2021).

For each subject, mean parameter values were calculated

separately for hemispheres ipsilateral and contralateral to the
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FIGURE 1

Overview of included multi-parametric MRI data and major processing steps. The 3T-MRI comprised pseudo-continuous arterial spin labeling

(pCASL) to obtain cerebral blood flow (CBF), breath-holding fMRI (BH-fMRI) for cerebral vascular reactivity (CVR), dynamic susceptibility contrast

(DSC) MRI to measure time to peak (TTP), relative cerebral blood volume (rCBV), mean transit time (MTT), oxygen extraction capacity (OEC), and

capillary transit-time heterogeneity (CTH), FLAIR to detect lesions and MP-RAGE to generate white matter (WM) and gray matter (GM) masks.

Relative oxygen extraction fraction (rOEF) was modeled from quantitative transverse relaxation times T2 and T2* as well as rCBV by

multi-parametric quantitative blood oxygen level dependent (mq-BOLD) MRI. Next, mean parameter values were extracted from

volumes-of-interest (VOIs) inside and outside of individual watershed areas (iWSA), additionally split in GM and WM, for both hemispheres and

interhemispheric di�erences, resulting in 96 features overall. Finally, a random forest classifier was trained on data from 24 ICAS patients and 24

healthy controls (HC) to calculate feature importance scores.

stenosis from VOIs inside and outside of iWSAs that were split

in GM- and WM-VOIs (see insert in Figure 2 for exemplary

masks). Group average values of ICAS patients and healthy

controls are shown in Table 1. Moreover, differences in mean

parameter values between both hemispheres were extracted,

resulting in 12 features per parameter (four VOIs from each

hemisphere plus four interhemispheric differences) and 96

features in total (Figure 1). Furthermore, mean parameter

values were calculated within whole GM and WM masks,

without segmentation of iWSAs, for each hemisphere and

interhemispheric differences.

2.4. Random forest model construction

All machine learning procedures were implemented using

MATLAB’s “statistics and machine learning toolbox” (MATLAB

R2020a, MathWorks, Natick, MA, USA). Reported classifiers

consist of 300 bootstrapped trees built byMATLAB’s Treebagger

function. After testing various numbers of trees in a range

between 200 and 1,000 trees, 300 trees were considered the best

tradeoff between increasing computing costs and improving the

classifier’s performance. The diversity of the trees, which reduces

overfitting, was obtained by building the trees on randomly

drawn subsets of subjects with replacement. The subjects that

were not sampled to build a specific tree are referred to as

out-of-bag observations (Breiman, 1996). At each decision split,

a random subset of features was used, where the subset’s size

equaled the square root of the total number of features. To

predict the class of a given test sample, i.e., healthy subject

or ICAS patient, votes of all trees of the random forest were

democratically combined and the majority determined the final

prediction (see Breiman, 2001 for more details). Surrogate splits

were used to handle missing data points. In case of a missing

value, observations were sent to the left or right child node by

choosing a surrogate variable that is most suitable to mimic the

original split (Breiman et al., 1983).

2.5. Calculation of feature importance
scores

Out-of-bag observations, i.e., data that were not used to

build a specific decision tree, were employed to estimate the
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FIGURE 2

Feature importance scores of a random forest classifier trained with 96 features. Scores were averaged 1,000 times. Features were extracted

from eight MRI parameter maps [cerebrovascular reactivity (CVR), cerebral blood volume (CBV), oxygen extraction fraction (OEF), oxygen

extraction capacity (OEC), capillary transit time heterogeneity (CTH), mean transit time (MTT), time to peak (TTP) and cerebral blood flow (CBF)],

with each sampled from 12 di�erent VOIs that are shown as color overlays in the inset on the right. For each parameter, the first, second and

third group of four bars refer to ipsilateral (i) and contralateral (c) mean values, and interhemispheric di�erences (d) between mean values,

respectively. For each group, the color scheme is similar for GM inside of iWSAs (red), GM outside of iWSAs (yellow), WM inside of iWSAs (green)

and WM outside of iWSAs (blue). The color intensity increases from group one to three.

importance of the individual features. To this end, the out-of-

bag cases first served as a test set to compute the prediction

error of every tree in the ensemble. Next, all values of the feature

of interest were permuted across the out-of-bag samples and

the calculations were repeated. The increase in prediction error

was averaged over all trees in the forest and divided by the

standard deviation. The resulting measure is referred to as a

feature importance score (MathWorks, Statistic and machine

learning toolbox). High values indicate a high impact of the

given variable on the classifier’s decisions (Breiman, 1996). In

this study, feature importance scores of a model trained on

96 features from inside and outside iWSAs were calculated.

The whole procedure was repeated 1,000 times to gain more

reliable approximations.

Due to complex interactions between features, importance

scores are influenced by other features within the data set

(Breiman, 2001). For this reason, recursive feature elimination

(Granitto et al., 2006; Gregorutti et al., 2017) was implemented

to further evaluate the ranking order, i.e., the whole feature

set was repeatedly reduced by 10% of the lowest ranked

features until all remaining features had an importance score

> 0.1. From the resulting feature set, only the highest ranked

VOI and/or VOI difference per parameter was included

in the final model to avoid adding redundant features.

Importance scores of the final feature set were averaged 1,000

times. Additionally, importance scores of models trained on

random subsets of 12 features were calculated to validate the

ranking order.

2.6. Validation of classification models

In this study, four classification models were investigated

to evaluate the influence of VOI definition as well as feature

selection. To assess the classification performances, 10-fold

cross-validated models were built. To this end, all subjects were

randomly assigned to one of 10 almost equally sized subsets

referred to as folds. Sequentially, each fold served as test set

once, while the remaining folds formed the training set. As

measures of performance, the accuracy and receiver operating

characteristics area under the curve (AUC) were calculated.

During the tuning process various numbers of folds were tested.

Ten-fold cross-validation which is common in neuroimaging

applications (Lebedev et al., 2014; Jollans et al., 2019) achieved

the best performance scores and was, therefore, applied to the

final model.

2.6.1. Influence of VOI definition

To evaluate the impact of splitting global GM andWMVOIs

into VOIs considering iWSAs, a classifier based on 96 features

derived from inside and outside of iWSAs was compared to a

classifier based on 48 features derived from whole GM and WM

hemispheres, neglecting iWSAs. Since the bisected number of

features may influence the performance score, a third classifier

based on an equally sized feature set, i.e., 48 features from only

inside of iWSAs, was investigated. Cross-validated accuracies

and AUCs were calculated for each model.
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TABLE 1 Group average parameter values for ICAS patients and healthy controls for all evaluated VOIs.

ICAS patients (n = 24) Healthy controls (n = 24)

GM WM GM WM

Inside Outside Inside Outside Inside Outside Inside Outside

CVR [β] i 20.2± 6.2 23.7± 5.3 12.0± 4.8 16.5± 4.5 29.3± 5.8 31.1± 5.0 16.0± 3.1 21.3± 3.7

c 23.0± 6.5 25.1± 5.2 15.3± 5.0 18.3± 4.8 29.1± 5.8 29.0± 5.5 16.9± 4.7 20.2± 4.9

CBV [%] i 4.43± 0.36 5.13± 0.42 2.62± 0.16 3.18± 0.14 4.57± 0.45 5.26± 0.26 2.47± 0.08 3.24± 0.14

c 4.23± 0.38 4.98± 0.37 2.47± 0.10 3.08± 0.15 4.59± 0.37 5.20± 0.26 2.47± 0.08 3.15± 0.10

OEF i 0.56± 0.06 0.62± 0.05 0.94± 0.10 0.92± 0.09 0.58± 0.08 0.64± 0.06 1.02± 0.10 0.95± 0.08

c 0.57± 0.06 0.63± 0.06 0.98± 0.09 0.93± 0.08 0.58± 0.05 0.63± 0.06 1.00± 0.09 0.95± 0.07

OEC i 0.38± 0.08 0.33± 0.09 0.44± 0.07 0.37± 0.08 0.38± 0.07 0.35± 0.07 0.44± 0.07 0.38± 0.07

c 0.34± 0.10 0.30± 0.09 0.39± 0.09 0.33± 0.10 0.38± 0.07 0.33± 0.08 0.42± 0.07 0.36± 0.08

CTH [s] i 3.03± 1.34 2.86± 1.25 3.81± 1.70 3.17± 1.33 2.81± 0.95 2.88± 0.93 3.48± 1.11 3.09± 1.04

c 2.54± 1.23 2.45± 1.21 3.25± 1.44 2.70± 1.24 2.75± 0.94 2.75± 0.93 3.41± 1.20 2.94± 1.04

MTT [s] i 2.54± 0.92 2.28± 0.92 3.17± 1.01 2.57± 0.91 2.46± 0.71 2.34± 0.68 3.04± 0.81 2.54± 0.75

c 2.12± 0.92 1.93± 0.90 2.69± 1.03 2.17± 0.92 2.39± 0.68 2.21± 0.69 2.93± 0.84 2.40± 0.77

TTP [s] i 12.3± 1.3 11.7± 1.4 12.8± 1.4 12.1± 1.3 12.1± 1.3 11.6± 1.3 12.6± 1.4 11.9± 1.3

c 11.7± 1.4 11.2± 1.3 12.3± 1.3 11.6± 1.3 12.0± 1.4 11.5± 1.3 12.6± 1.4 11.8± 1.4

CBF [ml/ 100g/min] i 25.3± 6.9 25.6± 5.9 17.5± 5.3 23.6± 5.6 27.3± 6.1 26.6± 5.1 19.3± 4.7 24.6± 4.8

c 30.3± 6.8 28.8± 6.0 22.1± 5.5 27.2± 5.8 28.0± 6.5 27.8± 5.3 20.1± 5.1 25.7± 5.3

Group average parameter values and standard deviations per volume-of-interest [gray matter (GM) and white matter (WM), each split in volumes inside and outside of individual

watershed areas for ipsilateral (i) and contralateral (c) hemisphere], are shown for ICAS patients and healthy controls. Investigated parameters are cerebrovascular reactivity (CVR),

cerebral blood volume (CBV), oxygen extraction fraction (OEF), oxygen extraction capacity (OEC), capillary transit time heterogeneity (CTH), mean transit time (MTT), time to peak

(TTP) and cerebral blood flow (CBF).

2.6.2. Influence of clinical features

Adding not image-based features may improve the

classifier’s performance further. Therefore, the set of 96 features

was extended by clinical characteristics that were significantly

different between ICAS patients and healthy controls. An

additional classifier was trained on the resulting feature set.

2.6.3. Influence of nested feature selection

Since correlated and non-informative features can lower

the classifier’s performance, a model with embedded feature

selection was implemented (Gregorutti et al., 2017) and

compared to the model sampling all 96 features without

selection. A nested approach (Jollans et al., 2019; Zhong et al.,

2020) was used to avoid a feature selection bias. Based on

the out-of-bag feature importance scores of the full set of

96 features, the highest ranked VOI and VOI difference per

parameter was selected in an inner loop within 10-fold cross

validation to this end. Next, the sampled features were sorted

in order of decreasing feature importance scores. Subsequently,

12 models were trained using an increasing number of features

of the resulting feature subset, starting with a model built only

on the highest ranked feature, and adding features in order

of decreasing importance scores. The classifiers’ performances

were assessed by means of the external validation set. The whole

process was repeated using each cross-validation fold as test

set once.

To gain a more precise approximation of the models’

performances, measures were averaged by rerunning the entire

algorithms 100 times.

2.7. Cognitive evaluation of correctly and
misclassified patients

Two subgroups were formed based on each patient’s

likelihood of misclassification. To this end, a model including

all 96 features was trained 1,000 times. Per repetition, actual and

predicted class of each subject were compared. The percentage of

misclassifications of the ICAS patients was calculated by dividing

the number of incorrect class predictions by the number of

repetitions. The two patient subgroups were then formed based

on misclassification probabilities that were thresholded at 50%.

The cognitive performance of both groups was evaluated.

Cognitive data of two ICAS patients were missing (one due

to visual impairments, one due to lack of motivation to finish
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the test), which were therefore excluded from this subanalysis,

resulting in 22 subjects in total.

2.8. Statistical analysis

Statistical analyses were carried out using MATLAB’s

“statistics and machine learning toolbox” (MATLAB R2020a,

MathWorks, Natick, MA, USA).

A two-tailed independent sample t-test was used for

parametric data, Mann–Whitney/Wilcoxon U statistics for non-

parametric data and Pearson’s chi-squared test for categorical

data. We used a fast implementation of DeLong’s test (DeLong

et al., 1988), developed by Sun and Xu (Sun and Xu, 2014),

to compare ROC curves of models trained on different feature

subsets. Since there is no unbiased estimator of variance due

to the overlap of training sets within cross-validation, repeated

accuracies were not tested for significant differences (Bengio

and Grandvalet, 2004). A threshold of α = 0.05 was used to

determine statistical significance.

3. Results

3.1. Demographics

Table 2 shows demographic and clinical characteristics of

ICAS patients and healthy controls, including co-morbidities,

cardiovascular risk factors and medication, as well as cognitive

and affective functions. Increased systolic blood pressures,

antihypertensive medications, statins and antiplatelets were

significantly more prevalent in the patient group, whereas the

remaining characteristics including cognitive scores did not

differ significantly.

3.2. Feature importance ranking

Importance scores for the whole set of 96 features are

shown in Figure 2. Generally, interhemispheric differences

of parameter values showed higher importance scores than

individual hemisphere averages, except for CVR. With regard to

ranking (Figure 3), the feature with the highest importance score

from each group of four associated features, i.e., features derived

from the same parameter in different VOIs of one hemisphere,

was included. Consequently, the highest ranked features in

order of decreasing importance scores are interhemispheric

differences of TTP in WM, CBF in GM and ipsilateral CVR in

GM, all inside of iWSAs.

Differences in the number of missing values per parameter

may influence feature importance scores. CVR contained the

highest number of missing measurements (14/48 subjects

excluded) compared to the other parameters (TTP, MTT, OEC,

CBV, CTH: 7/48 subjects excluded; CBF, OEF: 5/48 subjects

excluded). However, the number of missing values per feature

did not differ significantly from the mean number of missing

values (for all parameters p> 0.08). Furthermore, no association

between the importance scores and the ratio of missing values

was observed.

Recursive feature elimination and feature subset evaluation

confirmed the ranking order, which shows the stability of the

results. After the recursive feature elimination process only the

highest ranked VOI and/or VOI difference per parameter was

added to the final model resulting in seven features. The mean

feature importance scores of the model trained with the seven

highest ranked features are shown in Figure 3. Only for MTT

the highest ranked VOI was not consistent. Depending on the

feature subset, MTT from GM inside of iWSAs or from WM

outside of iWSAs reached a higher rank.

3.3. Classifier performance

We evaluated how different feature sets influence the

classifier’s predictive ability.

3.3.1. Influence of VOI definition

First, it was investigated whether applying iWSAs improves

the classifier’s performance. The model trained on 48 features

derived from global GM andWMVOIs gained a lower accuracy

(mean± standard deviation) of 79.0± 2.2% and a smaller AUC

with 0.84 ± 0.04 than the model trained on 96 features from

inside and outside of iWSAs (accuracy 80.1 ± 2.8%, AUC 0.86

± 0.05). To account for the bisected number of features in the

model neglecting iWSAs, it was compared to a model built on

an equal number of features derived only from VOIs inside of

iWSAs. The latter yielded higher scores (accuracy 81.7 ± 3.0%,

AUC 0.88 ± 0.05), but Delong’s test did not reveal significant

differences in AUC between the two models (p= 0.20).

3.3.2. Influence of clinical features

The systolic blood pressure and the total number of daily

medications that are related to cerebrovascular disease (i.e.,

antiplatelets, statins, and antihypertensives) were significantly

different between groups and were, therefore, added to the

feature set. The resulting classifier based on 98 features achieved

similar performance scores (accuracy 80.0 ± 2.9%, AUC 0.87 ±

0.02, Delong’s test: p= 0.87) as the classifier based on 96 features.

The feature importance scores of the clinical characteristics

did not exceed the scores of the seven highest ranked MRI-

based features.
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TABLE 2 Clinical characteristics of ICAS patients and healthy controls.

ICAS patients (n = 24) Healthy controls (n = 24) p-value

Age (yrs.) 70.6± 6.4 70.4± 4.6 0.90

Female gender (no.) (%) 9 (37.5) 15 (39) 0.08

Stenotic degree (% NASCET crit.) 80.2± 8.9 - -

No. right-/left-sided stenosis 16/8 - -

Body mass index 26.8± 4.9 26.2± 4.0 0.65

Hypertension (no.) (%) 19 (79) 13 (54) 0.07

Mean BP (mmHg, sys./dias.) 154.3± 23.4/85.6± 10 140.8± 21.5/84.2± 7.5 <0.05∗/0.59

Diabetes (no.) (%) 6 (25) 2 (8) 0.12

Smoking (no.) (%) 12 (50) 7 (29) 0.14

Mean pack-years in smokers 36.9± 21.2 19.4± 17.8 0.09

Medication (no.) (%)

Antiplatelets 23 (96) 6 (25) <0.01∗

Statins 16 (67) 5 (21) <0.01∗

Antihypertensives 18 (75) 9 (38) 0.01∗

CHD/PAOD (no.) (%) 12 (50) 6 (25) 0.07

TMT-A (s) 45.8± 15.1 48.6± 32.9 0.63

TMT-B (s) 139.3± 64.5 118.5± 68.9 0.16

MMSE 28.3± 1.9 28.8± 1.4 0.51

BDI 10.2± 10.7 7.8± 4.9 0.35

STAI 38.9± 11.5 32.8± 8.2 0.05

Variables are represented by the mean values and standard deviations. Two-sample t-test for age, body mass index, BP, BDI and STAI. Mann-Whitney U test for TMT-A/B and MMSE.

Chi-squared test for remaining group comparisons. ∗Indicates significant group differences p ≤ 0.05. BDI, Beck’s depression inventory; BP, blood pressure; CHD/PAOD, coronary heart

disease or peripheral artery occlusive disease; MMSE, mini-mental state examination; STAI, state trait anxiety inventory; TMT-A/B, trail marking test A/B.

FIGURE 3

Feature importance scores of a random forest classifier trained with 7 highest ranked features. Scores were averaged 1,000 times.

Corresponding parameters, VOI characteristics and mean importance scores are shown for each feature.

3.3.3. Influence of nested feature selection

Additionally, nested feature selection was applied to the

model trained on all 96 features, which further improved the

classifier’s performance. Highest performance measures were

achieved by a model sampling only the six highest ranked

features selected within the inner loop [accuracy 81.6± 3.3%,

AUC 0.90 ± 0.04, sensitivity 92.8 ± 6.2 and specificity 77.9

± 5.9 at maximum Youden’s index (Youden, 1950)] (Figure 4)

(Hoffmann, 2015). Adding more features did not further

improve the performance, but instead resulted in a decrease of
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FIGURE 4

Accuracies (A) and ROC curves (B) of three random forest models. The classifier was trained on features derived from whole GM/WM VOIs (red)

and from inside and outside of iWSAs without using (green) and with using nested feature selection (blue), respectively. Depicted measures were

averaged 100 times. (A) Violin plots show mean accuracies (black line). The width of the colored area represents the proportion of classifier

iterations that reached the respective accuracy. Considering iWSAs yielded higher scores. Additional feature selection improved the accuracy

further. (B) ROC curves of the three models. AUCs di�ered significantly comparing the model based on whole GM/WM VOIs to the one

considering iWSAs with feature selection (Delong’s test, p < 0.05, asterisks). iWSA, individual watershed area; GM, gray matter; WM, white matter;

ROC, receiver operating characteristics; AUC, area under the curve.

the AUC. Compared to the model trained on whole GM and

WM VOIs, the model with combined improvement by splitting

VOIs into iWSAs, and the use of nested feature selection

achieved a significantly larger AUC (Figure 4B).

3.4. Impaired cognition of correctly
classified ICAS patients

An association between ICAS and cognitive decline has been

reported (Lal et al., 2017). For this reason, we hypothesized

a superior cognitive performance in ICAS patients who were

misclassified as healthy controls, compared to patients that were

correctly identified by the classifier. Of the 22 ICAS-patients

included in this subanalysis, five patients were misclassified

in more than 70% of all repetitions, while the remaining 17

subjects received false negative predictions in <30% of the

cases. Trail Making Test-B results of mostly true positive

subjects were significantly higher than those of frequently

misclassified subjects (152.5 ± 66.9 vs. 94.4 ± 26.1s, p =

0.04), indicating a poorer cognitive performance in the correctly

classified subgroup. This finding was supported by trends

for higher mean values of Trail Making Test-A (46.6 ±

16.7s vs. 43.4 ± 8.7s, p = 0.94) and lower mean values of

MMSE (28.1 ± 2.0 vs. 29.3 ± 1.2, p = 0.32) in the mostly

correctly classified group compared to the misclassified group.

It should be noted however that the median scores of all

subgroups were within the age adjusted normative ranges (Crum

et al., 1993; Tombaugh, 2004). Age and affective function can

influence cognitive abilities. However, no significant differences

between the correctly and the misclassified group were found

regarding age (p = 0.92), BDI (p = 0.61) or STAI (p

= 0.50). Furthermore, more accurately predicted patients

were associated with non-significantly higher NASCET scores

compared to the more incorrectly predicted group (82.6 ±

8.3 vs. 76.0 ± 5.5%, p = 0.10). Healthy controls were

not included in this evaluation since their misclassification

probabilities were more homogenous with only two frequently

misclassified subjects.

4. Discussion

In this study, we successfully applied a random forest

classifier on multiparametric quantitative MRI data to predict

asymptomatic, one-sided ICAS. The highest performance scores

were achieved by a model with nested feature selection trained

on features from inside and outside of iWSAs. Furthermore,

we ranked the parameters with regard to their sensitivity to

predict ICAS. Most relevant parameters in order of decreasing

importance scores are interhemispheric differences of TTP and

CBF followed by ipsilateral CVR.
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4.1. Feature importance ranking

Overall, the calculated ranking order fits with previous

results (Kaczmarz et al., 2021) and can be explained by the

underlying pathophysiological effects of ICAS and technical

limitations of the individual parameters. The high discriminative

ability of interhemispheric TTP differences fits with well-

known and consistently observed perfusion delays in ICAS

(Nasel et al., 2001). TTP increases result from a complex

interplay of reduced perfusion pressure ipsilateral to the

stenosis (Baradaran and Gupta, 2020) and delayed perfusion

via collateral flow (Schmitzer et al., 2021). MTT, which

ranked in 5th place, is also related to perfusion delays.

However, in contrast to TTP, which can be calculated

relatively easily as a descriptive parameter from the DSC

time course, MTT calculation involves more sophisticated

processing, i.e., deconvolution, which is more noisy and

prone to error (Mouridsen et al., 2014). It therefore makes

sense that MTT is ranked less important than the more

robust TTP.

The second-ranked parameter is CBF derived from

single-PLD pCASL, which is also well-known to be reduced

ipsilateral to the stenosis (Kaczmarz et al., 2021). However,

prolonged blood arrival times ipsilateral to the stenosis and in

particular within iWSAs may lead to a CBF underestimation

(Fan et al., 2016). Therefore, the interhemispheric CBF

difference could be overestimated, resulting in higher

feature importance scores. Although no artifacts were

observed in our cohort, this issue could be avoided by

applying time-encoded ASL in the future (van Osch et al.,

2018).

CVR is the only investigated parameter that was deemed

relevant twice by recursive feature elimination, i.e., as

interhemispheric difference and ipsilateral. The high sensitivity

is in line with previous studies, where CVR was further

reported to predict stroke risk (King et al., 2011; Baradaran

and Gupta, 2020). However, in our study, only third and

fourth ranks were reached. This can be explained by the

relatively high number of missing values compared to other

parameters, which might have decreased the importance

scores. This relatively high number of missing values is

due to compromised quality of CVR data derived from

the breath-holding task. In this respect, we expect higher

reliability and data quality when hypercapnia (Pillai and

Mikulis, 2015) is used. However, this requires a more

complex set-up.

In general, oxygenation sensitive parameters were deemed

less important than hemodynamic parameters. An explanation

is the subtlety of metabolic impairments in asymptomatic ICAS

patients (Baradaran andGupta, 2020; Kaczmarz et al., 2021) who

do not yet suffer frommisery perfusion as defined by Baron et al.

(1981).

4.2. Higher sensitivity of iWSAs

The highest ranked features identified by recursive feature

elimination are mostly from inside of iWSAs, which is in

line with previous results (Kaczmarz et al., 2021). The only

exceptions are ipsilateral CVRs, which might be less reliable

due to the high number of missing feature values as described

above and the difference in MTT. Further evaluation of different

feature sets including various MTT features revealed similar

relevance of MTT VOIs inside and outside of iWSAs. However,

the increased discriminative ability considering iWSAs is

supported by the improved performance of the classifier trained

on features from iWSAs compared to the classifier trained on

global GM andWMVOIs. This also fits with previous studies on

ICAS patients that proposed an increased vulnerability of water

shed areas to hemodynamic impairments (Wiart et al., 2000;

Nasel et al., 2001), which are associated with internal border

zone infarcts (Yong et al., 2006). In particular, watershed areas

were found to be highly variable and subject-specific in ICAS

patients, since they shift due to individual collateral flow via

the Circle of Willis (Kaczmarz et al., 2018). Therefore, defining

iWSAs more precisely further increases sensitivity (Kaczmarz

et al., 2021).

4.3. Increased accuracy of the nested
classifier

Random forest classifiers have previously been chosen

for the prediction of neurological disease based on multi-

parametric MRI data because of their ability to deal with

small sample sizes combined with high-dimensional correlated

data (Maggipinto et al., 2017; Carlson et al., 2020). However,

to address concerns regarding potential overfitting when the

number of features largely exceeds the number of subjects, we

built a classifier on a manually reduced feature set where similar

parameters and contralateral values were excluded (data not

shown). This classifier did not achieve significantly different

performance scores. Nevertheless, overfitting cannot be ruled

out completely. Additionally, correlated features that do not

supply complementary information may decrease performance

(Lebedev et al., 2014). These problems are commonly tackled

by feature selection. To this end, a nested model was chosen

since non-nested models lead to overoptimistic performance

scores (Maggipinto et al., 2017). In this study, no performance

improvement was found if selecting more than six features.

A possible explanation is feature subsampling when building

the individual trees, since more informative features may be

neglected if correlated features, which are frequent in our data

set, are added. The small number of required features for optimal

performance provides benefits such as less computational cost,
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prevention of overfitting (Granitto et al., 2006) and shorter

data acquisition times, which improves clinical applicability. For

instance, MRI scans could be screened automatically for patients

with an increased probability of severe ICAS, using only the

most sensitive features, i.e., TTP and CBF within iWSAs.

The performance scores of our classifier suggest a similarly

high predictive ability compared to other studies that applied

random forest machine learning in neurological diseases (de

Weerd et al., 2014; Maggipinto et al., 2017). To the best of

our knowledge, there is no study that attempted prediction of

asymptomatic ICAS using machine learning based on cerebral

imaging data yet. However, Yin et al. (2020) used a random

forest model to predict ICAS based on features contributing

information on demographics, comorbidities, cardiovascular

risk factors and cognition. Tested on an independent dataset

the classifier reached an AUC of 0.89 and, thus, performed

similar to our classifier. According to Yin et al. (2020) family

history of dyslipidemia and the level of high- and low-density

lipoprotein cholesterol were the most sensitive parameters

to predict asymptomatic ICAS. Adding these features might

further improve the performance of our classifier but this could

not be tested due to lack of data. Including the systolic blood

pressure and the number of medications, however, did not

improve the model’s performance significantly. This might be

due to a limited validity of blood pressure measurements in

testing situations. Additionally, blood pressure and medications

are correlated which may decrease the features’ importance

scores as well.

4.4. Cognitive impairment of correctly
classified patients

An association between ICAS and cognitive decline has been

reported previously (Lal et al., 2017). However, not all ICAS

patients are equally affected, and it cannot easily be predicted

which patients will suffer from cognitive decline. Subtle damage

to brain tissue caused by hemodynamic impairment has been

proposed as a possible underlying pathomechanism (Balestrini

et al., 2013; Lal et al., 2017). This has been supported by

Buratti et al. (2016), who used ipsilateral CVR values to

predict cognitive decline in asymptomatic ICAS patients. Our

results support this theory, since patients that were frequently

misclassified as healthy controls and are thus likely to be less

affected by hemodynamic impairments showed better cognitive

abilities than the correctly classified patients. The random forest

classifier combines multiple parameters reflecting the patients’

hemodynamic statuses in a more complex way, which may

improve detection of critical hypoperfusion that may lead to

cognitive impairment. However, our sample of patients with

asymptomatic ICAS did not comprise subjects that suffered

from severe cognitive deficits. This certainly complicates the

prediction of cognitive impairment and might explain why no

significant differences regarding cognitive performance were

observed among ICAS patients and controls (see Table 2).

Even though sensitive cognitive tests have been employed,

the majority of patients showed only subtle impairments in

a spatial attention task (Göttler et al., 2018), and the mean

Trail making test results of all subgroups were within the

age-adjusted normative range (Tombaugh, 2004). Nevertheless,

especially the early detection of subtle impairments, which

are not yet clinically relevant, might be crucial to prevent

future decline. In a previous study, cognitive deficits have

been reported to be independent of the grade of stenosis (Lal

et al., 2017). This also fits our results, since the correctly

classified patients showing worse cognitive performances did not

have significantly higher NASCET scores than the misclassified

patients. A possible explanation for this are inter-individual

differences in collateral flow from the contralateral carotid

artery via the Circle of Willis, which can compensate ipsilateral

hypoperfusion (Zarrinkoob et al., 2019). Nevertheless, correctly

classified patients were associated with slightly higher NASCET

scores potentially caused by more pronounced hemodynamic

impairments in higher grades of stenoses. However, the small

sample size prohibits strong conclusions.

4.5. Limitations

First, the sample size in our study was relatively low, which

raises concerns regarding the generalization ability of the model

to other datasets. However, random forest classifiers have shown

reliable accuracies and robustness to overfitting even with small

sample sizes (Breiman, 2001; Jollans et al., 2019; Carlson et al.,

2020). Additionally, nested feature selection was implemented

to reduce the number of features and, therefore, the likelihood

of overfitting. Nevertheless, overfitting cannot be excluded. Due

to the limited number of observations, an external validation

set was lacking, which we tried to compensate by using cross-

validation, although, to validate the model further, future studies

with a larger sample are urgently needed. Second, in our cohort,

ICAS patients presented with more vascular risk factors than

healthy controls and are thus likely to suffer from general

vascular impairment. Therefore, the classification of the subjects

by the random forest model might not be ICAS specific, but

could be associated with other cerebrovascular diseases, which

have been reported to impact cognition as well (Dichgans and

Leys, 2017). Third, the association between severe hemodynamic

impairments and future cognitive decline and stroke could not

be evaluated and a follow-up study is required in this regard.

Fourth, the classifier’s performance may be vendor specific and,

thus, the model may not be applicable to datasets from other

scanners. The classifier’s generalizability could be improved

using samples from different MRI scanner vendors. Lastly, there

are specific limitations regarding the individualMRI parameters,
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which have been discussed in detail before (Kaczmarz et al.,

2021).

5. Conclusion

In this study, we applied a random forest classifier on

multiparametric MRI data from ICAS patients and healthy

controls. TTP, CBF and CVR from inside of iWSAs were

identified as the most sensitive parameters to detect ICAS

patients. Furthermore, using VOIs from inside of iWSAs

and nested feature selection both increased the prediction

accuracy of the classifier. Future extension of our approach

to early detection of ICAS subgroups who suffer from severe

hemodynamic impairments and who are at increased risk of

cognitive deficits may improve the selection of patients who

benefit from more aggressive therapy.
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